1998 International Computer Symposium
Workshop on Artificial Inteliigence]
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

A DEPENDENCY-BASED CONSTRAINT RELAXATION

SCHEME FOR OVER-CONSTRAINED PROBLEMS
: Chia-Lin Hsieh®, and Jackie Archibald

School of Computing and Information Systems,
University of Sunderland, Sunderland, U.K.
Email: {csOmhs,csOjar} @isis.sunderland.ac.uk

ABSTRACT

In this paper, we propose an incremental constraint solver
in order to realise a constraint relaxation system for over-
constrained problems. There are two requirements to be
considered. Firstly, the constraint relaxation is based on
constraint propagation techniques to maintain local con-
sistency. Secondly, in the case of inconsistency, it proposes
conflict candidates to retract only those constraints which
are really involved in the contradiction. Thereby, no un-
necessary modifications of the original CSP are executed.
What is crucial is that the relaxation operation is incre-
mental, in that it maintains a dependency graph among
variables and constraints and updates only subset of the
graph which is the- real responsibility for the failure.
Moreover, this system borrows intelligent backtracking
techniques in determining, upon the inconsistency, a perti-
nent choice point which can restore the satisfiability.
Therefore, these considerable terms would support con-
straint relaxations and experiments have shown arbitrarily
speedups compared with previous approaches.

1. INTRODUCTION

Constraints are nowadays widely used for solving prob-
lems arising in various fields (e.g. Artificial Intelligence,
Operations Research,...). As noticed by G. Verfaillie and
T. Scheix [1], many problems in those fields can be viewed
naturally in the form of constraint satisfaction problems
(CSPs). A classic CSP involves a set of variables each with
an associated domain and a set of constraints. The problem
is to find an assignment of values to variables which satis-
fies all constraints.

Many real world problems are often over-constrained’
(e.g. timetabling, scheduling). To provide an acceptable
solution to the user, it is essential to obtain a constraint
relaxation’ system which may relax some constraints to
obtain a partial solution satisfying as many constraints if
possible. However, the users of those constraint relaxation
systems normally do not have enough information a priori

' Also Department of Industrial Management, Tamsui Oxford
University College, Tamsui, Taiwan.

 The associated constraint system possesses no solution.

? Here we mean by relaxation: the relaxation of past and last
effects of a constraint.

- 4o specify the constraints to be relaxed. In this paper, we

suggest a constraint relaxation approach which relies upon
the main considerations:

—~ When a contradiction occurs in an over-constrained
problem, a constraint to be relaxed should be automati-
cally identified by considering from the conflict set the
real effects on the variables of the problem. We call
this part the identification.

~ When relaxing a constraint, a complete re-execution
must be avoided as much as possible. For that, infor-
mation on the constraint past effects should be kept in
order to ensure a real incrementality despite the neces-
sary modifications of the systems. That is what we call:
the bookkeeping.

From our point of view, the current requirements may be
achieved by maintaining useful information during search
in order to realise more efficient relaxations. Another mo-
tivation is the necessity of efficient failure analysis to cope
with the detection of inconsistent situations (where no tra-
ditional solution is possible) and identify the minimal con-
flict set. Our approach realises the philosophy just to
change those parts which are really influenced directly by
the modification; so an entire re-computation can often be
suppressed.

In this paper, we present an incremental algorithm for the
CSPs to handle constraint relaxations for over-constrained
problems. Our approach consists in formulating the con-
straint system over finite domain by continuously main-
taining a specific dependency graph on the current con-
straint system. When contradiction is verified, the back-
tracking is performed to relax some constraints. Qur ap-
proach relies on the notion of configuration. The configu-
ration is the splitting of the constraints of the problem into
two sets: active and inactive. A non-contradictory configu-
ration is then determined.

The problem solving approach consists in two phases: an
enumeration phase and an evaluation phase. The former
phase not only performs a pre-processing to exploit all
dependent constraints but also keeps track of changes for
future use. The latter one performs failure analysis and
incremental revision. The key idea is to benefit from the
past computation, i.e. to provide an incremental search
algorithm to keep as much and precisely as possible of the

-134-

computation already done by redoing only the sub-
constraint. Only in this way we can hope to get a reasona-
bly efficient constraint relaxation system. Preliminary ex-
perimental results, on both real-life and general classes of
problems, are very encouraging, since they show that this
way of achieving constraint relaxation is much more effi-
cient than re-computing from scratch.

The following section recapitulates related constraint ap-
proaches. Section 3 illustrates the basic specification and
formulation of the constraint system. We also state its ba-
sic properties, and fix the terminology used throughout the
paper. Section 4 puts forward the proposed scheme for
failure analysis and intelligent constraint updating. The
actual procedure is depicted subsequently. Section 5 gives
a performance evaluation of the algorithm on various
problems and Section 6 concludes the present paper by
summarising its results.

2. RELATED WORKS

In this section, we first review some works about efficient
constraint relaxations in dynamic CSP problems. A few
algorithms which allow efficient modifications of con-
straints to achieve dynamic arc-consistency have been
evaluated [2][3]. During the constraint relaxation, with the
help of justifications®, it can incrementally add to the cur-
rent domain values that belong to the new consistent do-
main. In the case that the considered constraints are quali-
ties and inequalities over finite domains, a specialised in-
cremental re-propagation methods is proposed in {5].

The logic programming community has been interested for
a few years in intelligent backtracking for constraint re-
laxation. The results of this study have been embedded in
the CLP(FD) framework. The IHCS system (Incremental
Hierarchical Constraint Solver) [6] is one of the successful
system. IHCS works on intelligent backtracking and aims
to provide incremental problem solving. It uses the same
justification as DnAC4. Moreover, it also suggests the con-
straint identification for failure analysis with the help of a
dependency graph. Despite its incremental handling of
constraint additions, however, constraint relaxations are
handled in the hard way: using backtracking non-
incrementally. THCS is then not a completely satisfactory
answer to handle constraint modification problems arising
in dynamic environments.

Fages et al. [7) proposed a reactive schema in CLP(FD)
that can efficiently add and relax constraints. A sound ab-
stracted framework is presented in terms of transformation
of CSLD derivation trees. In [8], Fages et al. proposed an
extended execution scheme on finite domain for reactive
systems by retaining similar dependency as [6]. The aim is
not only to give a solution to an instance of a problem but
also to maintain such a solution through interactions with

J The notion of justification is inherited from the TMS commu-
nity [4] to record constraint deductions.

1998 International Computer Symposium
Workshop on Adificial Inteiligence
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

computations directly depending on the modified
the users. The execution model had successfully applied to
practical planning problems in a reactive system.

Therefore, the general idea of maintaining information
seems the wisest thing to do when handling dynamic up-
dates. Our proposal provides the necessary machinery from
this point of view and extends Fages' work [7].

3. FORMAL SPECIFICATION

This section briefly introduces some of the concepts and
terms associated with the problem described in this paper.
It first presents a graph-theoretic formulation of the con-
straint system.

3.1 Graph-Theoretic Formulation

Constraint problems and the algorithms that satisfy them
are commonly expressed in terms of graphs. Let G =
(V,C,E) be an undirected bipartite graph, where V and C
are set of vertices representing the variables and con-
straints, respectively. E is a set of undirected edges denot-
ing the graph-theoretic relationship between variables and
constraints. For each variable V in a constraint ¢, E con-
tains an edge between V and c. Figure 1.(a) describes a
graph representation of a constraint system. The circles
denote variables and the boxed denote constraints. For
example, in Figure 1.(a), variables v,V and V' are con-
straining variables of the constraint C.

(a)

Figure 1: Graph Representation of A Constraint Sys-
tem

We consider a property P that is defined for sets of con-
straints®. P is necessary (but not necessarily sufficient) for
the satisfiability of the constraint system. It thus represents
a certain level of consistency. A constraint system is called
P-satisfiable if P holds and P-contradictory otherwise. A
constraint solver partially directs the edges in G by per-
forming certain level of deduction in order to make the
constraint system P-satisfiable. A directed graph DG is
called a solution graph if all the enforced constraints in G
are P-satisfiable. When a constraint removes values from
one of its constraining variables, a directed edge is built
from the constraint to the constraining variable. For exam-

* For instance, we may consider global consistency for rationals
or local arc-consistency for finite domain or intervals [9].

-135-

1998 international Computqr Symposium
Workshop on Artificial Intelligence)
December 17-19, 1698, N.C.K.U., Tainan, Taiwan, R.0.C.

ple, in Figure 1.(b), we represent a partially directed
graph of Figure 1.(a).

In additions, some definitions must be introduced before
preceding. Constraint store S contains a set of constraints
ordered by topological order. A constraint is considered to
be active (or enforced) if the constraint satisfies all its con-
straining variables in the constraint store’. In graph-
theoretic terms, a constraint is considered to be enforced if
the constraint solver includes the constraint in the solution
graph. A configuration is a split of a given constraint sys-
tem in two sets: the set AS of active constraints and the set
US of unenforced ones. It is noted as <AS,US>. A configu-
ration may be seen as a state of the evaluation where AS
contains all the active constraints that might have deduced
some domains of its variables and US is composed by the
unenforced or retracted constraints that are the set of can-
didates waiting for activation or re-activation. A configu-
ration is promising if all the constraints in its active store
satisfy the property P.

The domain of the variable V is denoted by D, and C,

(C, © C) is the set of active constraints on V. For each
constraint, the set of the constraining variables is desig-
nated by V. (V. V). We also define the clashing

function AV 1. to denote the set of deduced values from
the variable v by the constraint €. A constraint ¢
(ce AS) is a constrainer of v (veV)if A | #¢;

that is, it actually causes the reduction of the domain of
variable V. The current active constraint store is defined

implicitly as AS = UveV C, . For example, as shown in
Figure 1.(b),C, = {e,c,c"},C, ={c}, C. ={c,c"},

V, = {v,,v"} sothat AS ={c,c’,c”}.
3.2 Dependency Graph

The dependency between the active constraints reveals
certain information and must be kept and updated during
the enumeration phase (see Section 4). When a contradic-
tion occurs, the evaluation algorithm is evoked which will
analyse the dependency between constraints to find out the
pertinent causes of inconsistency and which will be af-
fected by the relaxation of some constraints.

To represent the dependency relationship easily, we con-
sider a graph-like description of the constraint store, called
the constraint dependency graph (see Figure 2). This
graph is a sub-graph of the constraint graph with a directed

edge (with the dashed arrows) from C to ¢’ iff variable

3 In a constraint graph G, bald lines are used to represent the
active status of a constraint and dash lines are used if the con-
straint is still un-enforced (i.e. inactive).

Ve VC such that c is a constrainer of v which is checked

by the constraint ¢’ . Note that the constraint dependency
graph is not optimal in the sense that it forgets which con-
straints removed which value from a variable domain.

Figure 2: Representation of the Dependency Graph

A constraint ¢’ is a son of ¢ iff there is an arc from ¢ to
7 . .

¢ in the dependency graph. Conversely, ¢ is a parent of

¢’ . Furthermore, constraint ¢’ is a descendant of ¢ iff

there exist a path from ¢ to ¢’ in the dependency graph

and ¢ is an ancestor of ¢’ . Here we use the symbol ">"
to denote the immediate dependency between a parent ¢

and its son ¢ with the variable V in common. As shown
. . ”, 14

in Figure 2, ¢ is a descendant of ¢ because ¢+ ¢ and
o’

The dependency relation is based on local propagation of
constraints in the following way: whenever a constraint ¢
makes a deduction on some variable v, any other con-
straints which are the sons of the constraint ¢ will be re-
activated and probably cause the re-activation of further
dependant constraints. The deduction performed by ¢ will
consequently affect all those "downstream” constraints and
for this reason they will become dependent on C.

Note that the dependency graph is not optimal in the sense
that all the analysis is done from the constraints so that a
lot of information will be lost about values in domains of
variables, then the dependency analysis becomes too gen-
eral to handle the constraint modification. From our point
of view, this dependency graph is improvable if the value-
based information and operations are maintained. The set
of value-based operations performed for the evaluation,
such as removal or addition of a value from a domain vari-
able, is called a transaction. The set of values and con-
straints modified by a transaction is called a transition set.
The transition set includes newly added dependency con-
straints and any values previously dependent on updated
constraints.

The main work of the algorithms given in this paper is to
maintain the transactions of the transition set in an ex-
tended dependency graph. In our constraint system, two

transactions called E, and A, are included. E, denotes

the current domain of the variable v and A is a revision

set which covers a list of labels derived from the removal

-136-

of the domain values from the variable v complying with
its constrainers. Therefore, the clashing function (defined

in Section 3.1), denoted by AV 1o can be recognised as the

revision set A with respect to the constraint ¢. In Sec-

tion 4, we will show the gains of the conflict resolution
procedure derived from this modified dependency graph.

4. AN INCREMENTAL CONSTRAINT
PROPAGATION APPROACH

4.1 The Enumeration Algorithm Overview

The enumeration algorithm is an adaptation of a local arc-
consistency algorithm based on constraint propagation. In
our implementation, we adapted the AC-5 like [10] ap-
proach. Whenever a new constraint is added to the current
constraint store, the corresponding constraints will make
some restrictions to some variable domains and such a
restriction propagates to other variable domains through
the constraint graph.

In words, this algorithm (see Figure 3 for details) considers
a set of constraints added to the current active constraint
store. Each constraint, say €, is incrementally added to the
active store (Line (1)) to obtain a new promising configu-
ration. A counter order (Line (2)-(3)) is increased any time
a new constraint is introduced in the active store. The
function Revise performs the removal of inconsistent val-

ues from the domain of its constraining variables V and

updates a dependency graph. If the constraint ¢ is en-
forced, all of its constraining variables will be considered
(Line (7)-(10)). The procedure Revise_Domain (Line (12))
will then keep all the transactions made to the variable v

in the revision set A . If the constraint ¢ causes any re-
ductions of variable Vv, it is pushed into the constrainer set
CS, for future reuse (Line (13)-(15)). If the restriction

doesn't raise a contradiction (i.e. the current domain is not
empty), all the consequent constraints of the constraint ¢
are put successively into the stack to be propagated (Line

(19)-(22)). Otherwise, the set of the constrainers in CS is

considered as a contradiction explanation (i.e. a set of
antagonistic constraints) (Line (16)-(17)) and is pushed
into a conflict set y (see Section 4.3 for detail) and also the
function Revise returns false (Line (18)). After the enu-
meration procedure, the evaluation procedure will proceed
to implement conflict resolution, if the failure is detected.

4.2 Incremental Constraint Relaxation

In this section, we will present the incremental algorithm
which will allows constraint relaxation from the constraint
system for conflict resolution. Whenever any variable do-
main is modified, the domain of its dependent variables is

1998 International Computer Symposium
Workshop on Artificial Intelligence
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0.C.

changed as well, and this triggers a whole propagation
enumeration where several domains may be changed until
satisfiability. The operation of relaxing a constraint might
cause a domain enlargement due to the less restrictive ef-
fects. Based on this propagation concept, we propose an
incremental operation which redoing only a subpart of the
constraint system directly depending on the modified con-
straint. This approach also enables us to rétain efficiently
the satisfiability from the contradiction (see Section 4.3 for
details).

Procedure Enumeration(Dircct_éhange: Set of Constraints)
Global Var
order : integer; y: conflict set;
Local Var
v : variable; ¢ _ new : constraint; S : constraint store;
Begin
S =¢
For V ¢ _ new € Direct_Change Do Begin
Add(c _ new);
If Failure Then Evaluation(c _ new); End;

Procedure Add(Con: constraint);

Begin

(1) Push(Con,S),

(2) order := order +1;

(3) c¢_ new.order .= grder

(4} While — EmptyStack(S) Do Begin

(5) Pop(c);

(6) IF _ Revise(c) Then Failure := true;, End;

// Perform the removal of inconsistent values from the domain of
¢ constraining variables and update their revision functions;

Function Revise(Con: constraint);
Begin

(7) Con.Enforced:= true;
//Constraint Con is activated

(8) For V Var€ V., Do Begin
9) Push(Con, C,,);

(10) Var Influenced := false;
(11) Old.A = Var. A
(12) Revise_Domain(Con, &,),

//Perform Local Arc-Consistency and delete inconsistent values from

Var Leon ¢

qu, and putin Var. AVanCon
(13) M Var.B,, . ® Old A Then Begin

14) Var.Influenced := true;

//Murk the Variable Var constrained by Con

(15) Push (Con, CS ,); liCollect Clashing Constraints
(16) If Ey,, =¢ Then Begin

an Push(CS v, w):

/IPush all the contradiction explanations to the conflict set ¥
(18) Return fulse; End;

/IVariable reaches the dead-end, return fuilure
(19) For V Var€ V¢, Do Begin

(20) If Var.Influenced Theﬁ
@n ForV ¢ _son € Cy, \{Con} Do
(22) 1f ¢ _ son .Enforced tpen

Push(€ —son, Sy

/IMaintain the Dependency of the constraint Con
Return frue;

Figure 3: The Enumeration Algorithm

Consider a constraint ¢ to be retracted from a constraint
system. The relaxation of ¢ needs to be propagated. The
aim of this propagation is to "untrail” the past effects of
the retracted constraints and delete them. It is performed

- -137-

1998 International Computer Symposium
Workshop on Artificial Intelligence
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

through the constraint graph as long as domain should be
enlarged and terminates when reaching variables whose
domain is irrelevant to the relaxation. That is, the enu-

meration algorithm has lead to several restrictions of D,

the domain of v. Also, each restriction of DV may have

re-activated of all the consequences of ¢, leading to fur-
ther domain restriction for other variables. All of these
dependent reductions have to be undone when ¢ is re-
tracted. We thus achieve our goal of minimal modification
of the constraint store, as those parts which are independ-
ent of the relaxation are not considered.

Procedure Retract (Con: constraint)

Begin

(1 S:=¢

/IS stores the consequent constraints by the retraction of
Con

(2) 0S5 :=¢;

1108 stores the consequent opponent constraints which deduce
the constraints visited

(3) Con.Enforced := false;

(4) Push(Con, Retracted_Cns); [/

/Retract Con and push it into the retracted constraint store
(5) Mark(Con);

(6) While S # ¢ Do Begin

7 c:= Pop (S);
8) If ¢ .Enforced Then
9) Mark(c); End;

(10) Local_Add(0S);

Procedure Mark(Con: constraint);

Begin

(1) ForV Var € V,, Do Begin

(2) 1f =Var Mark and A, .=~ # ¢ Then Begin
/IVar is not visited yet and deduced by Con

(3) Var .Mark := true .

/1Enlarged VariableVar is marked as visited.

4 D Var D Var v A Var 1 Con ;

/IPut back clashing values constrained by Con

(3) A Var L Con = ¢ ;
(6) Push (C,, \MCon).5); End;

(7 Eisert & . oy, *F O

Var is deduced by Con and had deduced by other spponent
constraints of Con.

(8) Push (Con, OS);

Figure 4: The Constraint Relaxation Algorithm

Some existing approaches to undo such domain reductions
used traditional trailing mechanism to record during the
enumeration (and thus during procedure Add) those revi-
sion values individually in a trail stack [6]. Here we pres-
ent an extension of the constraint relaxation algorithm [5]
which requires no extra trailing but maintains local propa-
gation. This approach proceeds in the following phase (See
Figure 4 for details):

1. Consider the retracted constraint ¢. The values of
each constraining variable whose validity relies upon
the retracted constraint ¢ are put back to their re-
spective domain. Hence, it will result in the enlarge-
ment of the variables. There are two stores used in

procedure Retract. Store S stores the consequent con-
straints of the relaxation constraint while store OS
keeps the opponent constraints. Line (5)-(9) in proce-
dure Retract performs propagation to activate all the
consequent constraints.

2. All of the variables affected by the relaxation of ¢ are
considered to be enlarged. However, a lazy strategy is
used to prevent the enlargement in becoming too gen-
eral® by considering constrainers constraining simulta-
neously on a variable. Each time when a variable is
enlarged, we mark the corresponding variable and re-
store the reduced values to the current domain (see
Line (2)-(6) in procedure Mark). If the variable is
marked, no enlargement on this variable will be taken
until the untrailing propagation is done. Instead, we
push those constraints in an opponent stack for further
consideration (see Line (8) in procedure Mark).

3. After the untrailing propagation, another restrictive
enumeration procedure on those opponent constraints
will be activated to obtain local satisfiability. Line
(10) in procedure Retract calls procedure Lo-
cal_Add(0OS) to perform domain revisions on those
variables only which are constrained by the constraints
in OS.

4.3 Evaluation Algorithm (Conflict Resolution)

As we mentioned before, one of the requirements of a con-
straint relaxation system is the ability to automatically
identify the constraint to be relaxed for conflict resolution.
In this section, we describe an evaluation approach to ob-
tain this requirement. The evaluation algorithm is used to
resolve any real causes of contradictions during the enu-
meration phase and resolve the inconsistency by perform-
ing minimal constraint relaxations. The basic technique for
conflict resolution utilises intelligent backtracking to re-
solve the inconsistency during failure {11]. Naive back-
tracking upon failure consists in simply going back to the
most recent choice point, removing the corresponding con-
straints and choosing an alternative solution. This may
however not be enough to cure the failure, as the removed
constraints may be independent of the previous failure, and
this will lead to redoing the same failure and backtrack
further.

4.3.1 Failure Analysis

In order to have a better behaviour and avoid useless com-
putation/backtracking steps, one has to determine upon
unsolvability of the constraint system the subsystem con-
sisting of the constraints which are the real causes of the
failure. Such a subsystem is called a "conflict set”, and the

® If there are at least two constrainers influenced on the same
value, say val, the restoration of the value val from one constraint
may be removed again by a new constrainer. The restoration
seems "futile” (not necessarily).

-138-

removal of a single constraint from the conflict set in the

original system can "cure” the failure, i.e. restore satisfi-
ability. However, one has to take care of the management
of backtrack points as some implicit dependencies between
constraints due to previous conflicts and as the constraint
system indeed derives from an induced dependency rela-
tion tree. In this section, we will present the extensions
which are required to achieve such a behaviour.

In the enumeration phase, the inconsistency of the con-
straint system is discovered as soon as the domain of (at
least) one variable becomes empty (we called it a dead-
end). In order to analyse the failure upon inconsistency of
the constraint system, we have adopted a simple strategy
based on the information contained in the contradiction
explanations. This information should be kept when the
domain of the variable is updated during the enumeration
phase, and will contain the "trail" of the domain modifica-
tion. We thus associate to each variable V a revision set

A, which contains a set of clashing values (i.e. removed

values) with respect to its constrainers. When the domain
of some variable becomes empty, the set of the constrain-
ers terms as a contradiction explanation’ will be pushed
into the conflict set and the failure analysis procedure is
triggered.

Failure analysis mainly relies on the key concepts of con-
tradiction explanations. A contradiction explanation is a
set of conflict constraints whose conjunction leads to a
contradiction. It is a justification for the contradiction.
Contradiction explanation is learnt from the dead-end {14].

If the dead-end occurs, the constrainer set CS, becomes

the contradiction explanations f of the variable v.

We observe that at least one constraint has to be retracted
from each constradiction explanation to make the current
configuration promi.ving8 since any existence of the con-

tradiction explanation 5 will make the configuration P-

contradictory. Therefore, the removal of some conflicts in
the conflict set will give a solvable constraint system, and
the conflict hence represents the set of backtracking choice
points associated to the failure. For the main purpose here
is to retract a minimal set of constraints to restore satisfi-
ability (not optimality), a simple heuristic strategy is used
to consider the most constraining constraints in the conflict
set . The heuristic approach is greedy since it attempts to
minimise the number of updates after each constraint de-
duction. However, if there is a tie between them, we
choose the one with the most recent backtrack point (i.e.
the set with the later introduction order) for it leads to
more complete procedure than native backtracking (see
[11] for a deep analysis of this phenomenon).

71t is similar to the terms as eliminating explanations in {12] and
nogoods in [13].

* A configuration d=<AS,US> is promising iff V § € ¢, § " US
= ¢ where v is a conflict set (see [15]).

1998 Intemational Computer Symposium
Workshop on Artificial Intelligence
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Suppose we have a conflict set y =
{{c;5695C4 1,1 Cq,6, 101 €;,Cy 1}, where the index of ¢,

denotes the inserting order and the elements of y denote
contradiction explanations found from the dynamic enu-

meration. The set {c¢,,c,}or {c¢,,c,} then turns to be
the conflict candidates to be retracted. However, {c,,c, }

is considered (for ¢, is inserted after ¢,). Of course, this

strategy still leaves some choices unspecified and makes
the search incomplete so that it doesn't compute an optimal
(minimal) subset. But it does have the effect of localising
the conflicts to a subset of constraints easily determined by
the dependency information on constraint propagation.

4.3.2 The Evaluation Algorithm Overview

The evaluation algorithm is now described more precisely
(as shown in Figure 5). Min_Conflict_Cns(y) (Line (2))
checks any contradiction explanations in conflict set y and
returns the minimal conflict candidate set ordered by de-
scending order. Eliminating_:Explanation(¢) (Line (3))
removes the contradiction explanations which contain €
from the conflict set . Retract(C) (Line (4)) deletes €
from the constraint system while maintaining property P.
Find_Opponents(c) (Line (5)) finds out all of the C's
opponents retracted before €. If the constraint C is re-
tracted, all of its former opponents in the retracted queue
can be "free" and put back to the active store. Since the
antagonist'is eliminated from the conflict set, the relaxation
of its opponents is not necessary any more. Therefore, the
Incremental_Add (Line (7)) operation is activated again to
reset those opponent constraints. The algorithm terminates
when the conflict set y becomes empty. The experimental
performance will be discussed in the following section.

Procedure Evaluation(y: conflict set)

Begin

[1] While y = ¢ Do Begin

[2] Con = Pop (Min_Conflict_Cns(y));

/[Pick up Con from Minimal conflict set with the most
recent backtrack point

[3] Eliminating_Explanation(Con, V);
//Eliminate the contradiction explanation & which
contains constraint Con

[4] Retract(Con);

[5] While Find_Opponents(Con, Retracted_Cns)
9

Do Begin
[6]. Oc :=Pop(Find_Opponents(Con));
7 Incremental_Add(Oc);

IlIncrementally re-activate the retracted constraints
which are the opponents of Con

Figure 5: The Evaluation Algorithm

-139-

1998 International Computer Symposium
Workshop on Artificial Intelligence)
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Tniosting Time

Exeention Time

Execation Tine

Var = 5§50, Densitly a 0.25 (a)

o W= - —Tnes.2"
———— a0 b
———" 0 0 .8

Var= 50, Density = 0.5 (c)

- c®---qa0.2"
il ' G} §
st G w0 8 *

30

36 4o
Demain size

45 &0

Var = 50, Density = 0.75 (e)

15 an

2 30
0 omala $Size

1

o Ver = 5§0,Density = 0.25 (b)
= .3, T T TR ITEN
3] * —e—Q 4 O .§
ginJ '*'Q-D.l'
2 0.
- ::n.sl
_E',sn,a o
iEn.: E
g,

o.y 4

o
13 10 18 30 28 30 38 40 485 60 (¥ 23 40 .5 1o
D emain 3 iz e
12
Var = 50, Density = 0.5 (d

3 K3 - -e---q0 2"
- - S lr— Qw0 .§ ¢
§=' on N ———q e 0 .8 *
H ¥ .
L AR
‘Sizo.al
-~z 3
’.:,5 04
& -

0 s 40

Oemain S11ay

a8 50 55

Var= 50, Density = 0.75 (f)

ce-®ecoqud.2’

(ER 3
\ ———tqu0.5"

e e R

xecution
e o o
PO

st J PG

Speed-ap of heremental
Execetion 13, Re-

P o D &
"

30 as S0 §5 40

Figure 6: Comparison of Incremental Execution vs. Re-Execution on Random CSPs

5. EXPERIMENTAL RESULTS
5.1 Randomly Generated Problems

Currently, the incremental problem solving has been
evaluated on a randomly generated CSP problem
where the additions and retractions are performed
with a generator of static CSPs. The experiment
starts from a promising configuration, where all the
active constraints are consistent. While the con-
straint network is not complete and no domain is
empty we make an addition. If the local arc-
consistency has removed all the values of a domain
or if the graph is complete, we proceed to a retrac-
tion. The constraints to be retracted are randomly
chosen with a uniform probability from the active
store. In terms of efficiency, two usual measures
were performed: speed-up of constraint checks for
incrementally affected constraints vs. the whole ac-
tive constraints and speed-up of computation time
for incremental resolution vs. re-execution. The re-
sults presented in Figure 6 are mean values obtained
on 500 instances. The set of parameters corresponds
to <n,d,p,q>, where n is the number of variables, d is
the size of variable domain, p is the connectivity of
the problem and g is the tightness of the value pairs.
Since the performances are very slightly dependent
on n, we here fix n to 50, d grows from 5 to 70 with
p € {25%,50%,75%} and g € {20%,50%, 80%).

The results in Figure 6 show that the performances
are very slightly dependent on the number of con-

straints but the tightness of the constraint graph. The
tighter the problem to be solved, the more propaga-
tion of the domain revision will be needed. There-
fore, the more percentage of execution time (or con-
straint checks) will be involved in the evaluation
phase (see Figure 6.(a),6.(c) and 6.(e)). On the other
hand, there is a trade-off between backtracks and
constraint propagations. It confirms that it achieves
a speed-up for the proposed incremental model w.r.t.
the normal re-execution model, especially for over-
constrained CSPs (those graphs with higher p and
q). However, the approach is degraded for those
problems with small tightness due to the unneces-
sary bookkeeping involved (see Figure 6.(f)). In this
case, simple re-computation may be more efficient.

The connectivity of the problem also influences the
performance of the relaxation problems whose main
advantage is the possibility of not having to consider
the whole problem again. For this reason, we want
to see at which level of connectivity it is no longer
convenient to use the incremental retraction algo-
rithms. The results show that it is worth using the
constraint retraction algorithm in almost cases, since
the speed up is less than 1 with almost all the cases
of our experiments.

5.2 Other Problems

In order to exploit the behaviour of our algorithm,
we consider an increasing number of constraints and
randomly generated 500 CSPs concerned with 10

-140-

variables of domains [1..10]. More precisely, we
have generated 50 problems with 10, 20 to 100 con-
straints. Table 1 shows the results obtained from
those problems. All the processed problems are
over-constrained. We have noticed that a great ma-
jority of the processed problems do not require
many number of backtracking for problem resolu-
tion. Therefore, we can expect the execution time to
be evolved in a polynomial manner. Figure 7 con-
firms this expectation.

Constraints RC BT PB
10 1.34 1.35 13%
20 3.54 1.94 18%
30 7.56 3.98 25%
40 16.54 3.87 41%
50 19.76 6.55 40%
60 22.23 577 37%
70 24.02 4.02 34%
80 29.34 3.66 37%
90 32.54 2.76 36%
100 38.15 245 38%
RC: the average number of relaxed constraints
BT: the average number of backtracking
PB: percentage of problems requiring backtracking

Table 1: Average Behaviour of the 10-Variable
Problems

Execution Time(s)
©coooooo
W s e N ® B

 }

o
Y

-

=3
"

o 10 26 a0 46 50 €0 7o 80 90 100

Number of Constraints

Figure 7: Average Execution Time of the 10-
Variable Problems

6. CONCLUSION

We have proposed an incremental problem solving
approach on the configuration space that is well-
suited for over-constrained problems. This method
has been instantiated for finite domain problems.
Algorithms and implementations have shown that it
is possible to efficiently implement the approach
without any slow-down the problem, and in most
cases with significantly twice speed-up with respect
to a native algorithm which could achieve retraction
by re-computing the desired constraints from
scratch. Of course, we now need to experiment with
more real-life problems to definitely assess our re-
sults. However, we believe that the proposed prob-
lem solving method may be very convenient for
solving large-scale problems, especially for over-
constrained problems which allow constraint relaxa-

1998 International Computer Symposium
Workshop on Artificial Intelligence

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

tions in order to obtain a fast and acceptable sotu-
tion.

REFERENCE

[1] Verfaillie G., and T. Schiex, Dynamic Back-
tracking for Dynamic Constraint Satisfaction
Problems, in Proceedings of ECAI-94: Work-
shop on "Constraint Satisfaction Issues Raised
by Practical Applications”, 1994.

[2] Bessiere C., Arc-Consistency in Dynamic Con-
straint Satisfaction Problems, in Proceedings of
AAAI'9], pp. 2201-226, 1991.

{3] Debruyne R., Arc-Consistency In Dynamic
CSPs Is No More Prohibitive, In the 8th Inter-
national Conference on Tools With Artificial
Intelligence ICTAI'96, pp. 299-306, 1996.

[4] Doyle J., A Truth Maintenance System, Artifi-
cial Intelligence, 12(3), pp. 231-72, 1979.

[5] Codognet P., Diaz D. and R. Rossi, Constraint
Relaxation in FD, in, Lecture Notes of Com-
puter Science, vol. 1180, 1996.

[6] Menezes F. and P. Barahona, Preliminary For-
malisation of an Incremental Hierarchical Con-
straint Solver, in Proceeding of EPIA'93, pp.

. 281-296, 1993.

(7] Fages F., J. Fowler and T. Sola, A Reactive
Constraint Logic Programming Scheme, in In-
ternational Conference of Logic Programming,
ICLP'95, Tokyo, 1995.

[8] Fages F., J. Fowler and T. Sola, Experiments in
Reactive Constraint Logic Programming, Jour-
nal of Logic Programming, September, 1996.

[9] Mackworth K., Consistency in Networks of
Relations, in Artificial Intelligence, 8, pp. 99-
118, 1977.

[10] Van Hentenryck P., Y. Deville and C. Teng, A
Generic Arc-Consistency Algorithm and its
Specialisations, in Artificial Intelligence, 57, pp.
291-321, 1992.

[11]Codognet C., P. Codognet and G. File, Yet An-
other Intelligent Backtracking Method, in Pro-
ceeding of the 5th ICLP, pp. 447-465, 1988.

[12] Ginsberg L., Dynamic Backtracking, in Journal
of Artificial Intelligence Research, 1, pp. 25-46,
1993.

[13]Schiex T. and Verfaillie G., Nogood Recording
for Static and Dynamic Constraint Satisfaction
Problems, International Journal of Artificial
Intelligence Tools, 3(2), pp. 187-207, 1994.

[14]Frost D. and R. Dechter, Dead-end Driven
Learning, in Proceedings of AAAI'94, 1994.

[151Jussien N. and P. Boizumault, Best-First Search
for Property Maintenahce, in Reactive Con-
straints Systems and Logic Programming: the
Proceedings of the 1997 International Sympo-
sium, pp. 339-353, 1997.

-141-

	
	134
	135
	136
	137
	138
	139
	140
	141

