1998 International Computer Symposium
Workshop on Artificial Intelligence .
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C./

A MULTI-AGENT APPROACH
TO MANAGING ADAPTIVE SERVICE SYSTEMS
— PRELIMINARY EXPLORATIONS"
Jyi-Shane Liu

Department of Computer Science
National Chengchi University, Taipei, Taiwan
E-mail: jsliu@cs.nccu.edu.tw

ABSTRACT

Service systems are abundant in our day to day lives. The
establishment of a service system involves resource
investment to provide the intended quality of service.
When service resources are expensive and/or demand vary,
it is desirable to have an adaptive service system that
dynamically allocates resources to meet changing demands
and evenly distributes loading to each service channel. In
this paper, we present an approach to designing a service
system such that task assignment is balanced in loading and
resource utilization is adaptive to demands. The approach
employs a multi-agent system with auction-based control
and coordinated resource utilization adjustment. We chose
world-wide-web servers as an application domain for the
approach. We implemented the design in AWSA (Adaptive
Web Server Agents) and analyzed its qualitative
characteristics. The system is expected to provide efficient
disk space utilization and balanced service quality with
some overhead in data output rate.

1. INTRODUCTION

Service systems represent a generic modeling of many
facilities operated for specific purposes. In general, a
service system can be viewed as having finite resources,
and by the usage of which, providing certain types of
services to demands of work. For example, a bank has a
limited number of service windows (and booths), each of
which is a service channel (or server) for certain classes of
services, such as regular transactions, opening new
accounts, certificate of deposits, payments and fees
collection, etc. Customers arrive at a bank and are directed
to an appropriate service channel that can meet their
demands. Each service channel has a finite capacity (rate of
work). Customers who arrive at a busy service channel
must join in a queue and wait for their turns for services.

Service systems are usually designed to operate and sustain
for a long time. To establish a service system involves
investment of certain amount of resources to provide the
intended quality of service. One of the primary
performance metrics is the average system time, which is
the time a customer spent in the system. System time is

composed of waiting time, the time a customer spent in
queue for an available server, and service time, the time for
a server to complete the requested service. System time can
be reduced to service time only when infinite service
channels are available or the service time is always smaller
than the interarrival time. This is either infeasible or
seldom, if not impossible. On the other hand, service time
can be reduced with higher capacity service channels,
which may be economically expensive. Most service
systems must strike a strategic balance between the amount
of resources invested and the quality of service provided.

When service resources are expensive and/or demands vary,
it is desirable to have a service system that dynamically
allocates resources to meet demands and evenly distributes
loading to each service channel. An adaptive service
system is a system that changes its service configuration in
accordance with curent demand situation so as to
maximize its performance. Intuitively, an adaptive service
system will provide better quality of service and better
utilization of resources than a fixed service system.
However, system reconfiguration usually involves switch
time or setup time — the time it takes to change the service
contents of a service channel. During this period of time,
the service channel may not be available to provide any
services. More importantly, substantial management cost
may be required to constantly monitor the demand situation,
perform load balancing, and arrange the restructuring of
service contents. Sometimes these costs may outweigh its
gain.

With the advances in computer technology, it is important
to address how some of the computer control techniques
can be used to help reduce system management cost. We
propose a multi-agent system that takes charge of
allocating tasks and managing service configuration. We
assign an agent to each service channel. The agents monitor
the service demand situation, exchange information with
each other, determine the service location of a task, and
initiate changes of service contents as situation warrants. In
other words, these agents cooperate with each other to
allocate tasks with even loading and coordinate with each
other to organize an appropriate service configuration.

Our goal in this paper is to design such.an intelligent
muiti-agent system so that an adaptive service system can

* This research was supported by a grant from the National Science Counsel under project number NSC 87-2213-E-004-006.

-153-

1998 International Computer Symposium
-Workshop on Arificial intelligence)
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

achieve better service performance with minimal
management cost. In the next section, we justify the
selection of world-wide-web servers as our case study in
managing adaptive service systems and present the design
of a multi-agent system called AWSA (Adaptive Web
Server Agents). We also examines the qualitative
characteristics of the system. Section 3 describes the design
of experiments to obtain quantitative performance
measures. Finally, we conclude with a discussion on the
assumptions of the system, a review on related work, and a
summary of the paper.

2. ADAPTIVE WEB SERVERS

We choose the Internet web servers as an example
application domain in order to verify our multi-agent
approach to managing adaptive service systems. Web
servers represent an important class of information services
on the Internet and are constantly servicing a tremendous
amount of information requests from users all over the
world. The efficiency of a web server is important not only
to its users but also to the organization that runs it. Users
are investing their time and money to submit a request and
wait for its delivery. The longer a user waits the less
satisfactory he/she is. Users’ unhappy experiences not only
have a negative effect on the image of the organization but
also reduce the chances of their future visits.

Recently, the issue of web sites’ quality of service has
received much attention and has been raised in several
articles on the Internet [1][2][31[4]. Researchers have
begun to devise ways to improve web services. For
example, predictive prefetching was proposed to reduce
response time [5]. There are also commercial software
packages for better web management. For example,
PacketShaper manages and controls web network
bandwidth [6]. Resonate Dispatch employs resource-based
scheduling to control web traffic [7].

Many popular web sites employ multiple machines to
handle large volume of requests. Most of these multiple-
machine web servers are totally homogeneous service
systems where every machine has the same data contents.
Requests of services are distributed to each machine in
round robin regardless of the data requested. This simple
solution works fine if data storage space in a machine is
always large enough to accommodate all the data any web
site wishes to provide and data storage space is relatively
inexpensive such that additional resources do not raise
economic consideration. Rapid advances in disk
technology seem to further encourage this view. However,
there are situations where such luxury in data storage
resources is not available. Particularly, in business world,
every resource must be utilized to maximize its return in
profit. If a piece of data is not requested much, there is no
need to duplicate it in every machine. The saved space can
be used to store other data and offer more information
services to more users.

An adaptive web server system will manage its resources
effectively by duplicating copies as necessary to maintain
its service quality and removing excessive copies that are
not needed. For example, commercial ISPs may provide
virtual web sites to their users by renting machine disk
space. Better management of disk space will facilitate more
profits. In addition, users of virtual web sites may have
very different purposes in presenting their data on the
Internet. Some are individual expression and expect only
little traffic. Some provide data that are more related to the
general public and expect large volume of visits. Users can
be charged according to the intended level of service
quality and the actual space usage, instead of the inaccurate
nominal rental disk space with no control over service
quality. Proxy servers are another example where adaptive
service systems are useful. Some referenced web pages are
of common interest. Some are just personal flavor of a few.
Better management of disk space will result in better
performance.

2.1 System Design

We design a multi-agent system, called AWSA (Adaptive
Web Serving Agents), to provide better management of
web sites. Each web server is controlled independently by
an agent. Each agent has an equal role in the system and
may accept information requests from clients and service
some of the requests as necessary. In other words, AWSA
exercises distributed control te avoid control and
communication bottleneck. Agents are regulated by an
auction based coordination mechanism that integrates both
task and resource allocation. As a result, AWSA achieves
dynamic load balancing and dynamic reconfiguration in
accordance with demand situation. In the following, we
describe the system architecture in the sequence of
operation process.

2.1.1 System Initialization/Maintenance

AWSA is designed to operate with minimal requirement of
human intervention. For the most parts, system manager is
involved only when data (web pages) are to be added or
updated or permanently removed. A control interface is
provided for system manager to issue commands. The
control interface is an independent module and is executed
only when necessary. Whenever new web pages are to be
added to the system, the control interface broadcasts a
message and asks agents to report the quantity of their free
disk space. For each web page, the control module selects
two agents to carry the data based on even distribution of
storage loading among agents. In this way, the system
contains two copies of each web page to provide fault
tolerance. When certain web pages are to be removed from
the system, the control module simply asks all agents to
remove the specified web pages. Agents who do not carry
these web pages just ignore the request. Web pages are
updated by removing old copy and adding of new copy.

-154-

2.1.2 Accepting Requests from Clients

To avoid system bottleneck, each agent should be able to
accept requests from clients. However, a unique domain
name can only map to one IP address. A dispatch
mechanism is required to direct the mapping to one of the
agents. In addition, an even distribution of mapping is
preferred. For this purpose, a simple round robin domain
name server can be used.

2.1.3 Processing Requests from Clients

When an agent receives a request from a client, it checks if
it owns the requested web page. If not, the agent proceeds
to redirect the task of servicing the request by auction. The
agent announces the task to all agents. When an- agent
receives a task announcement, it submits a bid to complete
the task if it has a copy of the requested web page.
Otherwise, it ignores the task announcement. A bid
contains a predicted completion time of the task, which is
estimated by the size of the requested web page, the current
loading, and the data output rate of the bidding agent. The
agent who announces a task waits for a specified period of
time to collect bids from other agents. The agent then
selects a best bid and redirects the task to the agent who
submitted the winning bid.

When an agent receives a request of web page that it can
service, it will first compare its current loading with
loading of other agents. If the agent’s loading is higher than
the average loading of other agents, the agent will
announce the task and select the best available agent,
including itself as a candidate, to service the request.
Otherwise, the agent will take the task itself without going
through an auction. This is to reduce unnecessary
communication traffic since the goal is to balance system
loading not optimizing each individual request.

2.1.4 Description of Loading

Loading of an agent refers to the amount of tasks waiting to
be finished by the agent with respect to its capacity. It
depends on the number of task at hand, the data size of each
task, and the data output rate. We use the estimated time of
finishing the pending tasks to represent an agent’s loading.
Loading of each agent is broadcast to every other agent
from time to time. An agent records and updates loading
descriptions of other agents. These loading information are
used to decide an agent’s loading situation with respect to
the other agents in the system.

2.1.5 Duplicating Data from Other Agents

When an agent receives a request that it cannot service and
needs to redirect by auction, it may decide whether to
acquire the requested data for such requests in the future.
The agent considers the frequency of the requested item as
the primary factor for the decision. If the requested item is

1998 International Computer Symposium
Workshop on Artificial Intelligence .
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

expected to be requested again very often in the near future,
it may be a good idea for the agent to obtain a copy of the
requested data so that it can service such requests as well
and help reduce their waiting time.

For each requested item, an agent always counts the
number of times it has been requested or serviced
(redirected by other agents) and calculates its frequency
over a time interval. If the frequency of the requested item
that it cannot service (cf. foreign data) is higher than the
average request frequency of the agent’s stored data (cf.
local data), then the foreign data can be judged to be of high
demand and may be worth duplicating. In the case that the
agent still has free disk space (when the agent is a new
member to the system or when certain data are removed by
system manager), the agent will duplicate as much foreign
data as possible starting from those of higher demand. In all
cases, an agent duplicates foreign data by issuing HTTP
requests at an appropriate time to the auction winners of
task announcements for those requested data.

2.1.6 Removing Data to Obtain Free Space

When an agent decides to duplicate foreign data and needs
to obtain free disk space for this purpose, local data of low
request frequency are candidates for removal. However, if
the system is design to be fault tolerant and needs to
maintain two copies of an item in the system, then the agent
needs to broadcast to ask for the existence of the selected
item. The agent will remove the item after it confirms that
two other agents have the item. Otherwise, the selection of
removal is moved to the next candidate item in the list. In
the case that the list has been moved up to an item of
request frequency higher than that of the foreign data to be
duplicated, the agent will give up the intended duplication.

2.1.7 Adding New Agents

A new agent joins in the system by broadcasting its loading
description. When an agent receives a message from
another agent that it has not known, it will record the
identity of the new agent and return its own identity. The
new agent may represent an additional machine to enhance
system performance. With its free disk space, the new
agent will rapidly duplicate as much foreign data from
other agents and take up a portion of request services. In
other words, a new agent can be merged into the system
easily and is capable of utilizing its own resources for
subsequent operation without much intervention from
systemn manager

2.2 Performance Analysis

Most web sites that involve multiple servers (and machines)
adopt simple round robin system in which a new request is
blindly assigned to a server in 2 fixed order. Task
distribution is balanced in terms of number not loading. A

-155-

1898 International Computer Symposium
Workshop on Artificial Intelligence

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

server that happens to be assigned a number of heavy tasks
in sequence may begin to accumulate quite a lot of pending
tasks. In contrast to requests that are promptly serviced by
- other less busy servers, these pending requests may be
significantly delayed. In other words, service quality is
more varied unless requests are strictly stochastic and task
loading is evenly distributed among servers over a period
of time. In addition, a round robin web server system is a
totally homogeneous service system. Either every server
must have a disk space large enough to store all the data
that need to be provided or the amount of data that can be
provided is limited by the available disk space of a server.
Resource investment with respect to range of services is
less efficient. We expect the adaptive web server system
can remove these drawbacks.

2.2.1 Efficient Disk Space Utilization

AWSA is a partially heterogeneous service system that
allows a flexible configuration of web servers. Each server
contains only a partial set of data services. A given set of
data services can be achieved with less disk space
requirement on each web server. In fact, there is no
constraint on the storage configuration of a server as long
as the collection of all servers covers the entire set of data
services. This allows an adaptive system configuration in
which the storage space allocated to a data item is
dynamically adjusted according to its frequency of being
requested. In particular, “hot” data will be duplicated by all
servers and occupy more storage space, while the number
of copies of “cold” data are reduced. Resources are put in
tasks that are needed the most.

2.2.2 Balanced Service Quality

AWSA performs auction based task allocation. Each task is
directed to an agent that can complete the task with the
earliest finish time. The service quality of the same
requested item from different clients is expected to be of
lower variance than in round robin system. The agents also
actively adjust their service portfolios by removing “cold
data” and duplicating “hot data”. This is to relieve
congestion of tasks in high demand with minimal affects in
servicing other tasks. By dynamically allocating more
resources to the type of tasks in high demand, the system is
expected to offer a better balance of service quality among
different types of tasks.

2.2.3 Distributed Control

AWSA is designed to be an open agent system. Each agent
is an independent control module and plays an equal role.
The system is governed collectively by agents’ interactions.
Failure of an agent does not shut down the system
operation. Agents can be instructed to maintain a certain
number of copies for every data item in the system.
Therefore, the system is robust and fault-tolerant in data

services. In addition, the system is extendable. A new agent
can be easily added and smoothly merged into the system.
This allows incremental upgrading of a web site.

3. EXPERIMENT DESIGN

We have implemented AWSA in Java programming
language. As an initial examination, we constructed a
system with five agents and tested for its qualitative
characteristics. In particular, we verified that the system
actually performed auction based task allocation and
dynamically adjusted its resource allocation. We also
confirmed the extensibility of the system by temporarily
adding an agent to the system and observing the merging
process. Our next step is to investigate the quantitative
aspects of AWSA by conducting a set of simulated
experiments. Our goal is to provide a set of quantitative
performance measures so that the capability of AWSA and
the trade-off of using AWSA can be better understood.

We set up a set of data item as the set of web pages to be
requested. The data size ranges from 25 K Bytes to 500 K
Bytes with an increment of 25 K Bytes, e.g., {25K, 50K,
75K, ..., 475K, 500K}. A request pattern is a particular
sequence of requested data item sampled from the data set
over a period of time. For each experiment, we prepare
three request rates that are considered to be high, medium,
and low. With these environment setups, we observe
AWSA’s performance. In particular, we would like to be
able to examine the following issues.

3.1 The Processing and Communication
Overhead

A careful cost/gain analysis is an important first step before
a decision can be made to adopt a new management
approach. One cost involves slightly lower maximum data
output rate because the system performs auction to assign
tasks rather than simple round robin. A portion of CPU
time and network communication time is consumed for
system management and is not available for service. When
the request rate is under system capacity, auction may
mostly utilize system resources that would be idle anyway.
However, these additional management activities may
reduce system data output rate when the request rate is
close to system capacity. In any case, we need to have a
quantitative measure of AWSA’s lower data output rate as
compared to a round robin system under different request
rates.

3.2 System Loading Distribution

A round robin system evenly distributes tasks in terms of
number. Loading balance relies on two assumptions — one
on the system and one on the environment. First, each
server must be run on machines with similar capabilities.
Second, clients’ requests are stochastic such that each

-156-

server receives about the same total amount of loading over
some period of time. On the other hand, AWSA is expected
to perform real load balancing at each instance no matter
what the request patterns are. In order to verify this
capability, we need to measure loading of each server over
time under different request patterns. We set up two request
patterns as a contrast. One is random request or no pattern
at all. The other is the “oscillatory” request such that, by
round robin, heavy tasks are all assigned to one of the
servers. In other words, there are substantial loading
differences among servers that would not be smoothed out
over time. The contrast between AWSA and a round robin
system under these two request patterns will provide more
solid evidence of AWSA’s load balance capability.

3.3 Service Quality

One of the management goals in a service system may be a
uniform service quality to clients who request the same
type of service in about the same period of time. A client’s
system time is related to the loading of the server who is
assigned to service the client. Therefore, in the previous
experiment, we can also observe system time of each type
of requests and calculate their averages and variances over
time. A system with lower variance in system time
indicates its "ability to provide more uniform service

quality.
3.4 Dynamic Resource Allocation

AWSA is designed to adjust its resource allocation
according to demands. A demand pattern is a particular
distribution of requests for the data set. If a subset of the
data is requested more frequently than other data, AWSA is
expected to allocate more resources to handle these
requests so that they would not be congested. To verify this,
we can measure the system time for each data item before
and after resource adjustment under the same demand
pattern. The performance comparison would allow us to
provide a quantitative measurement of the gain.

In order to understand the effects better, we need to test
AWSA under differenit demand patterns. However, the
numbers of possible demand patterns are indefinite. We
make several simplifications in constructing a demand
pattern so that the amount of testing is reasonable. First, we
divide the request frequency into two classes only — high
and low. We vary the ratio of the high/low request
frequency, e.g., 4:1, 16:1, 64:1, 128:1, to provide a
sampling of the intensity of the high demand. Second, we
consider only three percentages of data items that are of
high request frequency, e.g., 5%, 10%, and 25%. Third, we
select two sizes of the data set to be requested more
frequently, e.g., small size, large size. For example, if the
“hot data” is of small size and occupies 10% of the data set,
data items of sizes 25 K Bytes and 50 K Bytes are requested
more frequently.

1998 International Computer Symposium
Workshop on Adtificial Intelligence
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

With these experiments, we hope to construct a more
complete picture of the cost and gain of AWSA and its
performances under different environment settings. We
have constructed a system with five agents and a round
robin system with five servers to be our experimental
platforms. We have also finished setting up the different
conditions of the environment. We are currently in the
process of conducting these experiments.

4. DISCUSSION

AWSA is a partially heterogeneous service system with
load balancing and adaptive resource utilization. Such a
system relies on sophisticated management activities and
therefore, involves certain amounts of cost. Besides from
cost/gain trade-off, there are a number of assumptions on
the environment such that AWSA’s characteristics are
indeed desirable. In this section, we will discuss these
assumptions.

As we have mentioned earlier, changing the service
contents of a service channel usually involves switch time
during which the server is not available for service. In other
words, the system cannot adjust its configuration too
frequently, otherwise, its cost may not be justified against
its gain. We make the assumption that most web sites have
“rush hours” and “quite spells”, as observed by most
service systems. = Therefore, AWSA should reconfigure
itself only when the system is in its “quite spells” periods,
such as early morning (from 3 to 5 A.M.) and possibly
lunch/dinner hours.

Another assumption has to do with the continuity of
demand pattern so that it is useful to adjust system
configuration and better service the upcoming demands. If
we observe that some sets of data are requested more
frequently, we assume that they will be demanded as much
for some time after system reconfiguration. We conjecture
that the popularity of a data item over time may be similar
to a tide of wave. It goes through a rising period after its
appearance, and gradually subsides after it reaches its peak.
Nevertheless, this assumption will need to be verified on
real web sites.

S. RELATED WORK

Recently, auction-based mechanisms have become very
popular for distributed control in many practical
application domains. In general, auction-based
mechanisms achieve coordination among decision-making
entities by performing auctions to distribute things, where
things can be tasks, resources, or any other concepts. Task
allocation is mostly carried out by contract net protocol
(CNP) [8], which is generally viewed as the original form
of auction-based mechanisms. CNP is considered to
provide natural load balancing and reliable distributed
control [9] and has been successfully applied to many
problems [10]{11].

-157-

1998 International Computer Symposium
Workshop on Artificial Intelligence) -
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Later, market-based mechanisms are proposed to solve
more complex dynamic resource allocation problems [12].
Resources are viewed as goods and are distributed to
needed entities on a public market (e.g., auctioning). In
general, these resources are common pool resources that
are not owned by any individual entity and are to be shared
and competed by all. Market-based mechanisms have also
seen increasing interest and many successful applications
[13][(14].

In our problem, the adaptive web server system requires
dynamic task allocation for load balancing as well as
dynamic resource reconfiguration for better service
capability to meet demands. We adopt contract net protocol
as AWSA’s coordination mechanism because of its perfect
fit with the problem. Only agents who are capable of
performing the announced task are allowed to submit a bid
and only the agent who will perform the task with the best
terms is assigned the task. In this way, tasks are
dynamically allocated to an appropriate agent and loading
is dynamically balanced.

The resources in AWSA are not common pool resources.
Each agent controls its own resource (disk space) and does
not share it with others. Agents dynamically allocate their
own resources to acquire necessary capabilities for
servicing needed tasks. However, their decisions are
coordinated and are intended to meet current demand
situations as reflected by each agent’s request frequency
records. -

6. CONCLUSION

In this paper, we present an approach to designing a service
system such that task assignment is balanced in loading and
resource utilization is adaptive to demands. The approach
employs a multi-agent system with auction-based control
and coordinated resource utilization adjustment. We chose
world-wide-web servers as an application domain for the
approach. We implemented the design in AWSA (Adaptive
Web Server Agents) and analyzed its qualitative
characteristics. The system is expected to provide efficient
disk space utilization and balanced service quality with
some overhead in data output rate. We also prepared a set
of experiments to examine AWSA’s performances
quantitatively for better understanding of the system.
Finally, the approach relies on the assumptions that there
are “quite spells” periods for system reconfiguration and
that demands rise and fall over some period of time.

7. REFERENCES

[1] Ben Adida; “It All Starts at the Server”, IEEE Internet
Computing Online, 1(1), http://www.computer.org/
internet/9701/weaving9701.htm, 1997.

(2] Brain L. Wong, “Sizing Up Your Web Server”,
SunWorld, http://www.sun.com/sunworldonline/swol-

10-1997/swol-10-sizeserver.htmi , 1997.

[3] Dow Patten, “10 Steps You Need to Take to Prepare
Your Web Server for a Siege”, NetscapeWorld,
http://www.netscapeworld.com/netscapeworld/nw-03-
1997/nw-03-siege.html, 1997.

[4] Rick Cook, “10 Tactics to Make Your Web Pages Load
Faster”, NetscapeWorld, http://www.netscapeworld.
com/netscapeworld/nw-OZ-l997/nw-02—bestpract.html,
1997.

[5] Venkata N. Padmanabhan & Jeffrey C. Mogul, “Using
Predictive Prefetching to Improve World Wide Web
Latency”, ACM SIGCOMM Computer Communication

" Review, July 1996.

[6] Packeteer, PacketShaper Solutions,
packeteer.com/solutions_wm.htm.

http://www,

[7] Resonate, Resonate Dispatch, http://www.resonateinc.
com/

{8} Reid G. Smith, “The Contract Net Protocol: High-
Level Communication and Control in a Distributed
Problem Solver”, IEEE Transactions on Computers,
C-29(12):1104-1113, December 1980.

[9T H. S. Nwana, L. Lee, and N. R. Jennings,
“Coordination in Softwar¢ Agent Systems”, BT
Technology Journal, Vol. 14, No. 4, pp. 79-87,
October 1996. ’

[10]H. Van Dyke Parunak, “Manufacturing Experience
with the Contract Net”, In Michael N. Huhns, editor,
Distributed Artificial Intelligence, Research Notes in
Artificial Intelligence, pp. 285-310, Pitman, 1987.

[11]Tuomas Sandholm & Victor Lesser, “Issues in
Automated Negotiation and Electronic Commerce:
Extending the Contract Net Framework”, Proceedings
of the First International Conference on Multi-Agent
Systems, pp. 328-335, 1995.

[12]Michael P. Wellman, “A Market-Oriented
Programming Environment and Its Application to
Distributed Multicommodity Flow Problems”, Journal
of Artificial Intelligence Research, Vol. 1, pp. 1-22,
1993,

[13]S. H. Clearwater (ed.), Market-Based Control- A
Paradigm for Distributed Resource Allocation, World
Scientific, 1996.

[14]Hirofumi Yamaki, Michael P. Wellman, and Toru
Ishida, “A Market-Based Approach to Allocating QoS
for Mutlimedia Applications”, In Proceedings of the
Second International Conference on Multi-Agent
Systems, 1996.

-158-

	
	153
	154
	155
	156
	157
	158

