1998 International Computer Symposium
Workshop on Artificial Intelligence R
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

GA-TABU DESIGN NEURAL NETWORK CONTROLLER
Kuan-Shiu Chiu* and Andrew Hunter

School of Computing and Information Systems,
University of Sunderland, Sunderland, England, UK.
Email: {csOksc,csOahu} @isis.sunderland.ac.uk
* also Computer Center, Tamsui Oxford University College, Taiwan

ABSTRACT

This paper discusses the use of GAs (Genetic Algorithms)
and TS (Tabu Search) to design NNCs (Neural Network
Controllers) for Real-Time control of flows in sewerage
networks. Genetic Algorithms evolve the weights for Neu-
ral Networks Controllers. We apply a modified Tabu
Search algorithm in a novel fashion, to select the most
relevant training data, in order to reduce the training time.

The comparison between this approach and various fixed
penstock control settings, and genetically-designed Neural
Networks, is discussed. This paper reports experiments
demonstrating that GAs are both effective and robust to de-
sign Neural Networks controllers in sewerage network
control problems. To confirm whether the GA-Tabu train-
ing algorithm has statistically significant better perform-
ance than other data selecting algorithms, a t-test with a 5%
significance level is examined. Use of the Tabu algorithm
reduces the training time without affecting the resuits.

1. INTRODUCTION

Combined sewerage systems are used in many cities and
countries. The same pipes carry foul and storm flows in the
systems. Most of the time they function normally. During
heavy rainfall the system faces the problem of overflows
which occur when the system cannot carry all the flows
entering the sewers. Construction of new storage and sew-
ers could be the solution to completely eliminate overflow
problems. However, such schemes are expensive and can
also be extremely disruptive because the sewerage net-
works may extend across wide geographical areas. Since
inflows are seldom constant across an entire system, we
can reduce the overflow spills by controlling the flow be-
tween parts of the system which are under different load-
ing. This may be achieved by the installation of automati-
cally actuated penstocks which can be opened or closed to
contro! the flow past a certain point [1].

Standard optimization techniques, such as linear and dy-
namic programming, have been applied to these type of
problems, but without great success other than for very
simple networks [2]. Linear programming is applied in
simplified problems, but alternative solutions are difficult
to evaluate. Dynamic programming could be successful if
all possible configurations are tested, which requires suffi-
cient computing resources. For a complex system, it is un-
realistic.

46

Genetic designed Neural Networks Controllers and Genetic
designed Fuzzy Logic Controllers have showed to be fea-
sible approaches [1}[3]. However, Genetic designed con-
trollers require heavy training time. If 100 different
weather simulations are used, it may take several hours to
train the controllers on a Sun SPARCstation 5 workstation
even for a simple 2 tank system.

To reduce the training time, we apply Tabu Search algo-
rithm to choose the proper training data for the Genetic de-
signed Neural Network controllers. The Algorithm saves a
significant amount of training time without degrading re-
sults.

In this paper, we describe the used methods and the previ-
ous work in this area. The differences between the conven-
tional Tabu Search Algorithms and our TS algorithm will
be discussed. Then GA-Tabu training scheme is imple-
mented. Finally we compare the simulations results for
both two and three tank systems.

2. OVERVIEW OF TECHNOLOGY USED

To implement the controllers, there are a wide range of
choices, for example, Neural Networks, Fuzzy Logic Sys-
tems, Genetic Programming, and Classifier Systems [1].
The Choice of paradigm must satisfy the two factors:

1. Control penstock setting.
2. Minimise the amount of spillage across the systems.

The controllers must be able to adjust the penstock setting
according to the inflow, current tank level, and the next
adjacent tank level. Real-valued processing is required to
represent the three inputs and one output, making neural
networks and fuzzy logic systems a sensible choice. Both
of them are well-suited to handle real values.

To optimise the controllers, a leamning algorithm is re-
quired. Reinforcement learning methods, such as Genetic
Algorithms, are feasible solutions. Genetic design of neural
network controllers and Genetic design of fuzzy logic con-
trollers are the two methods described in this paper.

2.1 Genetic Algorithms

Genetic Algorithms (GAs) were first developed by John
Holland, his colleagues, and his students at the University
of Michigan in 1970s. GAs are search algorithms that
mimic biological evolution. They use a constant-size
population of individuals, each one representing a possible

begin GA
g:=0 { generation counter }
Initialize population P(g)
Evaluate P(g) { compute individuals’ fitness values }
while not satisfy the stop conditions do

g=gt+l
Select P(g) from P(g-1)
Crossover P(g)
Mutate P(g)
Evaluate P(g)
end while
end GA

Figure 1: Pseudo-code of the simple Genetic Algo-
rithms

solution in a given problem space. An individual is usually
coded as a binary string. The problem space is referred to
as the search space, comprising all possible solutions to the
problem. The search space is usually too large to use an
exhaustive search.

GAs generate a initial population randomly. Each individ-
ual in the population is decoded and evaluated (given a
'Fitness') by some predefined quality criteria. Three opera-
tors are applied to the population: reproduction, crossover,
and mutation. Reproduction is a process in which individu-
als are selected according to their fitness, and copied.
Many selection methods are currently in-use. Holland's fit-
ness-proportionate selection, where individuals are selected
with a probability proportional to their relative fitness, is
one of the simplest. It ensures that the expected number of
times an individual is chosen is approximately proportional
to its relative performance in the population. Thus, high-
fitness individuals stand a better chance to be reproduced,
while low-fitness ones are more likely to disappear. The
crossover operator is performed according to a crossover
probability (crossover rate), between two selected indi-
viduals, called parents, by exchanging parts of their code to
form two new individuals, called offspring. The mutation
operator is used with a small probability (mutation rate),
flipping bits or re-generating bits at random. In this man-
ner, a new population is generated. This is called one gen-
eration. The process after initialization of the population
repeats until a stop condition is satisfied. One of the most
commonly used stop conditions is the end of generation
[41[5]. The algorithm is shown in Figure 1.

2.2 Neural Networks

Artificial Neural Networks (also known an ANNS, or sim-
ply Neural Networks) are computer models inspired by
biological nerves systems. They consist of large numbers
of simple processing units called neurons, connected to-
gether by links of various strengths called weights. Neural
Networks can be built in special hardware or simulated on
normal computers. A simple model of an Artificial Neuron

1998 internationai Computer Symposium
Workshop on Atrtificial Inteiligence
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Figure 2: A simple model of a neuron

is shown in Figure 2.

In Figure 2, the input signals (y) to a neuron are each mul-
tiplied by the synaptic strengths (w), then are added to-
gether. The result is called the activation level of the neu-
ron. The activation is passed as input to a non-linear sig-
moid function to produce the neuron's output [6].

In order to mimic brain mechanisms to simulate intelligent
behaviour, learning methods are used. Learning is the pro-
cess that adjusts synaptic weights so that the network
learns to perform a good mapping between inputs and out-
puts. This is also called training the network. Three types
of learning algorithms are widely used: Supervised Learn-
ing, Unsupervised Learning, and Reinforcement Learning.
In Supervised learning algorithms, the network trainer
states what outputs are expected from the training pattern
inputs. In Unsupervised learning algorithms, the network
learns to classify inputs based solely on their similarity
with each other. In Reinforcement leaming algorithms,
there is nmo training pattern outputs, but a reinforcement
signal is available which indicates how successful a net-
work is. It is a trial-and-error learning scheme, based on
feedback of the network performance.

There have been many artificial neural networks models
proposed in the past 10 years. The obvious difference lies

in the network architectures and learning algorithms. One

of the most popular models is the multi-layered feedfor-
ward network. The multi-layered feedforward network has
a number of sequential layers; every neuron in each layer is
connected to every neuron in the next layer. The first layer
is called the input layer, and receives signals from the out-
side world. The last layer is called the output layer, and
propagates signals to the outside world. The other layers
are called hidden layers because they are not directly ac-
cessible from the outside world - they are purely involved
in decision-making [7].

2.3 PYM GA-NNC Training Algorithm

A previous paper [1] shows how GAs can be used to opti-
mise the weights of Neural Network controllers. In another
paper [3], the authors applied GAs to design membership
function and rule bases for Fuzzy Logic Controllers. The
training time for a simple 2 tank system requires several

47

1998 international Computer Symposiurm
Workshop on Artificial intelligence)
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Flow Simulator (NNC)

Genetic Algorithms
: Weights

§guumumuEnn

No. of Spills

Figure 3: The GA-NNC system architechture

hours on a Sun SPARCstation 5 machine. For 3 tank sys-
tem, it needs more than 10 hours to complete the training
for both controllers. In this paper, we focus on the feasible
methods to overcomnie the extreme computational cost. The
methods in this section and next section are implemented
in Genetic designed Neural Networks Controllers. The
GA-NNC system architecture is shown in Figure 3. This
section discusses the use of Parallel Virtual Machine
(PVM) software to reduce the training time.

Genetic Algorithms have been called "embarrassingly par-
allelizable." The population-based approach makes it pos-
sible to evaluate a large number of entities simultaneously
simple form of concurrency. The experiments have been
conducted by using PVM software for the concurrent proc-

essing strategies.

PVM is a software system that allows a heterogeneous
collection of Unix computers networked together to be
viewed by a user's program as a single parallel computer.
PVM is the mainstay of the Heterogeneous Network Com-
puting research project, a collaborative venture between
Oak Ridge National Laboratory, the University of Tennes-
see, Emory University, and Carnegie Mellon University
(see Preface in [8]).

In our experiments, 25 "Sun SPARCstation 5" machines
are used to run the simulations. Two programs are imple-
mented: a main program and a simulator program. Genetic
Algorithms in the main program generate weights and pass
them to the Neural Network Control simulators. After 100
different simulations, each simulator returns the number of
spillages as fitness to the main program. For population
size of 100, there is one process for the main program and
there are 100 processes for simulator programs run on 25
"Sun SPARCstation 5" machines.

On each generation, the main program passes weights to
the simulators. It waits for the number of overflows to be
returned from the simulators. The Genetic Algorithm uses
the returned values as a fitness. Then the 3 genetic opera-
tors: reproduction, crossover, and mutation evolve opti-
mum weights for the Neural Network Controllers.

For the 2 tanks system without PVM, the training time was
about 8 hours. With the parallel processing of PVM, it

..48..

takes about one hour to finish the training on 25 Sun-
SPARCstation 5 machines.

3. GA-TABU DESIGNED NN
CONTROLLERS

We first discuss the difference between our Tabu Search
algorithms and Glover's. Then GA-Tabu training scheme is
described.

3.1 Tabu Search algorithm

Tabu Search was introduced by Glover. It is a modified
version of hill-climb search algorithms. TS introduces a
flexible memory structure, Tabu list, to prevent the search
from becoming trapped at locally optimal solutions. The
method utilizes Tabu restrictions and aspiration criteria to
drive the search into new regions. Tabu restriction discour-
ages the reversal (or sometimes repetition) of certain
moves, whereas aspiration criteria allow a move to be se-
lected regardless of its Tabu status [9][10][11].

Tabu Search has been used to solve many combination
problems. The application areas include scheduling, trans-
portation, layout and circuit design, telecommunications,
graphs, probabilistic logic expert systems, and neural net-
works [11]. In this paper we apply TS in a new application
area, selecting proper training data efficiently for Genetic
designed Neural Network controllers.

There are several differences between our Tabu algorithm
and Glover's Tabu Search.

1. The algorithm works in dynamic environment. GAs
evolve the weights for Neural Networks controllers. The
weights change from generation to generation. Therefore,
the Tabu algorithm selects the proper training data to fit in
different generations.

2. There is no candidate list; the data are chosen randomly
from the data not in the Tabu list.

3. The Tabu structure is a vector, not a matrix. We only use
a one dimensional array to record the restriction tenure for
each training data.

1998 Intemational Computer Symposium
Workshop on Artificial intelligence
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

GA Initialisation
Generate chromosomes

(weights)
v

Choose the training data
Use the whole training data for
the first generation

>G)uter Loop >

GA operations '

1. selection Inner Loop |
2. crossover

. . Evaluate chromosome
2. mutation 1. decode the chromosome
4. replacement “into weights for NNC
2. run the simulations by us-
T ing selected training data
Tabu Cycle 3. calculate tt}e spills for
1. reduce the tenure in the every training data
Tabu list All Chromo-

f

2. set the Tabu list accord- somes Evalu-

ing to the selected ated ? NO

training data spills (re-

strictions)
3. aspiration criteria
4. choose the training data

T End of Gen-
NO erations ?
Figure 4: GA-Tabu training scheme
4. Tabu restrictions are applied to prevent the use of over- 1€cted. not because we have the best candidate so far.

or under-challenging simulations on each generation. 3.2 GA-Tabu Training Algorithms

5. Aspiration criteria are used when not enough data is se-

49

1998 international Computer Symposium
Workshop on Artificial Intelligence
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

100%
90%
80% -
70% -
60% -
50% -
40% -
30% -
20% A
10% -

Op/ S g g Lt b e e b L L L i
o g

0 10 20 30 40 50

60 70 80 90 100

Figure 5: Two tanks fixed aperture flood profile

The Genetic Algorithm selects improved structures by
evaluating the fitness of each structure. In this application,
fitness is measured by running the system through a num-
ber of weather simulations (100), and counting how many
times the system floods. In the basic approach, the same
simulation runs are used on each generation. However, the
GA only gets useful discriminatory feedback from simula-
tions which cause some of the current generation to fail.
Simulations which are too easy or too challenging (i.c. all

- chromosomes flood, or all are OK) absorb computer time
with no benefit. However, as training proceeds the set of
useful simulations changes (in particular, the more chal-
lenging ones become more important), and so selecting
training data maintains constant selective pressure.

Tabu search uses the feedback from the Neural Network
simulations to choose proper training data efficiently for
training on the next generation. The details of the GA-Tabu
training algorithm are as follows:

The Genetic Algorithm randomly generates the weights for
the Neural Network controllers. In the first generation, we
use the whole 100 different weather simulations as the
training data. Each controller is tested using 100 simula-
tions. We record and count the simulations which cause
spills. After training, each simulation has a spill count be-
tween 0 and 100. A spill count 0 means the training data
presents no challenge since all controllers passed the test;
these simulations are discarded. On the other hand, a spill
count of 100 shows the weather is terrible. No controllers
passed the test at the first generation and possibly no con-
trollers can pass through the entire 100 generations. We put
such simulations in the Tabu list for 1-15 tenures randomly.
Due to the heavy computation time, we randomly choose
10 training data after the first generation. The simulations
with spill count below 20 would be considered as unchal-
lenging, so we put them in the discard list. The rest of the
training data are candidates to be selected for the next gen-
eration.

A difficulty could arise if most of the data are put into the
Tabu list, so that not enough training data is available. In
this case, another Tabu condition, aspiration criteria, is put
into action. This reuses the data in the discard list until
enough data is selected. The whole training scheme is
shown in Figure 4.

50

4, EMPIRICAL TESTING

Our experiments are tested on several Sun SPARCstation 5
machines. We use the C language to write the simulator
and Neural Networks controllers integrated with SUGAL,
The SUnderland Genetic Algorithms Library [12]. Before
the experiments, we briefly discuss the simulations.

4.1 Simulation design

A typical Genetic Algorithm for a reasonably simple
problem might involve a population of one hundred chro-
mosomes run for one hundred generations, requiring a total
of 10,000 chromosome evaluations. One hundred inflow
sequences were designed to simulate the different weather
conditions. These were initially generated using the Hy-
droworks simulation package to present varying degrees of
challenge to the system. Each simulation has about 500
time-steps. On each time-step a neural network controller
in the system is executed and a set of flow-equations is
solved. So we have about 50,000 time-steps for each of
10,000 chromosome evaluations, resulting in approxi-
mately 500,000,000 simulation time-steps in total.

With the implementation of Tabu algorithm, 100 different
weather conditions are used in the first generation. Then
the system choose 10 different inflow sequences for the
rest of each generation. There are 54,500,000 simulation
time-steps in total. The training time is about 9 times faster
than the previous method.

4.2 Two tank experiments

The first group of experiments is done by using the two
tank system (see Figure 3). This system has two intercon-
nected tanks, with an inflow to the upper tank and an out-
flow from the lower. A penstock is located on the jointing
pipe. A spill is deemed to occur if the water level in either
tank passes the top. 100 simulations are tested using the
following benchmarks.

1. The optimal spillage rate.
2. Various fixed penstock setting.
3. GA-Tabu design of Neural Network Controllers.

1998 International Computer Symposium
Workshop on Artificial Inteiligence
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

78%

38%

Closed Fixed Best

(39%)

Open

GA-NN

GA-Tabu-
NNC

Optimum

Figure 6: Number of spills comparisons in twe tank systems

NNC

Figure 7: Three tanks system

4. Genetic design of Neural Network controllers (discussed
in reference [1)).

Since water can only exit the system through the outflow in
the lower tank and the speed of outflow is related to the
depth in the lower tank, to get the optimal spillage rate, we
maximise the rate of outflow by keeping the lower tank as
full as possible. This is done by initially opening the pen-
stock fully, then as the level of the bottom tank nears the
top, opening the penstock just sufficiently to keep it fully
topped up.

Our second experiment for the two tanks system fixes the
penstock to a particular setting throughout the 100 simula-
tions. The fixed penstock settings are tested from 0 to
100% open in steps on 1%. Not surprisingly, the largest
number of spills (78%) occurs when the penstock is full
closed throughout the simulations. However, the fully open
penstock produces 49% spillage, which is not the lowest
number. The lowest number of spills (38%) results from a
fixed aperture of 39%. The results are shown in Figure 5.

For the GA-Tabu-NNC and GA-NNC, we use 3 sensor in-
puts; the inflow to the upper tank and the levels in the two
tanks. The only output is the aperture setting (see Figure
3). The experiment is repeated five times. Both produce the
best results ranging from 29% to 30% spillage. These are
almost optimal values. The performance of GA-Tabu-NNC
is similar to GA-NNC. Figure 6 displays the comparisons
of our benchmarks.

4.3 Three tank experiments

-5]-

The three tanks system is used for second group of experi-
ments (see Figure 7). The system contains three intercon-
nected tanks, two up-stream tanks feeding into a single
downstream tank. The optimal strategy in the two tanks
System can no longer be used, since one up-stream tank
could have a heavy inflow and the other a light inflow. In
this case the second tank should close its penstock to allow
the first tank to empty more rapidly through the shared
lower tank. However, if both upper tanks are under lower
pressure, they should be closed to clear the lower tank.

We use the same inflow simulations for the two up-stream
tanks. In order to simulate a weather pattern moving across
a geographical area and increasing in intensity, a delay and
scaling factor is used for the inflow into the second up-
stream tank.

The results are shown in Figure 8. We note that the GA-
Tabu-NNC outperforms the best fixed aperture setting.
Both simulation results of GA-Tabu-NNC and GA-NNC
are similar.

4.4 Comparison with other selecting training
data methods '

Two important issues in GAs are premature convergence
and slow finishing. Premature convergence occurs when a
few outstanding chromosomes exist. GAs will focus on ex-
ploiting these super-fit individuals. The results are fast
convergence without finding other possible good solutions.
On the other hand, slow finishing problems happen when
most of the chromosomes' fitness is similar. GAs will have
difficulty in convergence.

1998 International Computer Symposium
Workshop on Arificial intelligence)
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

100% 85%
80% T
] 50%
60% - 40%
40%
20% A
0% - * = 2 3 .
Closed Open Fixed Best (21%) GA-NNC GA-Tabu-NNC
Figure 8: Number of spills comparisons in three tanks system
2 Tank System _ 3 Tank System
Min | Max | Mean | t-test Min Max | Mean | t-test
Benchmark 1 29 37 30.38 | -4.291 40 50 43.42 | -6.042
Benchmark 2 29 34" | 30.523 | -5.627 40 50 44.149 | -7.411
Benchmark 3 | 28 30 29.3 1.264 40 43 40.86 | 1.486
GA-Tabu 28 30 | 29.468 40 43 41.04

Table 1: Statistically figures for the 4 benchmarks (50 runs)

Generally speaking, using a small part of the training data
has higher selective pressure than using the whole training
data. Using the whole training data is more likely to cause
slow finishing problems.

The issues discussed are for the use of a fixed training data.
For a random selection method, successful training also
depends on the proper selection of data. GA-Tabu algo-
rithm uses the Tabu list to help the proper data selection in
each generation. To see if the algorithm we proposed
would be better than other selection methods, we compare
with the following 3 benchmarks:

1. Selecting 10 training data randomly without regarding to
their degree of challenge.

2. Selecting 10 training data randomly from the moderately
challenging data (initial number of spills greater than 20
and less than 100).

3. Use the whole 100 training data.

The first 2 benchmarks use 100 training data for the first
generation and 10 for the rest of generations. Each experi-
ment involved 50 independent runs of the algorithm, with
different random seeds. On a single run, the performance at
each generation is measured using the population minirnum
fitness (i.e. best fitness across the population; these are
function minimisation problems). The performance of the
algorithm is then assessed by taking the aggregate experi-
mental mean of population minimums.

To confirm whether the GA-Tabu training algorithm has
statistically significant better performance than other se-
lection algorithms, we gathered mean and standard devia-
tion values of the 50 population minimums for each
benchmark, and use a t-test with a 5% significance level.
With these choices, a t-value less than -1.96 indicates sig-
nificantly better performance [13]. The simulation results
are shown in Table 1.

52

In the first benchmark, the 100 training data have an equal
opportunity to be chosen no matter in which generation.
The training data will be meaningless if we select the over-
or under-challenging data The fitness of the better chro-
mosomes will not be so obvious, reducing "selective pres-
sure". It also encourages the crossover of better and worse
chromosomes. The situation will be worse if we have too
much of this kind of extreme training data. The t-test val-
ues are -4.291 (2 tanks system) and -6.042 (3 tanks sys-
tem). They are less than -1.96, which means GA-Tabu is
much better than the algorithm.

In the second benchmark, the selected training data is bi-
ased. The training prevents the use of the extreme data and
focuses on the moderately challenging data after the first
generation. However, it neglects the nature of GAs: the
chromosomes in each generation will perform better than
the previous generation. The storm weathers cause spills in
the current generation. They could be prevented from over-
flows in the next generation. In this selection approach the
controllers will not learn to adapt to tough weathers. So the
optimum control is not easy. In our experiments, the algo-
rithm is even worse than benchmark 1.

The last benchmark uses the whole 100 training data. From
Table 1, it is the best training strategy. But there is no sig-
nificant difference from the GA-Tabu algorithm. On the
other hand, the training time is about 9 times longer than
the selection methods.

In GA-Tabu design Neural Network controllers, we com-
bined the advantages of the first two methods and prevent
the disadvantages. Selection of extreme weather conditions
is reduced, and the under-challenging data is discarded. As
the population increases its fitness, we increase the selec-
tion of more challenging data. The goal fitness level is
measured by the difference between the best chromosome's
fitness and the mean fitness of the chromosomes' pool.
This maintains a moderate challenge for each generation.

The algorithm has a significantly better performance than
other selection approaches, and is similar to the use of the
whole 100 training data.

S. FUTURE WORK

The application of adaptive computational techniques in
flow control systems is poorly studied, and particularly in
Real-Time Control of sewerage flow systems. Two previ-
ous papers [1][3] have showed Genetic designed Neural
Networks Controllers and Genetic designed Fuzzy Logic
Controllers to be feasible approaches. The major disad-
vantage of the techniques is its extreme computational cost.
PVM software can be implemented to speed up the training
time, but it requires more workstations. In this paper, we
proposed a GA-Tabu training algorithm without increasing
any machines. The experiments reported the training time
is similar to the use of 25 Sun SPARCstation 5 worksta-
tions by PVM software,

For the future work, there is an issue of Local versus
Global control. In one respect, the simplest system is a sin-
gle Global network controller, which draws inputs from
sensors across the entire flow system, and has one output to
each penstock. Such a network scales rapidly in complexity
as the flow system grows. Not only does the execution time
grow, but the complexity of training grows. This approach
is probably unrealistic for very large flow systems. In an-
other respect, the hybrid of conventional control methods
and adaptive approaches is under development. The con-
ventional control methods are used as Local control. The
adaptive approaches act as a Global overseer to guide the
Local control.

6. CONCLUSION

The successful training of Neural Networks Controller de-
pends on proper training data. Normally, all of the avail-
able training data are used through the whole training proc-
ess. This is not efficient in reinforcement learning algo-
rithms such as GAs, where the discriminatory power of
each simulation may vary from generation to generation.

We propose a Tabu search algorithm to select the proper
training data to fit in different generations. The results
- demonstrate a significant saving in training time without
degrading performance. '

7. REFERENCES

[1] Andrew Hunter (1997) "Genetic Design of Real-Time
Neural Network Controllers." Neural Computing &
Applications. V4. N3. 1997. Springer-Veriag.

[2] SO. Petersen (1987) Real Time Control of Urban
-Drainage Systems. M.ssc. Thesis. Dept. of
Environmental Engineering, Technical University of
Denmark, August 1987.

[3] Kuan-Shiu Chiu and Andrew Hunter (Oct. 1997)
"Genetic Design of Real-Time Fuzzy Logic

53

1998 International Computer Symposium
Workshop on Artificial Intefligence
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Controllers." EXPERSYS-97, Sunderland, UK, Oct.
1997.

[4] Moshe Sipper (1996) "A Brief Introduction to Genetic
Algorithms."
http://slwww.epfl.ch/%7Emoshes/ga_main html
accessed March 23, 1998.

[5] David E. Goldberg (1989) Genetic Algorithms in
Search, Optimization, and Machine Learning.
Addison-Wesley, 1989.

[6] Andrew Hunter and John Maclntyre (1996) Neural
Networks for Industry Course, course notes,
University of Sunderland, Oct. 1996.

{71 Andrew Hunter (1995) "Introduction to Neural
Networks"
http://osiris.sunderland. ac.uk/~csOahu/ac/nnintro. html
accessed March 23, 1998.

[8] Al Geist etc. (1994) PVM: Parallel Virtual Machine,

- The MIT Press, Cambridge, MA, 1994

[9] F. Glover (1989) "Tabu Search - Part 1" ORSA
Journal on Computing, Vol.1, No.3, pp. 190-206,
1989.

[10]JF. Glover (1990) "Tabu Search - Part IL" ORSA
Journal on Computing, Vol.2, No.1, pp. 4-32, 1990.
[11]F. Glover and M. Laguna (1997) Tabu Search, Kluwer

Academic Publishers, July 1997.

[12]Andrew Hunter The SUGAL Genetic Algorithm
Simulator.
http://www.trajan-software.demon.co.uk/sugal htm
accessed March 23, 1998.

[13]Joseph Newmark (1988) Statistics and Probability in
Modern Life, 4th Edition, Saunders College
Publishing, New York, 1988,

	
	46
	47
	48
	49
	50
	51
	52
	53

