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Abstract

In image compression technologies, fractal

image compression and decompression have
advantages of high compression-ratio and low
loss-ratio. But, it requires a great deal of
computation, which limits its applications. And,
still now, there is no parallel processing
technique that had been designed and
implemented. In this paper, we applied neural
networks to implement the numerous
computations of fractal image compression and
decompression in parallel. The simulation
results show that the quality of generated
pictures by neural networks is similar to
traditional methods, which verifies the high
value of our research — the neural network
technologies are useful and efficient for fractal
image compression and decompression.

Keywords: fractal image compression and

decompression, neural networks, parallel
processing.

1. Introduction
Recently, the graphical representation in

computer is widely applied to many
applications for its meaningful representation to
human beings. However, it requires large
storage and long transmission time.

The technique of image compression and
decompression is useful and important for
reducing the storage space and transmission
time. In  general, these compression
technologies can be divided into two fields—
lossy compression and lossless compression
whether decompressed image is the same as the
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original one or not. If the proper loss-ratio is
allowable, the lossy compression methods can

" get higher compression-ratio [1].

There are usually three technologies used in

lossy compression—vector quantization (VQ),
discrete cosine transformation (DCT) and
fractal image compression. The method of VQ
is to partition an image into numerous sub-
images and to find some representatives as a
codebook among them [2, 3]. The method of
DCT is to convert the gray levels of an image
into other coordinates (e.g., frequency), then
quantizes and stores them [1, 4]. By the self-
similarity characteristics in an image, an image
will converge to an acceptable status after
fractal image decompression (5, 6].

Unlike VQ, The fractal image compression
does not require a codebook in decompression
procedure [2]. The fractal image compression is
also attractive by its high compression-ratio and
low loss-ratio properties [4]. There are already
some results in this technique: the Hutchinson
metric is proposed to prove the condition of
converging [7-9], and Mandelbort had
generated images by fractal theory [9). By
developing a collage theorem and the iterated
function system (IFS), Barnsley produces a high

compression-ratio (1 04:l~106:1) fractal
code, and then it encourages many related
researches to proceed [5, 7, 10-13]. But the
fractal code can not be generated automatically
by using IFS [4, 13-17]. Jacquin proposed a
partitioned iterated function system (PIFS) to
improve the IFS such that the fractal code is
determined automatically [14, 15]. However, a
great deal of computation is also required.

The neural network is a new and useful



technology, and has been successfully used in
many scopes [18-31]. J. Stark first proposed a
research to apply the neural network on IFS [19,
20, 32]. His method is based on the Hopfield
neural network to solve the linear progressive
problem and got the Hutchinson metric quickly
[20, 28]. However, his neural network approach
only works in IFS decompression procedure.

In this paper, we apply neural network
technologies on PIFS such that the fractal code
is generated automatically. In our method, a
neuron is used to represent a pixel of image,
and the weights and the thresholds are used as
the fractal code. In this way, proper weights and
thresholds can be obtained in compression
(training) procedure, and the original image can
be constructed in decompression (retrieving)
procedure. In Section 2, We will introduce PIFS
theory and the idea of compression and
decompression by using neural network
technologies. In Section 3, the image
compression by using neural networks on two
different models will be introduced. Then, the

decompression method is explained in Section 4.

Section 5 shows some simulation results.
Finally, a brief conclusion is discussed in
Section 6.

2. Reviews of the partitioned
iterated function system and
neural network

2.1. Basic concepts of the fractal image

compression.

The basic concept of fractal image compression
is to use the characteristics of the self-similarity
in an image. In figure 2-1 (a), the triangular can
be divided into three sub-images, as shown in
figure 2-1 (b). All of these sub-images are the
same as the original image except that the size
becomes a quarter, and they can be partitioned
into smaller parts as shown in figure 2-1 (c).
The smaller parts are also similar to those sub-
images, respectively. These relationships are
existed continuously between sub-images while
partition operations proceed repeatedly. Then,
we only determine these transformation
functions how to map the original image to the
sub-images. An image can be compressed by
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finding these transformation functions, and then
the procedure of decompression can be
performed by these transformation functions to
construct the original image.
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Figure 2-1. The characteristics of the self-
similarity used in fractal image compression. (a)
is the original image, (b) contains three similar
sub-images after one iteration, and (c¢) contains
nine similar sub-images after two iterations.

In figure 2-2, by applying decompression
procedure, a different initial image can be used
to construct a triangular image (i.e., original
image), as shown in Fig. 2-1 (a), after fifteen

L=

iterations.
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Figure 2-2. The decompression procedure of
fractal image. (a) is the initial image, (b) after
one iteration, (c) after three iterations, and (d)
after fifteen iteration.

There are three mapping transformations for
figure 2-1, shown in the following Eq. (2-1),

and this procedure is called as iterated function
system (IFS).
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where (x, Y) is the coordinate of original
image, and (x', y') is the coordinate of
transferred image. Then, only three
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transformation ' functions, {Tl »T2s 1-3} (also
called as fractal code), are stored instead of the
image data.

Partitioned iterated function

system (PIFS)

However, if we want to find the fractal code of
[FS, which is almost impossible for figure 2-3
(a). But we can find some similarities between
blocks of sub-images. As we can see, there are
two pairs of blocks, which are similar to each
other, as shown in figure 2-3 (b). One pair of
them is the part of hat and the part of shoulder,
and the other pair is the smaller part and the
bigger part of face.

2.2.

(b)

Figure 2-3. There are some similarities between
sub-images in the image Lena. (a) is the orignal
image, and (b) shows two pairs of blocks with
similar shape.

When we consider the gray levels of an image,
an additional dimension is added. The
transformation function will become to the
following Egq. (2-2):

x' x a b 0Yx e
yi=nl|y||=la di 0 y+f,.,(2'2)
z' z 0 0 s Az 0;

where z and Zz' are the gray levels, (; »

b; ~ ¢; and (f, are coordinates of this
transformation, (e,., f i) is the offset of the

transformation, and g, and g,
contrast and brightness, respectively.

Figure 2-4 shows the concept of PIFS. Two
identical images are partitioned and compared.
Each non-overlapped sub-image in (b) will find

a r; to transform a larger and similar sub-

represent
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image from (a) to it.
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Figure 2-4. The concept of PIFS. (a) overlapped
and larger images, and (b) non-overlapped and
smaller images. ,

If we choose the size of sub-images in
figure Z-4 (a) are 4 times (double length of
height and width) of sub-images in figure 2-4
(b), then Eq. (2-2) will become Egq. (2-3).

x x{) (05 0 OYx) (e
Yi=ily||E| 0 05 0ly|+ fi} @3)
F4 z 0 0 sAz) \o

These transformation functions are the fractal
codes that can be used to represent the
compressed image and be used to decompress
for the image.

3. Applying neural networks to

the fractal image compression

We propose two -different neural network
models to implement fractal image compression
and decompression, and the architectures of
these two models are similar except the
transformation functions, and illustrated in
figure 3-1. Each pixel of the image is processed
by a neuron and the gray level of a pixel is
represented by the state of a neuron. An image
is duplicated into two images, and each is
divided into many sub-images, called domains
and the ranges, each pixel in domains
corresponds to an input neuron, and each pixel
in ranges corresponds to an output neuron. For
each output neuron, four input neurons are
connected to it. Therefore, each output neuron

J connects to four input neurons 1, I+1,
i+2 and i+3. The output value z'; of
neuron j is determined by the values z;.
Ziels Zis2 - Zisz,and the corresponding
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Figure 3-1. The architecture of the proposed
neural network for implementing the fractal
image compression.

weights Wiiv Wiivr s W2 > Wiing and

the threshold 4;. -

Two different activation functions, the
linear model and nonlinear model, of neurons
are defined as the following Eq. (3-1) and Eg.
(3-2), respectively.

i+3
Z'j=0j(ZijXZk—9j}
k=i

(-1

i+3
where B is the maximum value of gray levels
(e.g., B is assigned to 255 in this paper).

3.1. The linear model

Comparing Eg. (2-3) and Eq. (3-1), the value
Zx in Eg. (3-1) can be viewed as the gray level
z of a pixel in £q. (2-3). The weight w jk and
the threshold §; in Eg. (3-1) can be also
viewed as a quarter of the contrast §; and the

negative value of the brightness @, in Eq. (2-3),
respectively. Then, the linear neural network
approach  (Eq. (3-1)) implements the
computation of PIFS (Fq. (2-3)), and the
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activation function @ ; 1s defined as following
equation:

( ) x, when0< x<255.
0,x)=
/ 0, otherwise.

Figure 3-2 shows the graphic representation
of Eq. (3-3).

(3-3)

255 X

Figure 3-2. The activation function of neurons
in the linear model.

According to the output values of neurons and
the original gray levels of pixels, we can

compute the difference § ; between them for
each neuron j by the following equation:
— Jfrue _ _y -
0,=z7°- 2 (3-4)
where ' ,; is the output value of activation

function and z7* is the origingB grdy) level of

pixel j. Then, the updated weight AW Jk
between the output neuron ; and the four
corresponding input neurons k£, k=i~i+3,
can be derived as Eg. (3-5).

Aw = v, k=i~i+3, 3-5
ke =17% 70 I~1 (3-5)

where 77 is a learning rate parameter which can
speed up the converging rate, and find a better
solution. The updated value of threshold,

A@);, is then defined as

A91-=f77x5j-‘ (3-6)

The learning procedure is processed repeatedly
until the output values of network are
acceptable. ‘

_5'{_
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3.2. The nonlinear model

In the nonlinear model, the activation function
0,' is defined as Eg. (3-7), which is a
composition function.

o;' (x)= DeNor(Sigmoid(x)), (3-7)
where
Sigmoid(x) = ﬁ—_l-_l—e_—x) ) (3-8)
DeNor(x)=K x(x - a), (3-9)

The values of K and @ in Eg. (3-9) are
constants and are defined as:
B
(Sigmoid(Upper) - Sigmoia(Lower))
a = Sigmoid(Lower). (3-11)
We define an input range, 2R, to avoid the
output of Egq. (3-8) to be trapped into saturation

states. Then, the difference between the
maximum value and the minimum value of Xx

is 2R (e, Upper—Lower=2R).
Therefore, the output range of sigmoid function
is equal to
[Sigmoid(Lower), Sigmoid (Upper)] :

Figure 3-3 shows these relationships.

.(3-10)

A Lower=-Upper

f(x)1 Upper = R
f(Upper
f(Lower= >
Lowe "R x
Upper

Figure 3-3. The activation function of neurons
in the nonlinear model.

For each neuron j, we define the difference
between the output of the proposed neural
network and the original gray level of pixels as
the following equation:

V(B-2)z - 2')
5,=Z( ZB)EZ z

In Eq. (3-12), all values of 7', » B and 27

(3-12)
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are in the range [0, 255]. Then, Eq. (3-12) can
be divided by 33 for keeping the output value
in the range [—- 1, 1]. Similarly, The updated
weight Aw jk can be derived as Egq. (3-13).

77x§ijk .
ijk:—B"‘—, k=l~l+3.(3-13)
The steps of learning are operated

repeatedly until the output values of neurons
are acceptable.

4. Applying the neural network
to the fractal image

decompression

The architecture of our neural network for
solving image decompression is similar to
figure 3-1 except that the outputs of neurons in
the output layer will feed back to the
corresponding neurons in the input layer. The
trained weights and threshold (i.e., fractal code
of PIFS) had been determined during the fractal
image compression.

0]

The output state z" for image

decompression is defined as Egq. (4-1).
i+3 (t)
Oj ZijXZk _91' )

k=i

I({) -

Zj - ;
, ] i+3 (1)
0;/'| = 2XWuxzy =68}
j(Bk=i J ]

At the next time f+1, the state Z(;H) of

neuron j in the input layer can be obtained

from the output value Z'Sf) of neuron J in the

output layer. This is defined as Eq. (4-2).

zf-'“) = ng.') (4-2)

Then, the states of neurons are changed
repeatedly until the system reaches a stable
state.

(4-1)

5. Performance Evaluations

Some images are used as examples to be
compressed and decompressed by our neural
network approaches. The value of PSNR is
calculated and used to evaluate the system



performance. The value of PSNR is defined
as:

PSNR =20 log,o(f—), (5-1)
rms

where B is the maximum value of gray level (5
is assigned to 255 in this paper), and rms is
the root mean square of the distance between
the original image and the decompressed image.
The rms is defined as :

2 (e )

N
is the gray level of the pixel i in

rms = (5-2)
where me
the original image, z'; is the gray level of the
pixel i in the decompressed image and N is

the total number of pixels of this image. Then,

the larger PSNR is, the better quality of
image displays.

5.1. The linear model

Different learning rates are selected to
evaluate the quality of linear model. The
experimental results are shown in figure 5-1. -

PSNR
3 8 8

o

005008 0.1 0.1502 03 04 05 06 07 08 09
Learning rate

Figure 5-1. The relationship of learning rate and
PSNR on the linear model.

According to the results of figure 5-1, we obtain
the better quality and the smaller size of image
when the learning rate is 0.1.

5.2. The nonlinear model

The values of input range and learning rate
affect the quality of images during image
decompression in nonlinear model. Four
different input ranges (0.1, 0.2, 0.5, 0.9) and
various learning rates are selected to simulate
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and results are shown in figure 5-2.

Figure 5-2. The relationship of learning rate and
PSNR on the nonlinear model.

Figure 5-2 shows that the better quality of
images are obtained by selecting the learning
rates between 0.2~0.3, and PSNRs of images
are less sensitive when input ranges are smaller
(ie., 0.1 0r0.2).

5.3. The comparisons of linear model and
nonlinear model

There are many images used as examples to be
compressed and decompressed by these two
approaches. Experimental results shown that the
nonlinear model of neural network gets better
quality (PSNR) than the linear model, and the
sizes of compressed images approaches the
traditional PIFS method. In addition, our
method can be executed in parallel.

6. Conclusions

In image compression and decompression,
fractal theory can obtain a high compression-
ratio and a low loss-ratio. But it is limited by its
tremendous computations for determining the
fractal code to perform the image
decompression.

In this paper, we propose neural network
approaches to implement the PIFS for image
compression and decompression. Experiment
results show that our neural network approaches
can obtain high quality image, and the
compression-ratio is as good as the traditional
PIFS method. In addition, the compression and
decompression of our approaches can be
operated in parallel. Then, our method is more
practicable than other approaches for its parallel
processing ability.
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