1998 International Computer Symposium’
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

Adaptation of the Object-Oriented Language/Software in Adapter++
Chao-Hsin Lin

Department of Risk Managemeﬁt and Insurance
National Kaohsiung First University of Science and Technology, Kaohsiung, Taiwan, R.O.C.
E-mail: linchao@ccms nkfu.edu.tw

ABSTRACT

Recently, instead of building compilers from scratch,
“open language” further allow programmers to customize
their own new interface constructs to support special
requirements and object-oriented requirements at the same
time. This paper presents our language adapter++, which is
implemented based on the concept of open implementation
that the object model can be extended to address different
requirements in various computing environments.
Adapter++ is distinct from other open languages by that the
implementation of extended object model is not directly
reified into the syntax or semantics of interface construct to
become a new integrated construct but into a separated
interface. Programmers can then use the two interfaces to
define an object as if using integrated constructs and thus
effectively avoid the inheritance exclusion and inheritance
anomaly.

1. INTRODUCTION

In sequential object-oriented languages, the interface
construct (e.g., class in C++) providing information hiding
and data abstraction that programmers can view the
construction of system as a collection of interacting
software objects that reflect real world counterparts.
Traditionally, the interface construct of object also
effectively relieve programmers the task of reusing existing
code, since this mechanism means that programmer’s
attention is no longer distracted by irrelevant
implementation details. However, based on the need of
dealing with the special concems in various computing
domains, a number of researchers try to add new notations
into traditional sequential interface constructs to better
support  object-oriented programming in  different

computing environments [2, 4, 6, 8, 10, 13, 18, 21]. For

instance, to support concurrent programming, concurrent
C/C++ [18], ABCL/1 [31], Ada [15] and Eiffel // [9]
introduce  unique linguistic  support to manage
communication and interaction among objects. In [24],
such a new object interface-construct is called integrated
construct, which allows programmers to define functional
behaviors and aspect-related behaviors in the same
interface construct for an object. Within such an integrated
interface, the aspect-related behaviors such as concurrency
controls for concurrent programming, timing ‘constraints
for real-time programming, and location control for
distributed programming are usually distinguished from the
functional behaviors for application domains by special

new language notation. Nevertheless, using integrated
construct usually leads to inheritance anomalies
(interference of inheritance between aspect-related
behaviors and functional behaviors [1, 2, 31]) and
inheritance exclusion (different interface constructs can not
inherit from each other [24]). In addition, integrated
constructs also lead to black box problems [23], since
programmers are no longer allowed to modify the
mechanism embedded in language semantics or syntax.

This paper presents our adaptable architecture, which is
implemented in language adapter++. The adaptable
architecture is designed in a way that programmers can
adapt the existing single object or a group of related
objects to different computing environments without
changing or rewriting. Furthermore, the adaptation
architecture can be modified to improve the language
itself; and the resulting language better takes care the
inheritance anomaly and the inheritance exclusion than
other approaches of open languages.

Section 2 introduces more concepts underlying our
adaptation architecture in details and the other related
works. Section 3 presents an overview of our proposed
adaptation architecture for object-oriented language and
the design concepts in the language adapter++. Section 4
introduces the programming methodology of using
adapter++ to support language adaptation via the
adaptation phase and software adaptation via a
specialization phase. The bounded buffer example will be
used to further illustrate how to employ the proposed two-
phase programming methodology in  concurrent
programming. It provides the general idea of adapting
software/language to other computing environments with
adapter++. Finally, section 5 concludes our research.

2. BACKGROUND AND RELATED RESEARCH

Without integrated construct, programmers need to design
their own low-level software primitives to support
development of software in different computing
environment. For instance, while using language Eiffel in
concurrent programming, programmers need to employee
the underlying Eiffel assertion mechanism to ensure mutual
exclusive access to shared data [9, 22, 26, 32]. In this way,
synchronization constraints (e.g., pre-conditions) are
closely tied to method codes and thus possibly leading to
one of the inheritance anomaly - the complete rewriting of
the previously defined synchronization controls and
method codes when introducing new methods into the sub-
classes. To separate the code for special concems from the
method body, Concurrent C/C++ [18], ABCL/1 [31], Ada
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[15], RTC++[20] and Eiffel // [9] all provide programmers
with integrated constructs, in which special purpose code
can be directly specified in integrated construct to better
support code reuse via inheritance.

In recent years, opening language further allowing
programmers to customize the integrated construct to
simplify the object-model reasoning and thus facilitating
the application development in various computing
environments has received considerable attention {2, 11,
19, 23, 27, 31, 41]. The idea of Open Implementation is to
expose an abstraction of the implementation, not the actual
details. Kiczales [23] claims that blackbox abstractions by
using the object model do not always work, because it is
impossible to hide all implementation issues behind a
module interface. The Open Implementation must therefore
provide clients with control over its implementation
strategy, not with a mountain of details {23]. Under these
approaches, users usually consider the object-oriented
language in two different levels — base level and meta
level. Conceptually, programmers can modify the meta-
level objects to affect how the base-level objects interact
with each other such as synchronization coatrol, timing
constraint, assertion code of debugging, and location
directives of network objects. Conceptually, programmers
can extend the language by means of modifying the meta-
level objects. The remainder of this section will discuss
several open languages and also present the criteria of
designing an open language.

Open C++ is extensible in language semantics.
Programmers can add new language primitives and thus
changing the language semantics to support special
requirements in different computing environments [11].
However, by lacking of the capability of allowing
programmers to customize the integrated construct, several
issues of software engineering such as software designs,
software analysis and modular programming is restrictedly
supported.

To support software design and module programming, for
a declarative language such as C and C++, language
semantics as well as syntax extensions are required to be
open or be reflective. The MPC++ meta-level architecture
was designed and implemented to meet the above
requirements [19]. The MPC++ defines an abstract
compiler, which consists of a lexical analyzer, parser, and
code generator. By means of the abstract compiler, the
semantics and syntax of an imperative language like C or
C++ can be extended. However, MPC++ only allow
programmers to design traditional integrated construct that
the issue such as inheritance anomalies and inheritance
exclusion are ignored.

The CodA [28] meta-level architecture is based on an
operational decomposition of meta-level behavior into
objects and the provision of a framework for managing the
resultant components. For example, the interaction
between objects can be decomposed into accept, queue,
receive state, state, and execution.

Open C++, MPC++, CodA only focus on providing
programmers with the capability of customizing languages
but not on avoiding the inheritance anomaly and

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0.C.

inheritance exclusion. Another open language ABCL/R2
[31] trying to avoid inheritance anomaly by providing its
special integrated construct with multiple concurrency
control schemes that progrunmers can choose the suitable
scheme to avoid code rewriting. However, ABCL/R2 does
not focus on allowing programmers to invent new
integrated construct.

Although open implementation allows programmers to
design suitable integrated construct to resolve the blackbox
problems, it has been reported that developing applications
by means of employing th¢ integrated construct approach
will still suffers the inheritance anomaly in several cases
[31]. Another issue of code reuse of employing the
integrated construct is inhcritance exclusion [24], which is
not found in pure object-oriented language. For examples,
in language Concurrent C++, capsule (a kind of integrated
construct used to protect the integrity of shared data) can
not inherit from class, and vice versa. Because of
inheritance exclusion, the object code is not transportable
among different computing environments and even again
lead to the completely rewriting of object code. We
therefore consider that the criteria of an open language
should also regarding that the extended language can
support high-level programming and provide programmers
with the capability of cffectively avoiding inheritance
anomaly and inheritance exclusion.

3. THE PURPOSED ADAPTABLE
= ARCHITECTURE

21n adaptation-level interface, programmers
I can define the aspect-related behaviors or

conditions that will affect the decision ¥ meta-level iaterface, users

Traditional can build the nocessary

base-lovel interface  making in its correspont (linked) meta mechanism of special
allows programmers - object. n 3 concems . such as

to dch_nc functional 3 , - concurrency control. location
behaviors. el control, etc.

Figure 1 Overview of the enhanced reflective
architecture in Adapter++

Our approach differs from most existing reflective
approaches [2, 11, 19, 23, 27, 31, 41] specifically in the
incorporation of an additional intermediate abstraction
level (between the base level and meta level (Figure 1). It
means that users can view an object in three interfaces:
base-level interface, adaptation-level interface, and meta-
level interface. In this way, fogrammers can extend the
language and also avoid the inheritance anomaly and the
inheritance exclusion while uxing the resultant language.

This ‘arrangement promotes ' principle of separation of
concerns since each level deals With only a specific
functionality of the object #!!!!Y The base level is mainly
concerned with the funtional behaviors related to
applications. The adaptati’ level deals with aspect-related
behaviors that jmelevant '@ functional behaviors but
relevant to the underlying ¢?MPLUNg of an special purpose
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object model. The meta level implements the object model
itself as presented in other reflective architecture.

In the following sections, we will introduce some key
concepts that will be used throughout the paper.

3.1. Inheritance mechanism and linkage
mechanism

In the proposed architectural design (Figure 1), two types
of inter-class hierarchy relationships are presented. One is
the inheritance relationship as in the traditional object-
oriented languages. In this case, each of the three
abstraction levels (the base level, adaptation level, and
meta level) has its own independent inheritance hierarchy.
These sets of hierarchies serve to support code sharing in
defining new sub-classes.

Inheritance mechanism is used to inform a compiler where
to find the parent classes for the inherited features. It deals
with the vertical relationships among objects within their
respective class hierarchies. However, the crossed
inheritance relationship is not allowed since it’s not
necessary.

Another inter-class hierarchy relationship is the linkage
mechanism. A linkage is established when the same class
name is used for the base-level object and the
corresponding adapter and meta-object. Such a design will
not lead to name ambiguous, since each level has its own
name space. The proposed linkage mechanism is mainly
used to assist the compiler in gathering needed information
found in the three associated parts (class, adapter and
metaobject). Once the linkage is established, Adapter++ is
responsible to weave linked objectst together into a real
object in the run time.

32. The baselevel

We choose the object-oriented language C++ as the default
base-level language because it has been recognized as a
very popular general-purpose programming language.
However, this adaptable architecture can be applied to
other (object-oriented reflective) languages as well. In our
design, a base level object definition usually consists of a
data specification and method implementation as in
traditional object-oriented languages.

33. The adaptation level

At the adaptation level, a new language construct (adapter)
is provided as an association link between the base-level
object and its respective metaobject(s). A virtual adapter
hides the underlying (complicated) computation performed
by the corresponding metaobject(s) from programmers. An
adapter can be regarded as an extended interface to the
traditional data abstraction construct (e.g., C++ class). The
functionality implemented in an adapter permits the
incorporation of special user requirements in the base-level
object. These requirements may cover most of the special
requirements in different computing environments such as
synchronization conditions, real-time constraints, etc. This
information is then managed by the meta-object component
to monitor and regulate the behavior of the associated
object entity.

adaptation { // switch to adaptation level
adapter default { //In this root-class all the
following sections are left unspecified
non-imposing:
/] Empty section.
- imposing :
// Empty section.
binding:
// Empty section.
} // adapter
} adaptation //switch out to non-adapted base language

Figure 2 Specification of default adapter called default.

An adapter consists of three major components: namely
the imposing section, non-imposing section, and binding
section (See Figure 2). Figure 2 presents the default
adapter, which contains no entry in the three sections.
When the base-level objects are not explicitly associated
with any adapter, the default adapter and its correspondent
(default) meta object will be assumed:

(1) Imposing Section. Functions declared in this section
are termed imposing functions. They serve to impose
certain constraints (e.g., synchronization constraints)
or notations on the functional behaviors found in the
base-level object. For instance, the guardian
constraints for synchronization can be declared here.

(2) Non-imposing Section. All other local operations
that are not classified as imposing functions are
specified in the non-imposing section.

(3) Binding Section. In this section, users can explicitly
specify which imposing functions are to be
associated with the selected functional behaviors of a
base level object. This section is usually empty until
a concrete adapter is linked to a given base-level
object, users can then complete all the
implementation details of these imposing functions
(see section 0).

3.4. The meta level

In many reflective languages, meta-objects exist at run-
time or compiler time to manage the association of base-
level objects. The Meta-Object Protocol (MOP) is often
employed to specify the implementation of a reflective
object-model which users may extend or modify.
Essentially, a MOP specifies the implementation of a
reflective object-model. Thus, a MOP specifies which
meta-level objects are needed to implement an object
model, be it as a consequence of reification or a meta-level
declaration. Our architecture as other researches allows
programmers to modify the meta object and thus adapting
the object model to special purposes.

meta { // the default system specification of the meta object
typedef Operationld int;
-class synchronization :default
public:
qDelCurrent( );
qMvPrev();
gMvNext();
qMvFirst();
qMvLast();
Operationld getNextOpld ();
Operationld getNextReadyOpld () {
retum getNextOpld();

-278-



3
int timing( int timeLimit) { return -1};
void preAction();
void postAction( );
}

meta }

Figure 3 Specification of the Default Meta-Object.

Figure 3 presents the default specification for the meta
object. Function getNextOpldQ retrieves the first event in
the waiting queue and retumn the identify number of the
requested operation (behavior). In default, function
getNextReadyOpld() calls getNextOpld() and then retumn
the value back. Such a design makes the object process
events in a way of first in first out. The function
getNextReadOpld() is usually been overloaded to design
new scheduling policy. Function gDelCurrent() delete the
current event that are been examined from the waiting

queue. Function timing(int) is used for reai-time
programming. By default, timingQ return negative
integer to disable the real-time option. Function

preAction() and PostAction() are used for location control
in distributed computing.  Functions qMvFirst(),
gMvLast(), gMvNext(), gMvPrev(), and gDelCurrent() are
alt used to manipulate the waiting queue.

In addition, the meta object could be an active object or a
passive object. It depends on if a function engine() exists in
derived meta object.

3.5. Implementation of Adapter++

Adapier Level  Meta Level

Program Program Executable
| ! Program
—tarte
e compler-a | | ; !
jC: constroct ! | i !
Base Level _1(::' °°' o wd T ¢ compier Lo
L Leagewechnsa L R Pk :
Adapter C+ Compiler Linker |
Rua Time T ’L !
Support T

Figure 4 Adapter++ Compiler

The compiler that we built consists of C++ for base-level
programming, a superset of C++ at the adaptation level and
ConcurrentC/C++ at the meta level.

The source code is also divided into base level, adaptation
level and meta level code. Source code at each level is
compiled by the corresponding compiler.

3.5.1. Syntax for Level Switching
(1) base { J/ Starting the base-level programming.
(2) base } /1 Ending the base-level programming.
(3) adaptation }  // Starting the adaptaiton-level programming.
(4) Adaptation {  // Ending the adaptaiton-level programming.
(5) Meta { // Starting the meta-level programming
(6) meta } // Endign the meta-level programming

Figure 5. Syntax of level switch

Figure 5 shows how the syntax can be used to switch
between different levels. To switch to the adaptation level,
programmers will use the syntax represented in line three
of Figure 5. To end the programming at the adaptation
level, programmers will use the syntax specified in line
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four of Figure 5. In addition, the syntax specified at line 1
to 2 of Figure 5 can be used to switching in and off the
base level while the syntax (line 5 to 6) is used to switch in
and off the meta level.

3.5.2. Name Resolution at All Three Levels.

Since our object model is separated into three levels,
objects with the same name will exist in different levels.
To avoid the confusion, each level should have an
independent name table of name resolution. When the
statement of level switch is met, Adapter++ will select the
correspondent table for name resolution.

3.5.3. Implementation of the Linkage Mechanism.

In compiler time, classes that declared in different levels
but with the same name will be linked. The linkage
mechanism in Adapter++ actually re-names these thre
classes and further weaves them together into another class
that will be instantiated in run time.

3.5.4. Implementation for the Attaching Mechanism.
ATTACH s
attach : ATTACH ID arg_list;
decl : decl attach
| declarg_list
| Del LPRP
| fname;

Figure 6. Syntax of attaching imposing function

Attaching mechanism, like “slot” in language Lisp, allows
programmers to assign various attributes (or constraints) to
any individual operation within a base-level object. The
syntax is shown in Figure 6 and the example is presented in
Figure 14.

3.5.5. Run Time Overview

Adapter ++ will weave the linked classes at the different
levels (base-level class, adaptation-level class, and meta-
level class with the same name) into C++ code. Then, the
result code will be saved in an intermeddle file and can be
further compiled by C++ compiler.

Figure 7. Run-time overview of linked objects

For each class defined at base-level, Adapter++ will look
for its adaptation-level adapter and meta-level class to
generate the woven code that can be used to generate the
run-time metaobject. Conceptually, such a run-time run-
time object consists of four sub-objects — the object that
instantiated from base-level class, the object that
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instantiated from adaptation-level adapter and the object
that instantiated from meta-level class, and the waiting
queue object. In addition, these above objects are causally
-connected with each other, except the waiting queue (see
Figure 7). It means that if the status of one of these three
objects is changed, it leads to the change of the status of
other two objects.

3.5.6. Pointer to be used to point to object itself- “this”,

“bthis”, “athis”, and “mthis”

In C+4+, the keyword “this” is used to point to itself. In
Adapter++, the keyword “this” is also used to point to
itself. In addition, Adapter++ has three other keywords,
“athis”, “bthis”, and “mthis”. Keyword “bthis”, “athis”,
“mthis” are used to point to base-level object, adaptation-
level adapter and meta-level object respectively.

With such keywords, programmers can design how the
three linked objects are causally connected that the
computational reflection can be present at run time.

Restriction rules are made for these pointer: 1) all three
pointer can not be used in base level, 2) “mthis” can not be
used in adaptation level, and 3) all three pointer can be
used in meta level. With such a design, base-level
programming is independent from the other two levels and
the adaptation programming is independent from meta
level architecture. In other word, the base-level program is
saved from rewriting while the programming in other two
levels are changed and the adapter in adaptation level will
not change while the underlying meta-level architecture is
modified.

4. LANGUAGE ADAPTATION AND SOFTWARE
ADAPTATION WITH ADAPTER++

In this section, we present a programming methodology
that uses the proposed architecture to support open
implementation and language adaptation. The first phase is
termed the abstraction phase; it is followed by the
specialization phase.

4.1. The adaptation phase (phase I)- designing
an extended interface

i T adapier | [ meass legend:
fbasm (dc&aull)\ (delaull~,
3

i class
i I virtual
T— T adapter
i A
Tn the new vinual adapter, E inheritance
Drog;:jmms re_ify the i ! ? ¢ Jinkage
special computing aspect \Mer ew et

implermented in the finked \\é[ s ith
meta object by defining Adapiaiion Level .

vintual aspect-related Level XS:;?:S
_ functions.

Figure 8 Pictorial representation of the abstraction
phase.

At the abstraction phase (or phase I), users need to define
an abstract adapter (virtual adapter). An virtual adapter
can be seen as an extension interface to the base-level
class. It differs from the base-level class in the types of
functions (behaviors) being specified: the base-level class
allows programmers to specify those functional behaviors
for the application; those (aspect-related) behaviors

irrelevant to object functional behaviors but for special
concems should be specified in virtual adapters.

One of the reasons that we separate the aspect-related
behaviors from meta level is that such behaviors is usually
dependent on the context of base-level classes. If not
separated, the meta-level architecture may be forced to be
re-written, once linked to another target base-level class.

Another reason is that the virtual adapter can hide the
meta-level architecture from users as the integrated
construct hiding the underlying language semantics from
users. In this way, programmers can only consider the
virtual adapter as an extension interface to the base-level
class to define an object without caring its underlying
meta-leve architecture in specialization phase (section 4.2).

In Figure 8, the shaded area presents the relationship of
related objects in adaptation phase. The arrow, labeled as
1H (phase 1, inheritance), of the adaptation level in the
shaded area illustrates that a new virtual adatpter for
special purpose is derived from the system default adapter
(named default). A corresponding specialized meta class is
also derived (the arrow labeled as 1H of the meta-level)
and is then linked to its target adapter as illustrated by the
horizontal bi-directional arrow 1L (phasel, linkage) in
Figure 8.

In the new virtual adapter, programmers reify the special
computing aspect implemented in the linked meta object
by defining virtual aspect-related functions. For example,
programmers can provide a virtual guardian control
function in a virtual adapter and implement the related
mechanism in meta level object.

42. The specialization phase (phase II) - using
the extended interface

In specializaion phase, ymmmn'm\‘j {defauly) (dcfauh)

first denive child adapicr from the

virual adapicr provided in adaptation
phasc and then link it to base-level [ g Virtual
objects. v 2 ” (P adapter
Once a derived adapter linked 10 2 b 7 S
k;asc-l/cvcl obijt;:ch pmgrammfrhs are i | inheritance
then responsible to concreie the ; ! ink
inherted virual aspect-relaied \: fnkage

|

i

behaviors in derived adapte.
Figure 9 Pictorial representation of the specialization
phase.

At the specialization phase, users subsequently derive a
more specialized adapter class from the virtual adapter
provided in adaptation phase and link the derived adapter
to a base-level object (by specifying the derived adapter
with the same name as the base-level object, see link
mechanism in section 3.5.3.)

Once a derived adapter linked to a base-level object,
programmers are then responsible to concrete the inherited
virtual aspect-related behaviors declared in adaptation
phase.

The upward arrow labeled 2H in Figure 9 represents an
inheritance relationship between the newly derived adaprer
and its ancestor, the virtual adapter. At this point, users can
complete the implementation details of new adapter
components by attaching the imposing functions to base-
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level behaviors in binding section. The horizontal bi-
directional arrow labeled 2L in the shaded area of Figure 9
illustrates such a linkage association.

43. An Example of Using Adapter++ to
Support Concurrent Programming

In this section, we provide a producer/consumer example
to illustrate how to reuse a base level object in a concurrent
environment. Figure 10  presents the  pictorial
representation of the inheritance and linkage relationships
among the various object classes (e.g., consumer,
producer, and buffer objects). In this figure, descriptions
given in parentheses are the instance names of objects
(e.g., buffer, producer and consumer). The descriptions
above these names are their corresponding data types (eg.
class, adapter and meta class). These horizontal bi-
directional arrows represent linkage relationship among
three associated classes. The vertical arrows denote
inheritance relationships between the parent classes and
their corresponding descendant classes at each level of
concerns. Numberings 1 and 2 represent the two phases of
adaptation programming (namely the Abstraction Phase
and Specialization Phase respectively).

Adaptation
level

Figure 10 Inheritance and linkage relationships for
the consumer, producer and buffer.

Figure 11 provides the base-levél class definitions for the
shared object bounded buffer. The new object is specified
in the same manner as in C++.

Class bounded_buffer {
Private: // denoting shared resources
int in, out, max, buf(SIZE);
public:
void put(int x);
int get();
buffer();

// place an item into the buffer
// remove an item from the buffer
// class constructor

}

Figure 11 Bounded buffer object specification in
base level.
4.3.1. The adaptation phase - an interface for specifying
synchronization conditions

At the adaptation Phase, a new virtual adapter
synchronizer (see Figure 12) is first formulated to provide
synchronization control for the base-level object bounded
buffer, which is not capable of supporting concurrent
operations. The virtual function guardian (declared in the
imposing section) acts as a constraint to be imposed on all
application domain behaviors of the linked base-level
object.
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/* Abstraction Phase I: define new virtual adapter from which
more specialized adapter could be derived. */
adaptation{ // Switching to adaptation level
adapter synchronizer : default
imposing:
virtual guardian( );// newly defined constraint function
non-imposing:
// empty
binding:
// Empty until specialization phase.

adaptation} // Switching back to base level

Figure 12 A new virtual adapter synchronizer.

After defining the new virtual adapter, 2 corresponding
meta level object (Figure 13) must be defined. It is
accomplished by treating the new meta class synchronizer
as the direct descendant of the system meta class default.
Note that both the newly derived adapter and meta class
share the same class name.

- In the new meta class, the inherited meta-level method

getNextReadyOpld() is locally overridden to support the
object-wise synchronization capability. This extended
method will first examine elements (representing pending
client requests) in the queue by activating the functions
related to manipulate the waiting queue. In the example, if
the imposing function guardian retums a value of 0 (or
false), the request will be postponed; otherwise it is
returned and removed from the queue for execution.

meta{ /Nlevel switching
class synchronization :default
int getNextReadyOpld();
}

Operationld synchronization::gelNextReadyOpId() {
gMvFirstQ);
for( ; not the end of the queue; Y
operationld = getNextOpldQ;
if ( athis->gurdian(operationld) ) {
gDelCurrent();
return operationld;
}
else
qMvNext(;
} // end for
return 0;

meta} //level switching

Figure 13 The correspondent meta-level of Adapter
synchronization.

4.3.2. The specialization phase

/* Specialization Phase: define a new adapter to be associated
with a selected base-level object and specify the binding
relationship between the inherited imposing functions and their
corresponding base-level member methods. */
adaptation{
- adapter buffer: synchronizer{ // new adapter
binding section:
put(x) <- guardian( );
get() <- guardian ();
} // end of adapter buffer
buffer :: put(x) <- guardian() {
retumn (in+1)%max != out;
}
buffer :: get() <-  guardian() {
retum (in !=out) ;
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adaptation }  Switching back to base level.

Figure 14 Establishing the binding relationship
between the new adapter and its associated base-level
object specification.

In the Specialization Phase, a user can define a more
appropriate adapter to be associated with the base-level
object buffer (see Figure 10). The new adapter buffer
inherits the synchronization control capability previously
stated. Here, we only need- to specify the binding
relationship between the inherited constraint patterns (e.g.,
the imposing function guardian controls) and their
corresponding base-level member methods (e.g., methods
get and put).

5. CONCLUSIONS

We have discussed two obstacles that lead to difficulty of
reusing the existing software modules while applying the
object-oriented technology to develop application in
various computing domains: inheritance anomaly, it
prevents users from building new objects by reuse existing
objects; inheritance exclusion, it prevents users from
adapting existing software or object to different computing
domains.

To address these problems, we developed a three level
architecture, a new technique that can be applied to various
target object-oriented languages. Our proposed adaptable
architecture is already applied to the language - Adapter++.
The power of using Adapter++ in concurrent programming
is already demonstrated in this paper. We also believe that
the Adapter++ can be applied to other computing
environments with the same flexibility.

This design of the three-level architecture offers the
following advantages:

1. an unifying way to introduce different
computing requirements info object model and
thus to support the reuse of extended code,

2.  the object code’ can be reused in different
computing environments and thus support
software adaptation by just changing the
attaching adapter but without changing the
object itself,

3. high-level programming is supported in the
resultant extended languages.
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