1998 international Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

Usage Based Test Scenario Generation from Object-Z Formal
Specification

Chun-Yu Chen, Richard Chapman, and Kai H. Chang
Department of Computer Science and Engineering
Auburn University, Auburn, AL 36849, USA
{chunchen,chapman,kchang} @eng. auburn.edu

Abstract

Usage-based testing is a technique for more effective
generation of test cases based on the relative frequency
of usage of different test scenarios. More frequently
ezecuted scenarios give rise to greater numbers of test
cases than do rarely executed scenarios. Thus, the dis-
tribution of test cases among the scenarios mirrors the
actual usage that the system is ezpected to receive. We
use a formal specification as a basis for usage-based
testing of programs that use Object-Oriented Technol-
ogy (OOT). OOT is widely considered the best method-
ology for programs that are large. OOT has gained
wide acceptance in the software engineering commu-
nity, however better test methods are still needed. This
paper introduces an approach to usage-based test sce-
nario generation based on an Object-Z formal specifi-
cation. The paper presents the methodology and applies
it to an ezample.

1. Introduction

Testing is the most critical and time/cost consum-
ing process in software development. An effective soft-
ware testing methodology lets the user use the soft-
ware without fear, and an efficient testing methodol-
ogy saves a lot of development time. Although test-
ing is not perfect, a sound testing methodology can
greatly reduce the risk of postponing the delivery and
reduce the cost for after-delivery maintenance. Nowa-
days, software development has gradually changed from
traditional waterfall lifecycle model to incremental de-
velopment model. Testing is no longer the last step in a
software development life cycle. Instead, testing should
begin as early as design starts.

Within the last ten years, because of its reusabil-
ity, scalability, and the possibility of a direct mapping
between the problem and solution domains, object-
oriented languages, such as C++, Java and Ada95,
have become main-stream computer languages, and
object-oriented design and analysis have dominated
software development. The object-oriented technol-

ogy not only gives many advantages for developing new
software systems but also brings some problems. Test-
ing is one of the problems that the object-oriented tech-
nology brings to us due to the differences between it
and the procedure-oriented technology. The traditional
testing methods do not automatically adapt to use with
object-oriented technology.

This paper is an extension of the work introduced
in [8]. That work introduced a framework for object-
oriented program testing by using a formal specification
to conduct usage-based testing. This paper empha-
sizes usage-based test scenario generation for object-
oriented programs from an Object-Z formal specifica-
tion [2]. The rest of this paper is organized in the fol-
lowing manner: section two gives a brief discussion of
the background information; section three discusses the
detailed test scenario generation approach; section four
gives an example of applying the approach discussed in
section three; and section five concludes this paper.

2. Background information

Software testing can be classified into three cate-
gories. The first is code-based testing. Code-based
testing tests against a piece of source code. The most
commonly used code-based testing technique is prob-
ably McCabe's “Basis-Path Testing” [10]. The sec-
ond category is specification-based testing. The idea
of specification-based testing comes from the question
“Does the built software product behave exactly as it
is ezpected?” Formal specification languages can pro-
vide correct, consistent, and unambiguous specifica-
tions. The technique not only can be used for software
product development, but it can also be used for guid-
ing software testing. The third category is usage-based
testing. Musa pointed out in the first sentence of [11]:
“A Software-based product’s reliability depends on just
how a.customer will use it. Making a good reliability
estimate depends on testing the product as if it were in
the field.”

The objective of our project is to build a frame-
work for object-oriented program testing. It provides
a common basis for both design and testing. In this

-244-

framework, test can be done to determine if the im-
plernentation conforms to the specification. Also, the
degign and testing teams can both start their work at
the same time. A formal specification is included in
the framework so that speciﬁcation—ba.sed testing can
he performed, while the usage profile is used to conduct
the usage-based testing.

2.1. Object-oriented technology

Ob jm:t-oriented technology also has an overall im-
pact, on how should a software product be developed.
Not only should the software product be implemented
by an ob ject-oriented programming language, but_ the
product should be developed with the help of object-
oriented analysis and design also. Edward Berard
noted in (1], “The benefits of object-oriented technology
are enhanced if it 18 addressed early-on and through-
out the software engineering process,” and, “An overall
object-oriented approach appears to yield better results
than when object-oriented approaches are mized with
other approaches.”

Until the beginning of 1990s, the majority of object-
oriented research was still focused on the front-end of
the software development life cycle. People started to
realize in the beginning of 1990s that although object-
oriented technology brought many new, powerful fea-
tures (such as encapsulation, inheritance, polymor-
phism, and dynamic binding), it also introduced new
problems in software testing and maintenance caused
by these features (7, 14, 5]

2.2. Operational profile

Operational (or usage) profiles have become an es-
sential component of software reliability engineering.
Used in software development, it can increase the pro-
ductivity and reliability, and can also speed up devel-
opment as well. Studies have shown the advantages
and benefits of applying operational profile [9]. Musa
[11] developed operational profiles by breaking system
use down into up to five levels. He defined the term
profile: “A profile is simply a set of disjoint (only one
can occur at a time) alternatives with the probability
that each will occur.” He used a call tree to represent
the usage profile. A node in a call tree represents the
current use of the system. A branch that diverges from
2 node shows the next possible use of the system. Each
node is also given a key value which shows the proba-
bility the node will be visited from its parent node. A
usage scenario is thus a traversal path from the root
of the call tree to a leaf node. The probability of this
scenario is the product of the key values of all nodes in
the path. The probability of a usage scenario is then
used to determine the number of test cases that should
be generated to test this scenario.

1998 international Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

2.3. Object-Z formal specification

The Z formal specification language [12] is based on
first-order logic and set theory. Z was developed by
Oxford University’s Programming Research Group in
the late seventies and early eighties, and it has become
a well-accepted formal specification language, accepted
as an ISO standard. Object-Z [3] is a specification lan-
guage based on Z with extensions to support an object-
oriented specification style. Object-Z is not the only
approach providing Z with an object-oriented struc-
turing mechanism. Other approaches such as Hall’s
style , ZERO, MooZ, OOZE, Schuman & Pitt, Z++,
and ZEST can be found in [13]. Object-Z was chosen
for this research because (1)Object-Z is fully object-
oriented and (2)Object-Z appears to be the most ma-
ture object-oriented specification language [6]. A de-
tailed description of Object-Z syntax and semantic can
be found in {3}.

3. Test Scenario Generation

A stepwise approach to test scenario generation from
an Object-Z specification and a usage profile is ex-
plained in this section. A successful test oracle should
contain the function invocation sequence and the in-
put/output of each function for each test case. It is
also important to have a certain degree of automation
in conducting software testing for efficiency. Based on
these two factors, our approach finds all possible func-
tion invocation sequences (test scenarios), with con-
straints, from an Object-Z specification as test scenar- '
jos. A high degree of automatic test scenario generation
can be achieved by parsing the Object-Z specification.
The detailed step by step procedure follows.

Step 1: Object-Z Specification Generation. Al-
though it is the Object-Z specification that we use for
test scenario generation, the generation of an Object-Z
specification is not the focus of this paper. We assume
the Object-Z specification is readily available for the
process.

Step 2: Top-Level System Operation Diagram
Derivation. A top-level system operation diagram
describing the top-level behavior can be obtained from
object-oriented analysis and the Object-Z specification.
The necessity of this diagram is due to the fact that an
Object-Z specification does not always capture the top-
level behavior of the system.

In the Simple Bank Account System (SBAS) exam-
ple of next section, although the specification shows
that there are six visible operations in the system,
it does not give any relationships between these six
operations nor does it tell how will the system be
started. This problem may be solved by changing the
six operations from visible to invisible and\Qdding the
following visible operation

~245-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

BAS = Deposit | Withdrawal [] Inquiry
{} Calculatelnterest [] AddInterest [} ResetWithdrawal.
This specification shows that these six operations
can be invoked independently. = However, adding
this operation does not show the fact that these six
operands will be invoked continually until the system
is shut down.

The top-level operation diagram should only show
the behavior that is not described by the Object-Z
specification. It should be kept as simple as possible.
Except for the added pseudo-nodes like start and end
nodes, each node of the top-level diagram should have
a corresponding operation defined in the specification,
i.e. each node is associated with an operation defined
in the specification. A tree-structure-like call tree such
as that mentioned in section 2.2 or a directed graph
can be used as the top-level system operation diagram.
Step 3: Partial Invocation Sequence Genera-
tion. Object-Z provides two styles of class operation
schemata: box and horizontal. The box style operation
schema is used to define atomic class operations, which
are can be used to examine and/or change the state of
the object. The horizontal style operation schema is
used to define new operations by combining more than
one operation of the same class and/or by invoking op-
erations from other objects. The horizontal style oper-
ation schema is used for hiding and renaming purposes
also [4]. Because the box style operation schema is used
for defining atomic class operations only, it is used as
a server class operation. It can not request services
from other operations of the same class nor from other
objects. An invocation sequence is a list of operations
to be invoked in an operation. An operation may have
zero or more invocation sequences. The zero-length
(denoted nil) invocation sequence means the operation
does not request service from other operations.

A discussion of the kinds of operations that the hor-
izontal style operation schema provides, as well as the
invocation order of the combined operations, is needed
before we discuss the generation of the partial invo-
cation sequence for each operation schema. Object-Z
provides four basic construction operators for defining
the horizontal style operations. They are conjunction
operator ‘A’, parallel operator ‘||’, sequential operator
‘¢’ and choice operator ‘] .

The conjunction operator ‘A’ conjoins two operands,
and the invocation sequence of the conjoined operands
is insignificant. For example, the operation

Inc_z_y = Inc_z N\ Inc_y
does not indicate whether Inc_z will be invoked first
or not. Therefore, in the implementation, either Inc_z
could be invoked first or Inc_y could be invoked first.

The parallel operator ’||’ conjoins two operands to
achieve inter-object communication, provided that (1)
these two operands have a local variable with the same
basename, (2) one of them is an input (denoted by ‘7’),
and (3) the other an output (denoted by ‘'’). The par-

~246-

allel operator supports communication in either direc-
tion (or both). In an invocation sequence the operand
with the output variable must be invoked first so that
the output value can be produced and passed to the
operand with input variable. The operation

Deposit = SelectAccount o (GetAmount || account!. Deposit)
defined in the SBAS in the next section will first
invoke SelectAccount. Then, GetAmount is in-
voked to get amt! and pass it as an input vari-
able to account!.Deposit. Therefore the invocation
sequence would be SelectAccount, GetAmount then
account!.Deposit. The ‘o’ in the above operation is the
scope operator in Object-Z. The scope operation has
the form ScopeOp = OpEzp ¢ OpEzp. In the scope
operation, the signature scope of the left operand is
extended to the right operand and therefore the left
operand will be invoked first.

The sequence operator ‘g’ provides another way for
communication in Object-Z. It behaves like the paral-
lel operator except that the communication is from the
left to the right. An alternative definition for the above
Deposit operation is:

Deposit = SelectAccount o (GetAmount § account!. Deposit).
The invocation sequence for Deposit is obviously
SelectAccount, GetAmount then account!.Deposit.

The last operator is the choice operator ‘ [| .
This operator indicates non-deterministic choice of one
operand from the definition if more than one operand’s
preconditions are satisfied. The operation may fail if
no precondition is satisfied. The operation

PushOne = Pushy [] Pushz
may have three different outcomes: Push;, Pushy, or
nothing.

Operators can be composed to define new opera-
tions. The precedence of these four operators from high
to low is: (‘A% ‘1), ‘¢, ¢] - The conjunction oper-
ator ‘A’, parallel operator ‘||, and sequential operator
‘e’ are left associative. The association of the choice
operator ¢ [] ’ is not important in invocation sequence
generation.

To generate partial invocation sequence from
Object-Z automatically, some restrictions must be im-
posed.

o Each operation must have a one-to-one mapping
between its specification and implementation.

¢ Bidirectional communication in the paralle] oper-
ator is prohibited.

Based on the discussion and restrictions above, a
partial invocation sequence for each operation is gener-
ated in the following manner: assume Op is the newly
defined operation and Op;, Opa, and Op; are three
operands used in defining the new operation Op. Op:
has an output variable vary!. Ops has an input variable
var;? and an output variable vary!. Op; has an input
variable vary?. In the following description, the newly

defined operation is shown on the left, and all its pos-
sible invocation sequences are given on the right. The
invocation sequence is enclosed by < >.

1. conjunction Operator (A).
Op = Op1 N\ Op2 < Op1, Op2 >

< Opz,Op1 >

< Om, Opz, Ops >

< Op2, Op1, Op3 >

< Ops, Op1, Op2 >

< Ops, Opz, Op1 >

Op = Op1 A\ Op2 A\ Ops

2. Parallel Operator (||).
Op = Op1 || Op2
Op = Op1 || Op2 || Ops

< Op1, Opz >
< Op, Opa, Ops >

3. Sequential Operator (3).
Op = Op; § Op2
Op = Op1 § Op2§ Ops

< Opy, Op2 >
< Opi, Op2, Op3 >

4. Choice Operator ([]).
Op = Op [} Opa < nil >
< Opm >

< Opy >

5. Composed Operators. Precedence and associative
are used to determine the sequence.
Op = Op1 [] Op2 A\ Ops < nil >
< Opy >
< Opz, Opa >
< Ops, Op2 >

6. Polymorphic Object Declaration. Assume 4, B,
and C are three defined classes. Class B is derived
from class A, and class C is derived from class B.
The polymorphic object a! : lA is declared in the
operation SelectOne. Op, is an operation of class
A, and is inherited by classes B and C.

Op = SelectOne » al.Opa < SelectOne, a!(A).Opa >
< SelectOne, a!(B).Ops >
< SelectOne, a!(C).0pa >

Step 4: Usage Profile Generation. Usage pro-
file generation consists of two parts: hierarchical in-
vocation diagram (HID) generation and usage weight
assignment to the HID. The HID is generated in the
following 4 steps:

1. Use the result from Step 2 above as the top-
level HID. The top-level HID can be either a tree
structure diagram or a directed graph. Except for
the pseudo nodes, every other node corresponds to
an operation defined in Object-Z specification and
each operation has a list of invocation sequences
obtained in Step 3.

2. Make each operation defined in the Object-Z spec-
ification an Operation Invocation Diagram (OID)
according to its invocation sequences. Each oper-
ation in the invocation sequence becomes a node

1998 Internationai Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1898, N.C.K.U., Tainan, Taiwan, R.0.C.

in the OID. The OID is enclosed by a pseudo start
and a pseudo end nodes (denoted Pl;). Each path
from the pseudo start node to the pseudo end node
in an OID represents an invocation sequence of the
operation. For example, Op, has two possible in-
vocation sequences, < Op,, Opy > and < Opy, Op,
>, generated in Step 3 above and, therefore, the
OID of Op; has two paths Pli-Op,-Op,-Ply and
Pl-Opy-Op,s-Ply as shown in Figure 1.

3. Expand every node in the HID with its OID, ex-
cept pseudo nodes, and link the OID with its corre-
sponding node by dash directed edges. In Figure 1,
Op: is expanded with its corresponding OID and
they are linked by a dash directed edge from Op;
to Pl and the other dash directed edge from Pl
to Op;.

4. Repeat 3 for every newly added non-pseudo node
until every newly added node has no corresponding
OID. This will build an OID hierarchy. Figure 1
is an example HID.

The second part of the usage profile generation is
the usage weight assignment to the resulting HID. This
requires pre-collected usage information. This best us-
age information is from the actual usage of an early
version of the system or from existing similar systems.
Otherwise, simulated usage patterns according to sys-
tem usage projections should be applied. Equal weight
assignment is not recommended since it negates the
advantage of the usage-based testing.

In assigning the usage weights we start from the top-
level of the HID. When a tree structure is used, a usage
weight is assigned to each branch. When a directed
graph is used, the usage weight of each edge in the
graph may vary if the diagram contains loops. A loop
introduces the potential that system behavior may be
affected by previous operations and that it may iter-
ate forever. Two constraints can be set to handle this
problem. First, a maximum loop count (n) can be set
for. each loop. Every outgoing edge in the loop should
be given an n-tuple (a1, a2, ..., 6) usage weight for ax
represents the usage weight of the edge in the loop’s
kth iteration and all axs should sum up to 1. For ex-
ample, node Op; in Figure 1 has two outgoing edges
and each edge has a 3-tuple usage weight. The maxi-
mum loop count is set to 3 and the usage weight of the
two outgoing edges of Op; is sum up to 1 in each iter-
ation (0.7 + 0.3, 0.1 + 0.9, and 0.05 + 0.95). Second,
a minimum usage weight for each possible path can be
set such that any test scenario with usage weight below
the minimum usage weight can be filtered out. These
two constraints can be imposed at the same time.

After the usage weights in top-level HID are as-
signed, the rest in HID that need to have usage weight
assigned are all OIDs. Since an OID contains no loop,
the weight of each path in an OID can be easily as-
signed.

-247-

1998 international Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Step 5: Test Sequence Generation. After the com-
pletion of the usage profile, test scenarios can be gener-
ated. A test scenario includes two parts: a hierarchical
invocation sequence and its usage weight. A hierarchi-
cal invocation sequence is any possible path of the HID
and its usage weight is the multiplication of all usage
weights of the edges along the path. Two possible test
scenarios of Figure 1 would be
(< Op1 < Opa, Ops >, Op2 < Ope >, Ops < Ops,
Op; < Op; >>>, 0.07840) and

(< Op1 < Ops, Opa >, Op2 < Opy >, Op1 < Opa,

Opy >, Ops < Opy, Opi < Op; >>>, 0.03175).
When applying the minimum usage weight constraint,
the scenario
{< Op1 < Ops, Opy >, Op2 < Opy >, Op1 < Opa, Opy >, Op2
< Op,y >, Op1 < Opy, Opa >, Ops < Ops, Opi < Op; >>>,0.00002)
would be filtered out if the minimum usage weight is
set to 0.00005.

One advantage of using a hierarchical representation
of the test scenario is that some links can be turned off
if the links are connected to a well-tested invocation
sequence. This is particularly useful for integration
testing, for it can greatly reduce the number of test
scenarios.

4. Bank Account System Example

A simplified bank account system (SBAS) is used as
an example to demonstrate the approach presented in
the previous section. Three types of account are pro-
vided in SBAS: CheckingAccount, SavingAccount, and
SavingLimitedAccount. CheckingAccount is the basic
account and provides no interest, SavingAccount yields
interest, and SavingLimitedAccount yields a better in-
terest and is limited to three withdrawals in a week.
Stepwise explanation is given below to show how the
test scenarios can be generated according to the ap-
proach described in the previous section.

Step 1: SBAS Object-Z Specification. Fig-
ure 2 gives the Object-Z specification of the SBAS.
CheckingAccount has a single attribute balance and
provides three most basic account operations: Deposit,
Withdraw, and Inquiry. SavingAccount is derived from
CheckingAccount; it inherits the Balance attribute and
all three operations from type CheckingAccount. Savin-
gAccount introduces a new attribute accumulatedInter-
est to keep the accumulated interest of the account,
and two new operations: CalculateInterest and AddIn-
terest. SavingLimitedAccount is derived from Savin-
gAccount. At most three withdrawals are allowed for a
SavingLimitedAccount in a week. It introduces a new
attribute withdrawalInAWeek, which is used to keep
track how many withdrawals have been made so far in
a week. SavingLimitedAccount defines a new operation
Reset Withdrawals which sets the new defined attribute
withdrawallnAWeek to 0. The whole SBAS is made up
of some CheckingAccounts, some SavingAccounts, and

some SavingLimitedAccounts. The variable accounts is
made up of all existing accounts. Six visible opera-
tions serve as the interface of SBAS and the external
world. Operations SelectAccount and SelectSavingAc-
count use a polymorphic type variable: account!. Se-
lectAccount can select an account of any type. Select-
SavingAccount can select either a SavingAccount or a
SavingLimitedAccount.
Step 2: SBAS Top-Level System Diagram. Fig-
ure 4 shows the top- level system operation diagram of
SBAS. The initial link denotes the invocation of the
system, and node Pny denotes that the system is wait-
ing for an operation selection. The other six operations
nodes are the visible operations listed in the Object-Z
specification. From system analysis, it is found that
these six operations can be repeated and the system
may exit after the completion of any of the six opera-
tions. (For explanation purposes the analysis has been
largely simplified.)
Step 3: SBAS Partial invocation sequence gen-
eration. All operations of CheckingAccount, Savin-
gAccount, SavingLimitedAccount have the < nil > in-
vocation sequence. They all use the box style opera-
tion schema. No partial invocation sequence should be
generated for INIT operation in any class for it is in-
voked only during object instantiation and can not be
exercised by normal operation invocation. The partial
invocation sequences for every operations in every class
are listed in Figure 3.
Step 4: SBAS usage profile. Figure 4 shows a par-
tial SBAS usage profile. The maximum loop count is
set to 4.
Step 5: SBAS test scenarios. Two possible test
scenarios are listed below. The minimum usage weight
is 0.0001.
1.(< Withdrew < SelectAccount, GetAmount,

account!(CheckingAccount). Withdraw >>,0.15)
2.(< Deposit < SelectAccount, GetAmount,

account!{ SavingAccount). Deposit >, Inquiry

< SelectAccount, account!(SavingAccount).Inquiry >>,

0.0063)

5. Conclusion and future work

This paper has presented an approach to test sce-
nario generation using Object-Z formal specifications
for object-oriented testing. The approach has five
steps: Object-Z specification generation, top-level sys-
tem operation diagram derivation, partial invocation
sequence generation, usage profile generation, and test
sequence generation. Invocation sequences of inherited
operations are listed explicitly and the polymorphic
types are handled by given each possible type its own
invocation sequence. The approach has the following
advantages:

e Automatic scenario generation: Although fully au-
tomated test scenario generation does not seem

-248-

feasible, a high degree automation can be achieved
by parsing the Object-Z specification with the
Object-Z grammar rules.

« Reduced number of test scenarios during integra-
tion testing: By searching for class names, ob-
ject names, and operation names contained in the
newly integrated functions, scenarios affected by
the newly integrated functions can be identified.
Only these affected scenarios should be tested in
each increment during integration testing. A num-
ber of test scenarios can thus be eliminated, which
means that the number of test cases can be re-
duced.

e Conforms to modern software engineering con-
cepts:

1. Testing is independent from development,
but both are based on the same foundation:
the Object-Z specification.

2. Testing preparation need not wait for imple-
mentation. Test design can start as soon as
the Object-Z specification is ready.

Formal specification can help through out most steps
in the framework for object oriented testing. Test sce-
nario generation is the first step. A number of test
scenarios will be generated during test scenario gener-
ation. Test cases are then generated for each scenario.
For test case generation, one must know the input data
and the ordering. The testing oracle expects the out-
come of the test cases including the output and the
state change. The Object-Z specification provides in-
put/output data and the pre/post-conditions of each
operation defined. This information is just what we
need in test case generation and test oracle derivation.
Our future work is to incorporate test scenarios with
information extracted from the Object-Z specification
for test case generation and test oracle derivation.

References

[1] E. Berard. Essays on Object-Oriented Software Engi-
neering. Prentice Hall, New Jersey, 1993.

[2] D. Carrington, R. Duke, P. King, G. Rose, and
G. Smith. “Object-Z: an object-oriented extension to
77 In Proc. IFIP TC/WG 6.1 Second International
Conference on Formal Description Techniques for Dis-
tributed Systems and Communications Protocols, pages
281-296, Vancouver, Canada, December 1990.

3] R. Duke, P. King, G. Rose, and G. Smith. “The
Object-Z specification language, Version 1”. Techni-
cal Report 91-1, Software Verification Research Cen-
tre, Department of Computer Science, University of
Queensland, May 1991.

[4] Wendy Johnston. “A Type Checker for Object-Z”.
Technical Report 96-24, Software Verification Research
Centre, Department of Computer Science, University
of Queensland, September 1996.

-249-

{10] T. J. McCabe.

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-18, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

[5] D. Kung, J. Gao, P. Hsia, Y. Toyoshima, and C. Chen.
“Change impact identification in object oriented soft-
ware maintenance”. In Proc. International Confer-
ence on Software Maintenance, pages 202-211, Victo-
ria, British Columbia, Canada, September 1994.

[6] K. Lano and H. Haughton. Object-Oriented specifica-
tion case studies. Prentice Hall, 1994.

(7] M. Lejter, S. Meyers, and S.P. Reiss. “Support for
maintaining object-oriented programs”. IEEE Trans.
on Soft. Eng. , 18(12):1045-1052, December 1992.

[8] S. Liao, K. H. Chang, and C. Chen. “An Integrated
Testing Framework for Object-Oriented Programs”.
the Informatica Journal , 21:135-145, 1997.

[9] M. Lyu. Handbook of Software Reliability Engineering.
IEEE Computer Society Press, 1995.

“A software complexity mea-
sure”. IEEE Transactions on Software Engineering
, 2(6):308-320, December 1976.

[11] J. D. Musa. “Operational profiles in software reliability

engineering”.

IEEE Software, pages 14-32, March
1993. .

[12] J. M. Spivey. Understanding Z. Cambridge University

Publishing, 1988.

[13] S. Stepney, R. Barden, and D. Cooper (Eds.). Work-

shops in computing series: object-orientation in Z.
Springer-Verlag, 1992.

[14] N. Wilde and R. Huitt. “Maintenance support for

object-oriented programs”. IEEE Trans. on Soft. Eng.
, 18(12):1038-1044, December 1992.

]

t
System |
Invocation
)

1

|

'

{0.8,0.1, 0.0} -
- ~ - \\V/
Pl ~_)ph

- 0.7,0.1, 0.05)
) 02 T~
§0-4)) (0.3, 0.9, 0.95)
(/{ Op. - Op2
Op. \'X)p, g/ -7 e
- (0.4,0.9, 1.0} / 4
_

\('\' -7 ’/,/ _ P

) T
Pla 7 ; -
Ops i oPh(? ’/\ A Pl
:) SR S
op&r\‘\ (\‘_ Pi
N)4
Y X (Pl
@) () -
End Pls

Figure 1. Hierarchical invocation Diagram

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

— CheckingAccount

[(INIT, Deposit, Withdraw, Inquiry)

‘ balance : R

Inrr
rbalance == 0
— Deposst —~ Withdmw
A (balance) A(balance)
amount?, get! : R

amount? : R
((balance < amount?) A
(balance’ = balance — amount?) A
(get! = amount?))

amount? > 0
balance’ = balance + amount?

~ Inquiry v
amount! : R ((balance 5. amount?) A
armount! = balance (balance’ = balance) A

(get! = 0))
— SavingA '3

[(INIT, Withdraw, Deposit, Inquiry, Calculatelnterest, AddInterest)

CheckingAccount

| SavingInterestRate : R

[accumulatedInterest : R

Fi7¢ a
l—accumulatedlnteresl =0

~- Calculatelnterest
A(accumnulatedInterest)
accumulatedInterest’ = accurnulatedInterest 4+ SavingInterestRate = balance

— AddInterest
A(balance, accumulatedInterest)

balance’ == bal —+ latedInterest
accumulatedIinterest’ = 0

. SavingLirmnitedAccount
{(Init, Withdraw, Deposit, Ingquiry, CalculateInterest, AddInterest, Reset Withdrawals)

SavingAccount
| SavingLimitedInterestRate : R <

[withdrowalinaWeek : N

IniT -
[withdrawalfnAWeek = 0

—~— Withdraw
A(balance, withdrawallnA Week)

amount? : R

get! : R
(withdrawalInAWeek < 3 A balance < amount? A balance’ = balance — amount?
withdrawalInAWeek’ = withdrawalinAWeek +~ 1 A get! = amount?)
v
{ (withdrawallnAWeek = 3 V balance < amount?) A
A withdrawalIn A Week' = withdrawallInAWeek A get! = 0)

balance’ = balance

— CalculateInterest
A(osccumulatedinterest)

accumulatedInterest’ = accumulatedInterest » SavingLimitedInterestRate

— Reset Withdrawals
A (withdrawalInA Week)

withdrawallnAWeek’ = 3

— BankAccountSyst
[{ Withdraw, Deposit, Inquiry, Calculatelnterest, AddInterest, Reset Withdrawals)

checkingaccounts : I CheckingAccount
savingaccounts : F SavingAccount
sauinglimite'daccounza : F SavingLimitedAccount
accounts : F L CheckingAccount
let accounts_list == (checkingaccounts, savingaccounts, samsnglimitedaccounts) =
accounts. list partitions accounts

— INIT :
V checking : checking unts e checking.INIT

V saving : savingaccounts e saving . INIT

V savinglimited : savinglimitedaccounts « savinglimited. INIT

~ SelectSavingAccount.
account! : LSavingAccount

—~ SelectAccount
account! : L CheckingAccount

account! € accounts account! € savingaccounts

~ GetAmount

- SelectSavingLimitedAccount
amount! : R

account! : SavinglLimitedAccount

account! € savinglimitedaccounts amount! > 0O

Withdrow = SelectAccount = (GetAmount || account!. Withdraw)

Deposit = SelectAccount o (GetAmount || account!. Deposit)

Inguiry = SelectAccount « account!.Ingquiry

Calculatelnterest = SelectSavingAccount » account!.Calculatelnterest
AddInterest = SelectSavingAccount » account!. AddInterest

Reset Withdrawals = SelectSavingLimitedAccount e account!. Reset Withdrawals

Figure 2. SBAS Object-Z Specification

-250-

CheckingAccount
Deposit : < nil >
Withdraw @ < nil >
Inquiry : < nil >
SavingAccount
Deposit : < nil >
Withdraw : < nil >
Inquiry : < nil >
Calculatelnterest : < nil >
AddInterest : < nil >
SavingLimitedAccount
Deposit : < nil >
Withdraw : < nil >
Inquiry : < nil >
Calculatelnterest : < nil >
AddInterest : < nil >
Reser Withdrawals : < nil >
BankAccountSystem
SelectAccount : < nil >
SelectSavingAccount : < nil >
SelectSavingLimitedAccount : < nil >
GetAmount : < nil >
Withdraw :
< SelectAccount, GetAmount,
account!(CheckingAccount). Withdraw >
< SelectAccount, GetAmount,
account!(SavingAccount). Withdraw >
< SelectAccount, GetAmount,
a.ccount'(SavmthmztedAccount) Withdraw >
Deposit :
< SelectAccount, GetAmount,
account!(CheckingAccount). Deposit >
< SelectAccount, GetAmount,
account!(SavingAccount). Deposit >
< SelectAccount, GetAmount,
account!(SavingLimitedAccaunt).Deposit >
Inquiry :
< Select Account, account!(CheckingAccount).Inquiry >
< SelectAccount, account!(SavingAccount).Inquiry >
< Select Account, account!{ SavingLimitedAccount). Inquiry >
CalculateInterest :
< SelectSavingAccount,
account!{SavingAccount). CalculateInterest >
< SelectSavingAccount,
account!(SavingLimited Account). CalculateInterest >
AddInterest :
< SelectSavingAccount,
account!(SavingAccount).AddInterest >
< SelectSavingAccount,
account!(SavingLimitedAccount). AddInterest >
Reset Withdrawals :
< SelectSavingLimitedAccount,
account!{SavingLimited Account). Reset Withdrawals >

Figure 3. SBAS partial invocation sequences.

-251-

1998 Intemational Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Imoﬂm
(o \ D
o3 02 {0.08) ™ Tl
Withdraw Reset-
iy Inleresl (M"‘“‘”‘s‘> Witdawals
™) " 7
~. e
P -
{08,073,05,05 /
A
P, 47
02,027,04,05)

Select-
Account

Wit

Reset-
Withdrawalis
Reserwnhdrawls
N (Savmthd))
~ N \
~ N

(Pe)

Figure 4. SBAS hierarchical invocation diégram

	
	244
	245
	246
	247
	248
	249
	250
	251

