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ABSTRACT

This paper presents new stability conditions for
Hopfield networks in partial simultaneous updat-
ing (PSU) mode. First, an example is given to
demonstrate that oscillation may occur even if
one use a connection matrix satisfying the con-
ditions derived in [3]. Then, new sufficient con-
ditions ensuring global convergence of a Hopfield
network in PSU mode are given. The obtained re-
sults permit a little relaxation on the lower bound
of the main diagonal elements of the connection
matrix. '

1.INTRODUCTION

The Hopfield network [1},2] is one of the famous
neural networks with a wide range of applica-
tions. In the synthesis of such a network, ensur-
ing a convergence of the state trajectories start-
ing from arbitrary initial state to a fixed point
is of particular importance. Such a convergence
property is the basis for the potential applica-
tions of the network, such as content addressable
memory (2], pattern recognition [1], and combi-
natorial optimization [10]. Afterwards many re-
searchers have focused on the following two dis-
tinct update modes: 1) asynchronous (or serial)
mode, in which 2 neuron is chosen at random
and then its value is updated, and 2) synchronous
(or fully parallel) mode, where all of the neurons
are simultaneously updated. Sufficient condi-
tions for global convergence of above two update
modes have been extensively studied (1},4],[10]-
[12]. However, the characteristic of updating a
partial group of neurons has received little atten-
tion in previous literatures. Cernuschi-Frias (3]
has presented a “macroneuron” concept.

He considers updating simultaheously groups of a
fixed number of neurons. Each of these groups is
referred to as a “macroneuron” in {3]. The suffi-
cient conditions on the corresponding connection
matrix as to ensure global stability have been de-
rived. However, it is found by our experiment
that, even with a connection matrix satisfying
the conditions in [3], the state of a Hopfield net-
work may converge to limited cycles. It means
that oscillation may occur.

In this paper, the concept of partial simultaneous
updating (PSU) in Hopfield network is first re-
viewed. An example is given to demonstrate the
oscillation phenomenon described above. Then,
by means of the results derived in [5], we give a
new condition which ensures global convergence
of a Hopfield network in PSU mode. The differ-
ence of the obtained results with those derived in
(4] is demonstrated by another example.

2. REVIEW OF PREVIOUS RESULTS

Consider a Hopfield network consisting of n fully
connected two-state neurons X € {—1, 1}". Let
T = [ti;] denote the connection matrix of this
network. Then the asynchronous updating cy-
cle of the network is determined by the following
equation:

n
i =sgn{2t¢ja:j —9,} , (1)
j=1
in which z; is the ith component of X; z de-
notes the next state of z;; ¢;; is the connection
weight from neuron j to neuron i; 8; represents
the threshold attached to neuron i (for simplic-
ity, hereinafter we let 6 = 0Vi); sgn{a} =1 for
a > 0; sgn{a} = —1 otherwise. The updating
cycle is asynchronous in the sense that neuron

..20-



states are updated one at a time by following (1)
with equal probabilities. The macroneuron con-
cept proposed in (3] is obtained by considering z;
as a column vector X; (or a macroneuron) which
has a fixed number ¢; of components which takes
values +1 or —1. Each element ti; is thus con-
sidered to be a ¢; x ¢; matrix T};, with (k, h)th
element T;;(k, h).

Let M be the number of macroneurons. Then
the total number of neurons is given by

M
N=3 4 (2)

The ith macroneuron is updated according to

M

X =sgns > TiiX; 0 3)
=1

specifically, each neuron is updated as

~

M g »
X, (k) = sgn {Z > Tk, h)Xj(h)} . @

j=1lh=1

Since a group of neurons is updated each time,
the Hopfield network is said to be operated in
the partial simultaneous updating (PSU) mode.
Define the matrix T to be composed of the blocks
Tijs. Then, the author in [3] proves that a Hop-
field network in PSU mode is globally stable if
the matrix T satisfies

)Ty = (Ty)Tforalli#j,
ii) Ti: : nonnegative definite but not

necessarily symmetric.

In other words, the matrix T is not necessarily
symmetric. Asshown in [3] the macroneuron con-
cept permits a little relaxation on the symmetry
hypothesis of the connection matrix [1]. However,
it is found by our experiment that, even with a
matrix T that satisfies conditions i) and ii), the
state of a Hopfield network may converge to lim-
ited cycles (see next section). That is, undesired
oscillation may occur.

3. STABILITY OF HOPFIELD
NETWORK IN PSU MODE
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With a connection matrix satisfying conditions
1) and ii), the state of a Hopfield network may
converge to limited cycles. It means that a PSU
séquence may not converge to fixed points. Fol-
lowing is a counter-example to conditions i) and
i).

Ezample 1:

Consider a Hopfield network with six neurons
(N =6) and the following connection matrix,

Ty Tio
T= , 5
{Tm Too ] (5)
in which
2 -2 3
Tll = 0 4 —2 y
-4 2 1
-1 0 0
Te=Tn)T=| 1 -1 -2,
2 1 1
1 1 2
Toy = 0 4 —4
-3 4 2

Note that in this case there are only two
macroneurons (M = 2, ¢ = ¢ = 3) and
the system is structural the same as the In-
traconnected Bidirectional Associative Memory
(IBAM, [8],(9]). The main difference is that the
latter uses the Outer Product Rule [8] to en-
code matrices T3, Th2, and The. Now (3) can
be rewritten as

X,; = sgn {T11X,1 + T2 Xo} (6)
X2 = sgn{T21X1 + T22X2}.

It can be easily checked that T}; and T are both
positive definite. However, let X9 = (-1, -1, )T
and X9 = (1,1, —1)T be initial states of the
network, the following sequence can be obtained,

X; = (—17 17 l)T)Xé = (1’ —1> I)T)
X =(-1,1,-1)7, X, = (-1,1,1)7;

x®=@1,1,-1)7; xP = (-1,1,-1)7;
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X§4) = (lv -1, —1)TvX§4) = (17 1! _1)T7
x® = (1,-1,1)% % = (1,1,-1)7;

X§6) = ('—1a '_]-7 1)T = X?a

x® =(1,-1,-1)7T = x3;

From above observation, we can conclude that
X0 = x¢-9 x® — X8 for 1> 6

It is obvious that a limited cycle of period
(length) 6 occurs. Moreover, we test the network
with all 64 (26 = 64) possible bipolar states in
the state space. It is found that all 64 states con-
verge to the limited cycle described above. We
can thus summarize that the state of a Hopfield
network may converge to a limited cycle even if
condition i) and ii) hold. In fact, from this exam-
ple there is no fixed point within the entire state
space of the network.

4. NEW STABILITY CONDITIONS

In [5],[6] sufficient conditions ensuring global con-
vergence of a Hopfield network in serial and fully
parallel modes are both given. New stability con-
ditions for a Hopfield network in PSU mode can
be derived on the basis of these results. First we
examine the following lemma.

Lemma 1 (Xu & Kwong [5]):

Let T = [t;;] be the connection matrix of a Hop-
field network, T not necessarily symmetric. As-
sume the network is operating in fully parallel
mode. Then,

E(X)= —%XTTX (7)

will be a strict Liapunov function of the network
(ie., E(XED) < E(X® for any X(+1) & X)),
Moreover, let AE(t) = E(X®D) — E(x®),
AX(t) = X0+ — X® and I{t) = {i €
{1,2,..., N} : Az;(t) # 0}, then

AE(t) < —% ST thAz(t)Az(t),  (8)

i€l(t) JEI(t)

where
N
=] W2 2 fte —tukl, ifi=7
/A k=1
tij ifi#j
Proof:

Please refer to Theorem 2 of {5] ( let the threshold
t; = OVi).

Using Lemma 1 one can derive the following the-
orem.

Theorem 1:

Define the matrix T to be composed of the blocks
Tiys. If

Tx(i =1,..., M) is nonnegative definite, (9)

where, for each element in the block T3,
T3 (k h) =

M g
Ti(k, k) — 3 X 2 Tus(lk) = Tk, 1)

. u=1|=
fi=j&k=h,
Tu(k,h),ifi=7&k#h
(10)
then the Hopfield network with connection ma-
trix T' globally converges to a stable state when
operating in the PSU mode.
Proof:
From Lemma 1, and assume only macroneuron
X, is selected to be updated, we have
AE(t)

M
X LY Tk h)AX(k)AX;(R)
i=1j=1kel(t) hel(t)
S Tk R)AXH(K)AXp()
keI(t) hel(t)
(11)

Global convergence of a Hopfield network can
be ensured by showing that AE(t) whenever
AX(t) # 0. From (11) it is obvious that AE(t) <
0 if T, is nonnegative definite. Since any one of
the M macroneurons is possible to be selected
within the entire PSU sequence, global conver-
gence is guaranteed if

Mz

1
£ 3

N

Ti is nonnegative definite for all i(i = 1, ..., M).

This completes the proof.
A sufficient condition ensuring (9) is given by the
following corollary.
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Corollary 1:

A Hopfield network operating in PSU mode is
globally stable if the elements of the correspond-
ing matrix T satisfy

M qu
rfu(k:,k) Z {Z ZITWL l k w(kal)'}
u=1l =1
qi
h#k,h=1
1 = 1,..,M;
k= 1,...,q,’. (12)
Proof:

Note that T7; is not necessary symmetric. Condi-
tion (9) can be reformulated by replacing T with
its symmetric component § = I{Tj; + (T3)T}.
This can be demonstrated by decomposing T3
into S and its antisymmetric component A=
${T — (T%)T}, and noting that,

XTTiX =XT(S+A)X = xTsX, (13)

since matrix A contributes zero to the quadratic
form. With this observation, condition (9) can
be rewritten as requiring the matrix

T:+(T)" =

2T7(1,1)
T3(1,2) + T3(2,1)

T3(1,2) + T3(2, 1)
2T7(2,2)

Ti(1,q:) + Talgi, 1)

Tx(1,qi) + Toi(as, 1)

2T (qi, i)

i=1,.,M

be nonnegative definite. Since a real symmetric
matrix A = [ai;] that is diagonally dominant, i.e.,

lai] > Z |a;| Vi,

i
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and has all nonnegative diagonal elements is non-
negative definite [7]. In order to achieve global
convergence of the network, it is sufficient to let
%
> \Tuk, k) + T(R, k)],
h#k,h=1
o= 1,..,M;

2Tk, k) >

k= 1,...,q1'. (14)
Now substituting (10) into (14) yields (12). The
proof is thus completed.
With the aid of Corollary 1, the connection ma-
trix T of Example 1 can be modified to ensure
global convergence of the network. From (12),
the proper modifications are,

T11(1,1) =
T22(2,2) =

T11(3,3) = 6,T2(1,1) = 4,

5, Too(1,1) =7

Now consider the same initial state X0 =
(-1,-1, )T and X9 = (1,-1, =1)T in Exam~

ple 1, the following sequence of update can be
obtained,

’

X, = (-1,1,1)T
X, =
X, =

lXé = (17 _11 —1)Ty
(-1,1,1)7 = x;
(1,-1,-1)7 = Xy;

It is obvious that the PSU sequence converges to
the stable (fixed) point in one iteration. More-

‘over, state space statistics as in Example 1 were

performed. It is found that all of them converge
to a fixed point. No limited cycle appears.

Results in Theorem 1 also provide milder con-
straints on the connection matrix than those de-
rived for the fully parallel mode case [5]. This
can be demonstrated by the following example.

Ezample 2:
Let
2 -2 1 3
2 2 3 0
T= 1 3 2 1
3 0 -1 2

be the connection matrix of a Hopfield network
(N = 4). Moreover, assume it is operated in the
following fully parallel mode, i.e.,

X' = sgn{TX},
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After testing the network with 16 (24) possible
initial states, it is found that 4 of them converged
to a limited cycle of period two. The correspond-
ing matrix,

T*

W N o
=0 W

is an indefinite matrix since the eigenvalues of
{T* + (T*)T} are —4.1802, —6.1530, 6.1802, and
8.1530. Global convergence of this network is
thus not guaranteed. However, if T is partitioned
as in (5) and the PSU mode ((6a) & (6b)) is con-
sidered (M =2, q1 = @2 = 2), we have

|

which are nonnegative and positive definite ma-
trices, respectively. Since the conditions in Theo-
rem 1 hold, the network is globally stable in this
case. Same test as above was performed, it is
found that all of them converge to a fixed point.
No limited cycle appears.

From this example it is obvious that the results
in Corollary 1 permit a little relaxation on the
lower bound of the main diagonal elements of the
connection matrix.

-2
0

0
2

1 1

Tﬁ:[ -1 1

5. CONCLUDING REMARKS

The stability property has been studied, for Hop-
field networks whose neurons are updated in PSU
mode. An example was given to show that the
state of Hopfield network may converge to limited
cycles even if one use a connection matrix satisfy-
ing the condition derived in (3]. Then, new suffi-
cient conditions ensuring global convergence of a
Hopfield network in PSU mode are derived. They
provide milder constraints on the connection ma-
trix than those derived for the fully parallel mode
case [5].
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