1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

DISCOVERING ANOMALIES IN ACCESS MODIFIERS IN JAVA
WITH A FORMAL SPECIFICATION

Wuu Yang
Department of Computer and Information Science
National Chiao-Tung University, Hsinchu, Taiwan, R.O.C.
E-mail: wuuyang@cis.nctu.edu.tw

ABSTRACT

We use attribute grammars to formally specify the
semantics of the access modifiers in the Java language.
This formal specification uncovers several situations that
are irregular or counter-intuitive. These situations are
confusing to the programmers and may create
weaknesses in Java program. From this exercise, we
learn that a formal specification is indispensable in
designing a new language.

1. Introduction

Attribute grammars, proposed by Knuth in 1968 [10],
were intended for specifying the semantics of program-
ming languages. Most research in attribute grammars is
focused on the evaluation strategies [1,9, 12, and storage
management [2,7,8,11] of the attribute evaluators.
Some researchers works on extending the language of
attribute grammar for specifications [4,6]. Only a few
reports [13, 14] are available that demonstrate the actual
use of attribute grammar in specifying (parts of) the
semantics of a practical programming language. In this
paper, we use attribute grammars to study the semantics
of the access modifiers of the Java language.

Java is intended to be a secure language. To achieve
this goal, it is necessary for Java to be defined unambigu-
ously and completely because any ambiguities or omis-
sions in the language specification could possibly lead to
a breach of the security aspect of Java applications.
Unfortunately, the semantics of Java is explained with an
informal description [3]. It is hard to be certain that the
informal description is unambiguous and complete. A
formal specification of the semantics of Java is, thus,
indispensable. Furthermore, a formal specification also
makes it possible to study alternative semantics.

Java defines three access modifiers (private, pro-
tected, and public), which are intended to control
the visibility of members (functions and variables) of a
class. The three access modifiers constitute the basic
mechanism for maintaining the integrity of Java applica-
tions. In order to clarify the semantics of the access

modifiers, we developed a formal specification in terms
of attribute grammars. In the course of developing the
formal specification, we discovered a few situations that
are irregular or counter-intuitive in the original Java
language specification.

A common criticism of formal specifications is that it
is too complicated for a practical programming language.
In order to remedy this problem, rather than a single,
complete formal specification of the whole language, it is
feasible to write a set of small formal specifications, one
for each critical aspect of the programming language.
Because the small specifications are much simpler than
the complete one, they are much easier to write and to
understand. Furthermore, because the small
specifications are based on a common context-free gram-
mar, it is possible to integrate them together automati-
cally. The formal specification presented here, which
concentrates on the access modifiers, is an attempt in this
approach.

2. Notations

In this section, we introduce attribute grammars. An
attribute grammar is built from a context-free grammar
(N,T,P,S), where N is a finite set of nonterminals, 7
is a finite set of terminals, S is a distinguished nontermi-
nal, called the start symbol, and P is a set of productions
of the form: X — o, where X is a nonterminal and « is
a string of terminals and nonterminals. For each nonter-
minal X, there is at least one production whose left-
hand-side symbol is X. Furthermore, we assume that the
start symbol does not appear in the right-hand side of any
production. As usual, we require that the sets of termi-
nals and nonterminals be disjoint.

Attached to each symbol X of the context-free gram-
mar is a set of aftributes. Intuitively, instances of attri-
butes describe the properties of specific instances of sym-
bols in a syntax tree. The attributes of a symbol are par-
titioned into two disjoint subsets, called the inherited
attributes and the synthesized aitributes. We will assume
that the start symbol has no inherited attributes and that a
terminal has only a synthesized attribute that represents

-236-

the character string comprising the terminal symbol. An
attribute a of a symbol X is denoted by X.a.

There are attribution equations defining these attri-
butes. In a production, there are attribution equations
defining synthesized attributes of the left-hand-side sym-
bol and inherited attributes of the right-hand-side sym-
bols.

An attribute grammar may also contain semantic con-
ditions and additional operations and global data struc-
tures. Semantic conditions are boolean expressions made
up of the attributes (and constants). These semantic con-
ditions enforce the semantic requirements of a program-
ming language, such as the requirement that a variable
must be declared before being used. These semantic
conditions must evaluate to true in any legal syntax tree.
The global data structure, such as a symbol table, stores

- information that cannot be easily coded into attributes.

3. The attribute grammar for access modifiers

In the attribute-grammar specification, we need two
operations overrideF and overrideV to compute the
inherited member functions and the inherited member
variables of a class, respectively. The reason we need
two separate operations is due to the different ways in
which functions and variables are inherited. In Java, a
new member variable overrides an inherited one if the
two have the same name. It does not matter whether the
two variables have the same type. By contrast, a new
member function can override an inherited one only if
the new function has both the same name and the same
type as the inherited function. (The type of a function,
also called the signature, consists of the number and the
types of parameters and the type of the return value.) If
the new function has a different type than the inherited
function, the overloading mechanism of Java makes both
the new and the inherited member functions visible
simultaneously. This reflects an irregularity of Java.

Let X and Y be two sets of elements. Each element
has the form [f: (A, type)], where f is a member (a
function or a variable).of a class, A is the class in which
f is declared, and type is the type of f. The overrideF
and overrideV operations are defined as follows.
overrideF (X, Y)= {[f: (A, type)] |

[f:(A,pe)le X and [f: (B, type)l€ Y,

for any class B }
overrideV(X, Y)= {[f: (A, type)] | .ps 10

[f: (A, type)le X and [f: (B, newtype)}& Y,

for any class B and any type newtype }

The hiddenF and hiddenV operations collect the
inherited but hidden member functions and variables of a

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

class, respectively.

hiddenF (X, Y) = {[f: (A, ype)) | [f: (A, ype)]
€ X and [f: (B, type)je Y, for some class B }

hiddenV(X, Y)= {[f:(A, type)] | [f: (A, type)]
€ X and [f: (B, newtype)le ¥,
for some class B and some type newtype }

We may verify that
hiddenF (X, Y)=X — overrideF (X, Y)
hiddenV (X, Y)=X —overrideV(X, Y)

3.1. Classes

There are four kinds of access modifications for members
of a class: public, protected, private, or no
modifier at all. The following declaration of class B,
which is a subclass of class A and contain eight
members, is a typical example. The first four
members—£, g, h, m—— are member functions; the
remaining four are member variables.

public class B extends A {

public int f (boolean a)

. ..
protected boolean g(float b)

{ . . .3}
private float h(int <)

{ . . .

boolean m{int 4)

{. . .1}

public int u;

protected boolean v;
private float W;
boolean m;

In order to specify the semantics of the access
modifiers, we first translate the class declarations into a
context-free grammar. Each class A corresponds to a
nonterminal A. The production rules are derived from
the inheritance relationships among classes. If class B is
a subclass of class A, there is a production rule B —>A.
If class B has no superclass, there is a production rule
B —>e. In Java, every class is a descendant of the
Object class. Only the Object class has no super-
class.

Since Java allows only single inheritance, the produc-
tion rules are very simple. However, our approach is
applicable to the general case of multiple inheritance (as
in C++). The complicated resolution rules for name
conflicts among members that are inherited from different
superclasses would be encoded in the overrideF and
overrideV operations.

-231-

1998 Intemationatl Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

The above class declaration induces the following pro-

duction rule and a set of attribution equations:
B—A
B.modifier = "public"
B.publicF = {[f: (B, boolean —> int)] }
B.protectedF = {[g: (B, float — boolean)] }
B.privateF = {[h: (B, int —> float)]}
B.noneF = {[m: (B, int = boolean)] }
check noDuplicateF (B.publicF , B.protectedF,
B.privateF , B.noneF) = true
. B.publicV = {[u: (B, boolean)] }
B.protectedV = {[v: (B, float)}}
B.privateV = {[w: (B, int)]}
B.noneV = {[x: (B, int)] }
check noDuplicateV (B.publicV, B.protectedV
B.privateV, B.noneV) = true
B.localF = B.publicF v B.protectedF v
B.privateF v B.noneF
B.localV = B.publicV v B.protectedV v
B.privateV u B.noneV
B.inheritedPublicF =
overrideF (A.exportPublicF , B.localF)
B.inheritedProtectedF = overrideF (
A.exportProtectedF , B.localF)
B.inheritedPrivateF = overrideF (
A.exportPrivateF , B.localF)
B.inheritedNoneF = overrideF (
A.exportNoneF | B.localF)
check hiddenF (A.exportPublicF,
B.privateF w B.protectedF v B.noneF) =&
check hiddenF (A.exportProtectedF ,
B.privateF vB.noneF) =0
check hiddenF (A.exportNoneF , B.privateF) = &
B.inheritedPublicV =
overrideV (A.exportPublicV, B.localV')
B.inheritedProtectedV = :
overrideV (A.exportProtectedV, B.localV
B.inheritedPrivateV =
overrideV (A.exportPrivateV, B.localV)
B.inheritedNoneV =
overrideV (A.exportNoneV, B.localV)
B.visibleInClassF = B.localF v
B.inheritedPublicF v B.inheritedProtectedF v
{UF:(C,pe] 1 [f:(C, type)] e
B.inheritedNoneF and
classes B and C are in the same package }
B.visibleInClassV = B.localV v
B.inheritedPublicV u B.inheritedProtectedV
{[f:(C,pe] I [f:(C, type)le
B.inheritedNoneV and
classes B and C are in the same package }
B.isibleInClass =

-238-

B.visibleInClassF v B.visibleInClassV
B.exportPublicF =

B.publicF u B.inheritedPublicF
B.exportProtectedF =

B.protectedF u B.inheritedProtectedF
B.exportPrivateF =

B.privateF v B.inheritedPrivateF
B.exportNoneF = B.noneF w B.inheritedNoneF
B.exportPublicV =

B.publicV v B.inheritedPublicV
B.exportProtectedV =

B.protectedV u B.inheritedProtectedV
B.exportPrivateV =

B.privateV u B.inheritedPrivateV
B.exportNoneV = B.noneV u B.inheritedNoneV

The first attribute, modifier, of a class nonterminal
denotes the modifier of the class itself. In Java, a class
may or may not have the public modifier. The eight
synthesized attributes, publicF, protectedF, privateF ,
noneF , publicV, protectedV, privateV, and noneV, con-
tains the members (functions and variables) of the class
that are declared with the respective modifiers.

Because Java does not allow duplicate definitions of
the same member in a class, two checks are employed to
enforce this rule. Java allows member functions with
different types to have the name. On the other hand,
Java forbids member variables of the same class to have
the same name, even if they have different types. This is
a second irregularity of Java. The two checks—
noDuplicateF and noDuplicateV —prevent duplicate
definition of member functions and variables, respec-
tively.

The synthesized attribute localF is the set of member
functions defined in the class, which, by definition, is the
union of the four attributes publicF, protectedF, priva-
teF, and noneF. Similarly, the synthesized attribute
localV is the set of member variables defined in the
class, which, by definition, is the union of the four attri-
butes publicV, protectedV, privateV, and noneV.

The four synthesized attributes inheritedPublicF
inheritedProtectedF , inheritedPrivateF, and inherited-
NoneF are the sets of member functions that are inher-
ited from the superclass with the respective access
modifiers. Similarly, the four synthesized attributes
inheritedPublicV, inheritedProtectedV, inheritedPriva-
teV, and inheritedNoneV are the sets of member vari-
ables that are inherited from the superclass with the
respective access modifiers.

Since some of the inherited members might be
redefined in a class, the operations overrideF and overri-

deV are used to eliminate the overridden members. By
the definition of the Java language, an inherited member
function is overridden if a member function with the
same name and the same type is defined in the subclass.
This rule allows the existence of overloaded function
names. When a function is referenced (that is, invoked),
the Java compiler would find one of the overloaded func-
tions that possesses the appropriate type. Note that the
rule for member variables are different from that for
member functions. An inherited member variable is
overridden if a new variable with the same name, which
may or may not have the same type, is defined in the
subclass. The difference is reflected in the definitions of
the overrideF and overrideV operations.

Java imposes a rule which says that, when a new
member function hides an inherited one (of the same
name, of course), the new member function must have
equal or greater visibility than the inherited one. For
instance, a private member function cannot override an
inherited public member function (of the same name, of
course). Note, however, that this rule does not apply to
member variables. A private member variable can over-
ride an inherited public one. This reflects a third irregu-
larity of Java. The three checks of hidden member func-
tions in the specification enforce this rule; there are no
corresponding checks of hidden member variables. The
following example illustrates the rule.
class Red {

public int x = 1;

public int £(} { return 99; }

}
class Blue extends Red
private int x = 2; // ok
// private int £()
// { return 200; } - error
// protected int f£()
// { return 200; } - error
public int £()
{ return 200; } // ok

Class Blue is a subclass of Red. The public
member variable x defined in Red may be overridden
by a new private member variable of the same name in
class Blue. However, the public member function £
defined in Red may not be overridden by a new private
or protected one with the same name in Blue.

Note that the inheritance and overriding of member
variables and member functions are performed indepen-
dently in Java. This is why we need two independent

" sets of attributes, one set for member functions, the other
for member variables. Consider the following example.

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

class Alpha {
int a = 3;
}
class Beta extends Alpha {
boolean a (int x)
{ return (x == 1); }
}
public class VarFunction {
public static void
main(Stringl[] args) {
Beta b = new Beta(3):;
System.out.println(

"b.a{(l) = " + b.a(l));
System.out.println(
"b.a = " + b.a);

Class Beta inherits the member variable a from
class Alpha. Class Beta defines a new member func-
tion which is also called a. The member function a in
class Beta does not hide the inherited member variable
a. Both the member variable a and the member func-
tion a are visible simultaneously in class VarFunc-
tion.

The attribute visibleInClassF is the set of member
functions that are visible in the class, which includes the
locally defined functions and the visible inherited func-
tions. The visible inherited member functions include all
inherited public or protected functions and the inherited
no-modifier functions defined in the same package.
Similarly, the attribute visibleInClassV is the set of
member variables that are visible in the class, which
includes the locally defined variables and the visible
inherited variables. The visible inherited member vari-
ables include all inherited public or protected variables
and the inherited no-modifier variables defined in the
same package.

Some, but not necessarily all, of the members that are
visible in a class are visible in the subclasses. The eight
attributes exportPublicF , exportProtectedF , exportPriva-
teF, exportNoneF, exportPublicV, exportProtectedV,
exportPrivateV, and exportNoneV are the member func-
tions and variables with the respective access modifiers
that are exported to subclasses.

In Java as well as many object-oriented languages,
members of a class may be declared as class members
with the keyword static. The visibility rules govern-
ing class members are the same as those governing
instance members.

-239-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C K.U., Tainan, Taiwan, R.0.C.

There is a slight difference between the rules govern-
ing class functions and class variables: A class variable
of a superclass may be overridden by a new declaration
in a subclass; however, a class function may not be over-
ridden. In the above formal specification, we have
ignored 'the issues concerning static members.

3.2. Compilation units

Java introduces the package structure. A package
consists of one or more compilation units. A compila-
tion unit is usually made up of a file in a system with a
traditional file system. Every class belongs to exactly
one compilation unit, which, in turn, belongs to exactly
one package. A class may be declared with or without
the public keyword. A public class may be refer-
enced without qualification in other packages if it is
imported by the referencing packages. A non-public
class may be referenced only within the package to
which it belongs. In Java, importing is based on indivi-
dual compilation units [3].

In the specification, every compilation unit X
corresponds to a nonterminal X. There is a production
X —>A B C ... for the nonterminal X, where A, B, C,
etc., are all the classes defined in the compilation unit X.
The order of A, B, C, etc. is insignificant.

Suppose that X represents a compilation unit, A, B,
and C represents the classes defined in X. The following
grammar rule is introduced into the specification.
X—ABC

X.localClasses = {A,B,C }
X.publicClasses =

(if A.modifier="public" then {A } else D)u

(if B.modifier="public" then { B} else &)yu

(if C.modifier="public" then {C } else &)

X.importedPac = the set of packages imported

into compilation unit X

X.importedClasses = the set of public classes
imported into compilation unit X
A.visibleClasses = X.visibleClasses
B.visibleClasses = X.visibleClasses
C.visibleClasses = X.visibleClasses

The localClasses attribute of a compilation unit X is
the set of classes defined in the compilation unit. The
publicClasses attribute is the set of public classes
defined in the compilation unit (which usually contains
one class). The importedPac attribute of X contains the
packages that are imported into the compilation unit X.
The visibleClasses attribute of a class nonterminal, say
A, is the set of classes that are either public classes
imported into the compilation unit containing A or are
defined in the package containing A .

Java also allows a compilation unit to selectively
import individual classes of another package. In this
case, the imported classes may be added to the impor-
tedClasses attribute of the compilation unit.

Because XlocalClasses c X.visibleClasses (see the
next subsection), the class A belongs to A.visibleClasses .
This implies that class A is visible inside its own
definition. The following example demonstrates this
issue of visibility. The class CC may be referenced in
its instance method selfRef. This issue is concisely
captured by the specification.
class CC {

public int a;

cC(int b) { a = b; };

public int selfRef() (

CC c5 = new CC(5);
return (a+c5.a);

Compilation units are designed for separate compila-
tion. Each class is placed in a separate compilation unit.
When a class is changed, only that class, not the whole
package, needs to be re-compiled. However, compilation
units are also involved in the visibility issue. When a
compilation unit imports a package, it may import indivi-
dual public classes or it may import the whole package,
which may be made up of several compilation units. On
the other hand, the import statement only affects the
compilation unit that contains the statement. Other com-
pilation units in the same package are not affected by the
import statement.

3.3. Packages

A package in Java contains one or more compilation
units. In the specification, every package P is
represented by a nonterminal P. Every compilation unit
X is similarly represented by a nonterminal X (in fact,
compilation units do not have names; but we can imagine
that each compilation unit is implicitly given a name in a
systematical way). There is a production P —>X Y Z ...
in the specification, where X, Y, Z, etc., are all the com-
pilation units of package P. The order of the compila-
tion units in the right-hand side of the production is
insignificant.

Suppose that P represents a package, X, Y, and Z are
all the compilation units defined in P. The following
grammar rule is introduced into the specification.
P—XYZ

P.localClasses = X.localClasses v

Y.localClasses v Z.localClasses

P.publicClasses = X.publicClasses v

-240-

Y.publicClasses w Z.publicClasses
Enter the pair (P, P.publicClasses) nto

the global symbol table PubClass .
X.muitiDefinedClasses = {A |

A € PubClass(U) N PubClass(V),

where U, V € X.importedPac, U #V }

w (X.importedClasses M

v { PubClass (U) 1))
{/ e X.impartedPac

Y.multiDefinedClasses = { A |
A € PubClass(U) PubClass(V),
where U, V € Y.importedPac, U #V }
w (Y.importedClasses M

(v { PubClass (U) 1))
U & Y.importedPac

Z.multiDefinedClasses = {A |
A € PubClass (U)N PubClass(V),
where U, V € Z.importedPac, U #V }
w (Z.importedClasses N
(v { PubClass(U) 1))

U € ZimportedPac)
X.visibleOutsideClasses = X.importedClasses

(v { PubClass(U) }) —

U e X.importedPac
(X.multiDef inedClasses © P.localClasses)

Y.visibleOutsideClasses = Y.importedClasses v

(v { PubClass(U)}) -
U e Y.importedPac

(Y.multiDefinedClasses w P.localClasses)

Z visibleQutsideClasses = Z.importedClasses v

(v { PubClass (U) }) —
U e ZimportedPac

(Z.multiDefinedClasses v P.localClasses)

X.visibleClasses = P.localClasses v
X.visibleOutsideClasses

Y.visibleClasses = P.localClasses v
Y.visibleOutsideClasses

Z visibleClasses = P.localClasses v
Z visibleOutsideClasses

The localClasses attribute of a package nonterminal is
the set of classes defined in the package. The publicC-
lasses attribute of a package nonterminal is the set of
public classes defined in the package.

In the attribute equations for multiDefinedClasses and
visibleOutsideClasses, it is necessary to retrieve the pub-
licClasses attributes of the packages that are imported
into package P. Since the nonterminals for these
imported packages do not occur in the current produc-
tion, it is not possible to retrieve their attributes directly.
Therefore, a global symbol table PubClass is set up that
contains a pair (P, P.publicClasses), for each package
nonterminal P. In order to inquire the publicClasses
attribute of a package U, the function PubClass(U) is
provided.

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Since packages are developed independently, it is pos-
sible that two packages define distinct public classes that
happen to have the same name. When both packages are
imported into a compilation unit, there is a name conflict
among the imported classes. It is also possible that a
local class of a package, say P, has the same name as a
public class of another package that is imported into a
compilation unit of P. In such situations, Java dictates
that, whenever there is a name conflict among classes,
the local class is preferred, if one exists. If the name
conflict does not involve a local class, classes with the
conflicting name must be explicitly qualified with the
names of the defining packages when they are referenced.

The importedPac attribute of a compilation unit,
defined in the previous subsection, contains the packages
imported into the compilation unit. The importedClasses
attribute contains the public classes imported into the
compilation unit. The multiDefinedClasses attribute of
a compilation unit contains the names of classes that are
defined in more than one imported package. The visi-
bleOutsideClasses attribute contains the public classes
defined in the imported packages that will not cause
name conflicts. The visibleClasses attribute of a compi-
lation unit is the set of classes that are either public
classes imported into the compilation unit or are defined
in the compilation unit.

One of the visibility rules of Java is quite counter-
intuitive in that an inherited member of a class, say class
P, might not be visible in P but becomes visible in a
subclass of P. This situation does not arise in other
object-oriented languages, such as C++. Consider the
attribution equation for B.visibleInClassV in Section 3.1.
A no-modifier member of a class, say A, is visible in all
classes in the same package but it is not visible in a sub-
class of A that is located in a different package. For
instance, consider the following example. In the first file
(that is, compilation unit), AAA.java, two classes—
AAA and CCC— are defined. Both classes belong to
package RI1.

// in file AAA.java
package R1;
import R2.%*;
public class AAA {
int alpha = 111;
}
class CCC extends BBB {
int gamma = 333;
public int ingquireAlpha()
{ return alpha; } // ok

-241-

1998 International Computer Symposium
Workshop on Software Engineering and Datapase Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

In the second file, BBB.java, a class, BBB, is

defined and placed in package R2.

// in file BBB.java

package R2;

import R1.*;

public class BBB extends AAA {
int beta = 222;

// public int inquireAlpha/()

// { return alpha; }

// The above line causes an

// error: Variable alpha in

// R1.AAA not accessible from

// R2.BBB

}

The no-modifier member variable alpha is defined
in class AAA, then is inherited by BBB, and is again
passed to CCC. Note that, due to the visibility rules of
packages and classes, alpha is invisible in class BEB
but is visible in a subclass of BBB (namely, CCC). This
counter-intuitive phenomenon is due to the fact that visi-
bility in Java is transmitted not only along the inheritance
hierarchy but also along the package structure. Packages
and inheritance are totally independent.

3.4. Programs

A Java program consists of one or more packages. In the
specification, there is a distinct nonterminal S that
represents the program. Every package P is also
represented by a nonterminal P. There is a production
S — P QR... in the specification, where P, Q, R, etc.,
are all the packages in the program S. The order of
these package nonterminals in the right-hand side of the
production is insignificant.

Suppose that S represents a program, P, Q, and R are
all the packages in S. The following grammar rule is
introduced into the specification.

S—>PQR

There is no attribute associated with the program non-
terminal S in the specification.

4. Checking references with attributes

The attribute-grammar specification for access modifiers
may be used when the compiler decides whether a refer-
ence is legal according to the visibility rules of Java.

4.1. Class references

When a class A is referenced in another class B, such as
class B {

A al;
}

we may check the permission with the visibleClasses
attribute of nonterminal A. The above reference is legal
if and only if A € B.visibleClasses .

In Java, all the packages are located in a global name
space. A compilation unit may import any packages or
any public classes in any packages. After a class is
imported into a compilation unit, it may be referenced
without qualification. Alternatively, it is possible to refer
to a class with a fully qualified name without importint it
first. Consider the following example.
package P;

// there is no import statement
class B {

Q.A al;

}

The above reference is
A e Q.publicClasses .

legal if and only if

4.2. Member references

A member function or a member variable of a class may
be referenced in four ways in a Java program: First, it is
possible to refer to the member without any qualification.
Second, a member is referenced with a prefix that is the
name of an object or a class. Third, a member is refer-
enced with the prefix this. Finally, a member is refer-
enced with the prefix super. The following code seg-
ment illustrates the four kinds of references.
class X extends Y {
int k(int a) {

name

d.name

this.name

super.name ... }

For the first kind of reference, the following condition
must be satisfied:
[name: (A, type)} e X.visibleInClass , for some
class A and some type fype, or
name is a formal parameter or a local variable of
function k.

For the second kind of reference, the following condi-
tion must be satisfied:
Let Z be the declared class of object d
(if d 1s a class, let Z be d).
[name: (A, type)} e X.visibleInClass , for some
class A and some type rype,
ifZ=X
[name: (A, type)l € Z.exportPublicF u
Z.exportProtectedF w Z.exportPublicV v
Z.exportProtectedV u { [f: (C, type] |

-242-

[f: (C, type)l & Z.exportNoneF uZ.exportNoneV
and classes C and X are in the same package },
for some class A and some type fype,

if X is a subclass of Z

[name: (A, type)) € Z.exportPublicF v

Z.exportPublicV v ([: (C, type] |
[f: (C, type)) e Z.exportNoneF v Z.exportNoneV
and classes C and X are in the same package },
for some class A and some type type,

if X is not a subclass of Z

For the third kind of reference, the actual class of
this must be class X or a subclass of X. Since the
actual class of this is not known at compile time, it is
safe to assume that this is an instance of class X. The
following condition must be satisfied:

[name: (A, type)] € X.visibleInClass , for some
class A and some type type

The inherited, but overridden, members can still be
referenced through the super pseudo variable. For the
fourth kind of reference, the (declared) class of super
is Y. The following condition must be satisfied:

[name: (A, type)l € Y.exportPublicF v
Y.exportProtectedF v Y.exportPublicV v
Y.exportProtectedV v { [f : (C, type] |
[f: (C, ype)] € Y.exportNoneF wY.exportNoneV
and classes C and X are in the same package },
for some class A and some type type

5. Conclusion

During writing the formal specification of the semantics
of the access modifiers, we discovered a major weakness
of Java, namely, member functions and member vari-
ables are not treated equally. In particular, overloading is
allowed for member functions but not for member vari-
ables. The rule of a new member variable overriding an
inherited one is also different from that for a member
function. Furthermore, when a new member function
overrides an inherited one, the new member function
must have equal or greater visibility than the inberited
one. This rule is only applicable to member functions,
but not to member variables. The rules governing class
functions and class variables are also different. We con-
sider the unequal statuses of member functions and
member variables an unnecessary complication. Our for-
mal specification grows twice as big as if they were
treated equally.

Another weakness that we discovered is that the visi-
bility of members of a class is transmitted through two
independent channels: the class hierarchy and package
structures. Packages in Java are intended as a structuring
mechanism for large-scale software development [3].

1998 Internationat Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C."

They should not be involved in the visibility of members
of classes. For instance, in Java, packages and subpack-
ages did not share any access privileges. We consider
the Java rule which says that a member without any
access modifier is visible to all classes in the same pack-
age a demerit. We suggest that the visibility of members
of a class should be transmitted only through the class
hierarchy.

Acknowledgement. This work was supported in part by
National Science Council, Taiwan, R.O.C. under grants
NSC 87-2213-E-009-024.

References

1. P. Deransart, M. Jourdan, and B. Lorho, Attribute Gram-
mars: Definitions, Systems and Bibliography (Lecture
Notes in Computer Science 323), Springer-Verlag, New
York (1988).

2. J. Engelfriet and W. de Jong, Attribute storage optimiza-
tion by stacks, Acta Informatica 27 pp. 567-581 (1990).

3. J. Gosling, W. Joy, and G. Steele, Jr., The Java Language
Specification, Addison-Wesley, Reading, MA (1996).

4, R.W. Gray, V.P. Heuring, S.P. Levi, AM. Sloane, and
W.M. Waite, Eli: A complete, flexible compiler construc-
tion system, Comm. ACM 35(2) pp. 121-131 (February
1992).

5. U. Kastens, Ordered attribute grammars, Acta Informatica
13 pp. 229-256 (1980).

6. U. Kastens, B. Hutt, and E. Zimmermann, GAG: A Practi-
cal Compiler Generator, Springer-Verlag, New York
(1982).

7. U. Kastens, Lifetime analysis for attributes, Acta Informa-
tica 24 pp. 633-651 (1987).

8. U. Kastens and W.M. Waite, Modularity and reusability in
attribute grammars, Acta Informatica 31(7) pp. 601-627
(1994).

9. T. Katayama, Translation of attribute grammars into pro-
cedures, ACM Trans. Programming Languages and Sys-
temns 6(3) pp. 345-369 (July 1984).

10. D.E. Knuth, Semantics of context-free languages,
Mathematical System Theory 2(2) pp. 127-145 (June
1968). Correction. ibid. 5, 1 (March 1971), 95-96.

11. R. op den Akker and E. Sluiman, Storage allocation for
attribute evaluators using stacks and queues, Proceedings
of the International Summer School SAGA, (Prague,
Czechoslovakia, June 1991), Lecture Notes in Computer
Science 545 pp. 234-255 Springer-Verlag, (1991).

12. 1. Paakki, Atribute grammar paradigms—A high-level
methodology in language implementation, ACM Comput-
ing Surveys 27(2) pp. 196-255 (June 1995).

13. W.M. Waite, The Eli 4.1 distribution, 1998, Dept. Com-
puter Sciences, Colorado Univ., Boulder, CO (). Avail-
able from htp://www.cs.colorado.edu/~eliuser

14. W.M. Waite, A complete specification of a simple com-
piler, CU-CS-638-93, Computer Science Dept., Univ. of
Colorado at Boulder, Boulder, CO (January 1993).

15. W. Yang, A classification of non-circular attribute gram-
mars, Computer and Information Science Dept., National
Chiao-Tung Univ., Hsinchu, Taiwan (1997).

-243-

	
	236
	237
	238
	239
	240
	241
	242
	243

