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Abstract

In this paper, we present a set of inference rules
for the property inheritance theories often
encountered in commonsense reasoning. Then,
we generalize the set of rules so that the
monotonicity of function symbols or predicate
symbols can be encoded in the inference rules.
Consequently, we can replace cumbersome
axioms by some succinct rules. We also discuss
the completeness and soundness of these rules
and compare the rule-based approach to other
related works.

1. Introduction

There are issues in artificial intelligence over the
reasoning about inheritance hierarchies, which
occurs often in commonsense domains. Many
researches have been done on the inheritance
hierarchies  with  exceptions and their
relationships with default logic (e.g. [4], [5] and
[9]). It is cumbersome to specify for every
property P inherited from one class to its
subclass by every axiom, so the ordinary
resolution rule could be modified so that the
property inheritance mechanism can be
embedded into the unification process. Although

the framework, called partial order logic,
provides a rigorous theoretical foundation for
further research. It didn’t really specify an
inference mechanism for the property inheritance
rule.

In this paper, we are going to make up for this
deficiency and offer the reasoning mechanism
that includes the property generalization and
specialization rules.

In the following sections, we first describe the
basic notions of partial order logic proposed by
Chen and Warren ([3]). Then, we propose a
paramodulation-like rule to reason about
inheritance hierarchies. After presenting this rule,
we discuss a set of more complex and powerful
rules which can be used to reason about property
generalization and specialization and provide a
more flexible inference mechanism for
inheritance hierarchies. Finally, we give a brief
conclusion to explain what we have achieved.

2.Partial Order Logic

The syntax of partial order logic is the same as
that of the first order predicate calculus except
that the set C of constants is ordered and the set
F, of n-ary function symbols can be partitioned
into two disjoint sets Mon_F, and Non_F, for
every n > 0.

-116-



Let < denote the partial order relation over C. It
could be treated as “imply” for predicate
symbols or as “value comparison” for function
symbols, and then it can be extended to the
whole set of terms in the following ways:

-x S x for every variables x;

-, b, t) S (s, 85 5., 8,) iff t;, S s, for i
from 1 to n, where f € Mon F,;

-f(t), ty,..., t) S f{t), t,,..., t,) where f € Non_F,;

Obviously, the extended relation is still a partial
ordering over terms.The partial ordering over
terms can be further extended to atomic formula
as follows:

'P(tl, tz,..., t“) S P(S], 82 geeey Sn) iff Si S ti fOI' i
from 1 to n, where P is an n-ary predicate
symbol.

Because the value of “true” is greater than that
of “false”, and P(t,, t,,..., t,) £ P(s,, S5 ,..., S,)
means that P(t,, t,,..., t,) logically implies P(s,,
S, ,.--» S,). For example, if we have nightingale <
bird, then fly(bird) logically implies
fly(nightingale).

A semantic structure of partial order logic is a
first order structure M which satisfies the
following properties:

-|IM| is a partial ordered set and let < be the
partial order over |Mj;

note: |M| means the domain of M.
-M[c,} £ Mlc,]ifc, S ¢, forallc,, ¢, € C;
- M[f] is a monotonic function from |M|" to |M]| if
f € Mon_F,, where the partial ordering over [M|"

is the component-wise extension of the partial
ordering over [M|;
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-if a; < b, (1<i<n ), where a,, b, € [M|, and (b,,
b;,...; b,) € M[P], then (a,, a,,..., ,) €
MIP] for each n-ary predicate symbol P.

Finally, the partial order resolution rule is:

(r):
C,vA,~Bv(,

(C,vCyo

, where @ is a substitution satisfying AG<BEG
and C, v A and ~B v C, without common
variables.

This rule is actually an instance of Stickel’s total
theory resolution([7]) on property inheritance
hierarchies. Stickel’s rules are obtained by
incorporating the background theories into the
unification process of the ordinary resolution
principle.

The refutation completeness for this rule is stated
in the following theorem.

The following conditions are equivalent:

(a) The set S of clauses is unsatisfiable in all
partial order semantic structure.

(b) There is a refutation of S (i.e. a derivation of
empty clause from S) by using the partial
order resolution rule ( r ) and the factoring
rule of classical logic.

From the above presentation, we can find that
partial order logic is a succinct logical system for
reasoning about property inheritance theory, but
it isn’t a real inference mechanism. As we have
pointed out above, the rule ( r ) of partial order
logic-is an instance of total theory resolution, and
the completeness of the theory resolution in fact
depends on the background theory.

Moreover, the partial order logic defined above
still suffers some other defects. It seems too
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restrictive. Since the ordering is built into the
language, we will be under more limitations to
represent all possible ordering over terms. For
example, we can’t express the ordering between
two terms with different functions symbols or
interacts the partial ordering within different
predicates.

On the other hand, if we use the classical
axiomatic approach to manage the above issues.
Since the ordering symbol is considered an
ordinary binary predicate symbol, we can
express any sentences with it.

Moreover, since the inference rule is the ordinary
resolution principle, the syntactic unification
algorithm can be used with no problem.
However, going back to the axiomatic approach,
we will lose the major advantages of partial
order logic because we must write one property
inheritance axiom for each predicate symbol and
each function symbol in Mon_F,.

To compensate for these deficiencies, we
propose a schema so that we can encode as much
regular information into the language as we can.
At the same time, our language should remain
flexible enough to express the irregular
information.

3. Simple Property Inheritance System

In this section, we will present the first
compromise  between classical axiomatic
approach and partial order logic to inheritance
hierarchies.

The language we use is the first order predicate

calculus with equality and ordering ( <) symbols.

The language is denoted by L<. Let EQ and PO
denote the axioms for equality and partial order
theories respectively. Note: © means imply.

EQ:

X\ =y &x,=y,&.&x%,=y, 2 f(x,,..

X = x (reflexivity),

X =y Dy =X (symmetry),

"xn) =
f(y:5.-.,y.) for any n-ary function f,
xl = y] & Xz = yz &...& Xn = yn & P(xl""’xn) )

P(yi,...,y,) for any n-ary predicate P.

PO:

x £ x (reflexivity),
XSy &y < xDx=y (antisymmetry),
xSy &y < z>x <z (transitivity).

Moreover, we need the following property
inheritance axioms.

IN:

Xy < i & X < b4 &..& Xy S Yu & P(Yla'-'syn) >
P(x,,...,x,) for any n-ary predicate P.

Let 7=EQ u PO U IN, then a set of clauses S
is called 7 -unsatisfiable iff S U 71 is
unsatisfiahle.

Now, we give a set of inference rules which can
derive the empty clause from S when S is 7-
unsatisfiable. First, let R, denote the set of
classical  resolution, paramodulation and
factoring rules.

The rules to simulate PO and IN axioms are as
follows:

(A):
$5tvC ,,<s, v (G,

(s,=t,vC,vCyo

where o is the mgsu of (s, s,) and (t, , t,) (i.e.
$,0=s, 0 andt,o=t, 0).
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I:
P(sy,55,...,8) vC,tSuv G,

(CyvCVvP(s), 8,0, Sty S S))

where o0 = mgu(s;,u), and P is an n-ary predicate
and i is an integer between 1 and n.

Let R= Ry, U {(A),()}, then the completeness
theorem of simple property inheritance theory
can be stated as follows:

Theorem 3.1;

A set S of clauses is 7 -unsatisfiable iff S U {x
=X, X X} | g empty clause, where | ; means
the derivation relation under rules in R.

Note that we have shifted the ordering symbol
from metalanguage to the object first order
language, so that we can express any irregular
information about ordering over terms in our
theory, and in the meanwhile, we encode the
information about property inheritance into
inference rules; hence we don’t have to specify
the axioms for them explicitly. If our first order
language doesn’t contain any monotonic
function symbols, we don’t sacrifice too much of
the simplicity of partial order logic.

However, when we have many monotonic
function symbols, our system is comparatively
more complex than partial order logic we have to
specify the monotonicity conditions explicitly by
axioms for each of such function symbols.
Therefore, to fulfill our previous promise to
encode as much regular information about
ordering into our logic as possible, apparently,
the above system still leaves something to be
desired.

The improved system is presented in the
following section.
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4.General Property Inheritance System

Observing the rule (I) in the preceding section,
we can see that the inequality atom t < u is
applied to the atom P(s,, s, ,..., s,) only at the
argument positions, but not at any subterm
positions. This is because we don’t know the
truth value of P(s,, s, ,..., s,) changes with its
arbitrary subterms. Furthermore, the exception
that occurs when P is equality or ordering
symbols also shows that the property inheritance
mechanism may be disabled or inverted in some
argument(or subterm) positions of some
predicates. To facilitate the representation of
these situations we must generalize the notion of
subterm occurrences to specify the path from
root to the subterm position when we represent a
term as a labeled tree so that we can
simultaneously specify the way how the changes
of a subterm influence its superterm. First of all,
we have to know a function(or predicate) symbol
is monotonically increasing, decreasing, or
neither with some of its argument.

Definition 4.1

A monotonicity information function (m.i.f.) m
is a partial function from (P U F U {=,5})x N)
to {-1,0,1} where P 1is the set of ordinary
predicate symbols, F the set of function symbols
and N the set of positive integers and m must
satisfy the following requirements:

(i) m(s,i) is defined iff 1<i<arity(s),

(i) m(=1)=m(=,2) =0,
(iii) m(£,0)=-1, m(£,2) = 1.

Note: Here, a predicate is considered as a
function whose domain is BOOL and the
ordering on BOOL is “false < true”. Then m(f, i)
= 1 (resp. = -1) means that we must interpret f as
tollows:

When the ith argument of f increases
monotonically and all the other arguments -
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remain fixed, the value of f will increase (resp.
decrease) under the ordering which is the
interpretation of < .

Definition 4.2:

Given two words (terms or atoms) s and t, the
occurrences of t in s are defined recursively as
strings in (P W FuU {=<})x N)':

(1) thas ¢ (empty)occurrence in t,

@) if s = f{t,, t,,..., t) (or P(t,, t,,..., t)), and
there are occurrence A in t, then there are
occurrence (fii) e A (or (P,i) = A) in s,
where ¢ means string concatenation.

Note: t may have several different occurrences
in s.

If t has occurrence A in s, we write s[ A « t] or
s[t] for short if it is not confusing.

Now, we can extend a given m.i.f. m to the
domain (PUF U {=<})x N)":

® m(e)=1,

(i) m(A)=m(A,)* m(1), where 1, e ((P
VFU{=5Hx N), 1 e (PUFU {=5})
x N) andA=2X,° 1.

Example 4.1:

We give an example to explain the
monotonicity information function. Let F
contain one unary function symbol, succ, and
two binary function symbols, + and -, and P
contain two unary ordinary predicate symbols,
Pos and Neg. Assume the intended meanings of
succ, +, -, Pos, and Neg are successor function
(on integers), integer addition, integer
subtraction,  “positive”, and  “negative”
respectively. Then we can define the associated
m.i.f. m as follows if the ordering symbol is
interpreted as the ordinary “less than or equal

to” relation on integers:
m(succ, 1 )=m(+,1)=m(+,2)=m(-,1 )=m(Pos,1)=1,
m(-,2)=m(Neg,1)=-1.

Thus, for the given term x-succ(y), m((-,1))=1,
and m(-,2)*m(succ,1) = -1. This means that,
under the intended interpretations, the term x-
succ(y) is interpreted as a function which is
monotonically increasing on the first argument
X, and decreasing on the second argument y.

Moreover, for a given m, we can define the
following  monotonicity and  property
inheritance axioms:

MO,,:

for all n>0, n-ary function f, and 1<i<n,

X<y D (X, e Xppe e sXy) S (X, nhYine X, i
m(fi) =1,

V<X D (X, Xppe %) S (X, 00000, if m(E,
D=-1.

IN,.:

for all n >0, n-ary predicate P, and 1<i<n,

XSy D Xy, Xy 0X,) S (X000 0X,) if m(f,
=1,

visx, D f(xy,..0%;..0.%,) < f(xy,....Yi,---0X,) if
m(fi) = -1.

Let 7.,=EQu PO UIN, uMO,, then any
model of 7, iscalleda x , -interpretation.

A set S of clauses is called 7, -unsatisfiable iff
there ‘don’t exist 7z, -interpretations which are
the models of S. That is S is 7 ,, -unsatisfiable
iff S v, is unsatisfiable.

Note:
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The simple property inheritance theory 7 is just
a special case which satisfies the following
requirements: m(P, i) = 1 for all ordinary
predicates P and m(f;i))=0 for all function
symbols f.

According to these definitions, we come up with
the following lemma.

Lemma4.1:

Given an m.i.f. m (and its extension to the string
domain) and any  , -interpretation I, and t, t
are two terms, then we have:

(1) if sisaterm, t has occurrence Ains, and I[t]
< I[t], then I[s[t]] < I[s[t]] when m( A )=1,
and I[s[t]] < I[s[t]] when m( A )=-1, and

(2) if s is an atom, t has occurrence A in s, and
I[t] < I[t], then I[s[t]] implies I[s[t]] when
m( A )=1, and I[s[t]] implies I[s[t]] when
m( A)=-1.

Here, < is the interpretation of ordering symbol
< under L.

Proof: by induction on the structure of's.

Note: m( A >0 means that the subterm
occurrence in A influences the value of its
superterm irregularly, so the lemma doesn’t hold
for m( A )=0.

Now, we will give the main inference rules of
the general property inheritance theory.

Assume a given m, the property generalization
rule is

(G,):
CivP[A¢s], t5uvC,

(C,vCyvP[Aeu])o

where ¢ =mgu(s,t) and m( A )=1;
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the property specialization rule is

(S
CvP[Aesl,tsuvC,

(CivCvP[Aet])o
where o =mgu(s,u) and m( A )=-1.

Note:
The inequality atom t < u is applied only to
atoms (i.e. positive literals) P in the rules above.

Let R,= R, U {(A)( G,), (S.)}. Following
lemma 4.1, we can easily come to the soundness
lemma as follows:

Lemma 4.2:

If the empty clause can be derived from a set S
of clauses by the rules in R, , then S'is 7, -
unsatisfiable.

Unfortunately, the completeness theorem of
R,, doesn’t hold, as is shown by the following
example.

Example 4.2:

Assume our language has two constant symbols
a, b and an unary function symbol f, and m is
m(f,1)=1 and undefined else where, then the set
S ={ a<b, ~(f(a)<f(b))} is obviously 7, -
unsatisfiable, but we have no way to derive the
empty clause since (G,_), and (S, ) are only
applicable to positive literals.

There are two possible solutions to this problem.
The first is to include additional axioms into our
theory.

Define the weak functionally reflexive axioms as
tollows:

WFR=
arity(fy=n},

{f(xy,....x ) f(x,....x,)] f €F,
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then we have:
Theorem 4.3:

A set S of clauses is 7, -unsatisfiable iff the
empty clause can be derived from S U WFR U
{x=x,x<x} bytherulesinR,.

Although the theorem holds, it is quite difficult
to prove it since we don’t require the existence
functionally reflexive axioms for equality.
Therefore, we need the technique suggested by
Peterson[6] to prove theorem 4.3 even though
we include WFR in our axiom set. Because of
the complexity of Peterson’s technique, we
would prefer to use functionally reflexive
axioms rather than the weak ones.

Let R’ be R, with paramodulation being
replaced by hyperparamodulation[2] and FR
denote the set of functionally reflexive axioms,
then we have:

Theorem 4.4:

A set S of clauses is ., -unsatisfiable iff the
empty clause can be derived from S U FR U {x
=x,x<x} bytherulesinR,’.

The theorem can be proved by following the
method suggested by Slage[8§].

Note that WFR can be derived from FR and x<x
by hyperparamodulation, so it is unnecessary to
include WFR into our axiom set, and since
hyperparamodulation is a restricted form of
paramodulation, it is more efficient.

Coming back to example 4.2, we can see the
axioms in WFR (or FR) are indeed used in the
derivation of the empty clause.

Example 4.2(continued):

Let P in rule (G,) be f(x)<f(x), and A be
(£,2)(f,1), then apply the rule with ¢ ={x<«a} to

H(x)=f(x), a<b}, we get f(a)<f(b). This, resolved
with ~( f(a)<f(b) ), produces the empty clause. In
a similar way, we can set A= (5,1){1), o
={x<b} and apply (S,, ) to get the same result.

Another approach to solve the completeness
issue is to augment our rule set without addition
of WEFR (or FR).

The following rules are contraposition of (G,)
and (S,,) respectively.

(CG,):

Cv~P[A«s],tSuv C,

(C,vCyv~P[A«t])o
where ¢ =mgu(s,u) and m( A )=1;
the property specialization rule is
(CS,):

Civ~P[ L «s],t5uvC,

(C,vC,v~P[A«u]l)o

where ¢ =mgu(s,t) and m( A )=-1;

These two rules can also be absorbed into (G,,)
and (S,,) by extending the definition of subterm
occurrences in words to literals and require
m(~,1)=-1 by considering ~ as an unary operator.

Now, Let AR, =R, U { (CG,), (CS,)}, then the
completeness theorem can be reformulated in the
following way.

Theorem 4.5:

A set S of clauses is T ., -unsatisfiable iff the
empty clause can be derived from S U {x = x,
x £x} by therulesin AR,
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5. Conclusion

To compensate for the inadequacy of the
classical approach and partial order logic on
reasoning about inheritance hierarchies, we
propose the inference rules for simple and
general property inheritance theory in this paper.

In this section, we show how we have achieved
our claimed goal, i.e. to encode the most regular
information about function and predicate
symbols in the inference rules and meanwhile
keep our language flexible enough to express the
other irregular information.

Given a partial order logic language L, =
{V,C,F (n>0),P,(n>0)}and a set of clauses S, let
L, be L, with equality and ordering symbols but
considering C as an unordered set, and the m.i.f.
m associated with L, is as follows:

m(P,1)=-1,if P e U, P, and 1=5iLarity(P),
m(f,i)=1,if fe u,,Mon F, and 1<iLarity(f),
m(f;1)=0,if fe u,,Non F, and 1<i<arity(f).

LetS,=S,u {c, <c,]|c =g, in the ordered set
C}, then, obviously, we have:

Theorem 5.1:

S, is unsatisfiable under partial order semantic
structures iff S, is 7, -unsatisfiable, where m is

defined as above.

Note that the ordering no C is irregular
information, so we translate it into clause set
instead of rule set. This also has the advantage of

not making the meaning of constant symbols
fixed.

The theorem shows that our theory has at least
the same expressive power as that of the partial
order logic, and as we have noticed in section 2,
there are some sentences (e.g. those represent the
interactions between ordering predicate symbol
and other ones) which can’t be expressed by the
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partial order logic, but are obviously expressible
as the first order axioms in our theory. Thus, our
theory is indeed more expressible and flexible
than partial order logic.

Moreover, we don’t represent everything in the
clause set as the classical approach. In fact, the
information about function and predicate
symbols encoded into an m.i.f can be handled by
our inference rules.

References:

[1]Ait-Kaci, H. and Smolka, G., Inheritance
Hierarchies: Semantics and Unification, Journal
of Symbolic Computation (1989), Special Issue
on Unification.

[2] Chang, C.L. and Lee, R.C.T., Symbolic Logic

And Mechanical Theorem Proving, Academic Press,

New York,1973.

[3]Chen, W. and Warren, D.S., Partial Order Logic,

Unpublished Manuscript, Department of Computer

Science, State University of New York at Stony

Brook, NY 11794, 1990

[4]Etherington, D., Formalizing Nonmonotonic
Reasoning Systems, Al 31,1987.

[5]Etherington, D. and Reiter, R., On Inheritance
Hierarchies with Exceptions, Proceedings AAAI-
83, Washington, D.C.,1983.

[6]Peterson, G.E.A Technique for Establishing

Completeness Results in Theorem Proving with

Equality, SIAM J. Comput, Vol. 12, No.1, February

1983. ’

[7]Stickel, M.E., Automated Deduction by Theory
Resolution, J. of Automated Reasoning, Vol. 1
No.4 1985.

[8]Slage, J.R., Automatic Theorem Proving with
Built-in Theories Including Equality, Partial
Ordering, and Sets., JACM, Vol. 19, No. 1, Jan.
1972.

[9]Touretzky, D.S., Implicit Ordering of Defaults in
Inheritance Systems, Proceedings AAAI-84,
Austin, TX. 1984.

[10]Chang, Chin-Liang, Introduction to Artificial
Intelligence Techniques, JMA Press, Austin, TX.

[11]Genesereth, M.R., Nilsson, N. J.,, Logical

Foundations of Artificial Intelligence, Morgan
Kaufmann Publishers, CA. 1986.

[12]Lloyd, J.W., Foundations of Logic Programming,
Springer-Verlag, New York

-123-



	
	116
	117
	118
	119
	120
	121
	122
	123


