1998 International Computer Sympasium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

A COLLABORATIVE INTERNET DOCUMENTS ACCESS SCHEME
USING ACIRD

Shian-Hua Lin, Chi-Sheng Shih*, Meng Chang Chen*, Jan-Ming Ho*, Ming-Ta Ko*,
and Yueh-Ming Huang
Department of Engineering Science, National Cheng Kung University, Tainan, Taiwan
Institute of Information Science, Academia Sinica, Taipei, Taiwan*

ABSTRACT

In this paper, we present a collaborative intelligent
Internet multi-web sites documents search system using
ACIRD. ACIRD is a system that automatically learns the
classification knowledge from Web pages and applies the
knowledge to automatic classification of Web pages to
some classes in a class hierarchy. Data mining technique
is used to learn the association of terms to discover the
hidden semantic connections between terms. With the
capabilities of ACIRD, it is straightforward to extend
ACIRD to collaborate multi-web site document access.
Based on the learned classification knowledge, a
collaborative two-phase search engine is proposed, which
dispatches queries to distributed Web sites to match
documents and presents hierarchically navigable results
to the Internet users rather than conventional ranked flat
results.

1. INTRODUCTION

The rapid growth of the Internet has changed the way of
working and living that the Internet becomes a major
source of information and means of communication.
However, the excessive information on the Internet
creates the information overflow problem. As a result,
information retrieval (IR) systems (or called search
engines) come to help the Internet users to alleviate the
problem. The conventional IR systems are designed to
facilitate rapid retrieval of information for diverse users.
By applying word-based index/search mechanisms {7],
words in a document are extracted, indexed and stored in
databases. The indexes are later employed in retrieving
documents relévant to a query represented by terms.

From the perspective of retrieval effectiveness and
efficiency, word-based IR systems are proficient in
accessing a large document base. However, for a query
with two words' submitted to a word-based search engine
implemented with vector space model (VSM) [11,12],
more than thousands of documents are probably retrieved.
Ranking a large number of documents using very few
keywords may not produce an ordered sequence of
documents meeting the preference of the user.
Consequently, user has to retrieve many irrelevant
documents before obtaining the desired information. Also,
the conception gap between Web developers and the
Internet users enlarges the difference between the
retrieved results and user's expectation. Therefore, many

' According to the statistics in [4], the average query length is
1.3 words.

Internet word-based search engines usually retrieve
thousands of documents with few desired, while desired
documents may not be retrieved. For instance, the term
“airline schedules” in documents does not fully match the
term “flight schedules” in query, but both terms represent
the same semantics. In a specific IR environment, a
thesaurus database with terms for the special domain
knowledge can alleviate such problem. However, because
of the diverse contexts of the Internet, no static thesaurus
can cover the mismatching and shifting semantics of terms.
Therefore, the Internet IR systems should be able to
search relevant documents efficiently, rank and organize
the documents in accordance with user’s expectation.

As for the coverage of the Internet search engines, the
reality is that a single search engine (or called server) can
not handle a very large number of queries without a
powerful server or a group of servers. Furthermore,
empirical results show that no single search engine is
likely to return more than 45% of the relevant result [13]
suggesting that simultaneous query of several independent
servers may return a more satisfactory result. The
autonomy of web sites, which is along the line of the
border of organization, demands a mechanism to
collaborate among the Web servers. To solve the problems,
many researchers have advocated the deployment of
special search engines based on geographic locations to
distribute the load and to construct an integrated gateway
to these databases. Meta-search engines such as All-In-
One [5], META Search [15], and MetaCrawler [13,14]
can reduce the burden of the user that make available
search engines that may have been unknown to the users.
The search engines handle the simultaneous submission of
queries; some direct the query to appropriate engines and
some post-process the results as well via a single interface
{3]. Unfortunately, uncontrolled meta-search can lead to
the “tragedy of the commons” problem from economics in
which an individual’s best interests counter to society’s
that individual wusers appear to be served by
simultaneously searching every possible search engine on
the Internet for desired information.

A meta-search system can be a good Web citizen [6] by
querying only those search engines likely to return useful
results. We consider a system composed of sites running
ACIRD search engines (called ACIRD components), and a
central site (called ACIRD central site) running a meta-
level control mechanism. The ACIRD component acts
almost the same as a stand-alone ACIRD system that
learns classification knowledge from Web documents and
forwards the knowledge to the central site. The ACIRD
central site collects the classification knowledge from the
remote ACIRD engines and integrates the knowledge into

-193-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1898, N.C K.U., Tainan, Taiwan, R.0.C.

a global view. When processing a user query, the ACIRD
central size decides the ACIRD engines that may return
useful information, and prepares a separate query for each
of them. Then it collects the returned result and
summaries the return to the users. The retrieval process
also allows user interaction, so called two-phase search, to
select the interesting web site for further exploration. With
such archiecture, the system allows both the load sharing
and collaborative access from a set of web sites.

In the rest of the paper, the ACIRD engine is reviewed in
Section 2. In order to illustrate the system clearly, in
Section 3, we describe the learning model of ACIRD. In
Section 4, the experiments of automatic classification to
justify the design 6f ACIRD. Then the collaborative two-
phase search approach is introduced in Section 5. Finally,
we conclude the contribution of the paper.

2. THE ACIRD SYSTEM

ACIRD is designed to automatically classify documents.
It is motivated to improve the performance of the current
manual classifications at Yam. The classes lattice of Yam
with generalized/specialized operators is called ACIRD
Lattice in the paper. The classification process of ACIRD
is composed of two phases: training phase and testing
phase. In the first phase, documents with their manually
assigned classes in Yam are employed as the training set
to learn the classification knowledge of the classes in the
lattice. Then the newly collected documents manually
categorized by human experts are applied to verify the
learned classification knowledge in the second phase.
Based on the classification knowledge, ACIRD Classifier
automatically classifies the Web documents to proper
classes in ACIRD Lattice. In ACIRD, a query is
formulated as a sequence of terms. Similarity match based
on VSM is applied to decide the relevance of objects and
classes. Applying the learned classification knowledge
(represented by a set of keywords) of the class,
collaborative two-phase search is used in the system. In
the first phase (class-level search), query terms are used to
search qualified classes. The qualified classes form a
shrunk view of the system hierarchical lattice. In the
second phase (object-level search), if the user wants to
further retrieve objects in some classes, ACIRD generates
a query to further retrieve the classes or documents.
ACIRD presents a view as a logical lattice by integrating
qualified classes and matched objects with attached MG
and supports.

The following terminology is used throughout the paper.
We denote an element as a lower case letter, and the set or
series of the elements as an upper case letter. For example,
C denotes a class, and ¢ denotes a set of classes. Each
notation represents an abstraction of entity in the system.

* ACIRD Lattice (L, (C.R)), is a graph consists of a

set of class nodes (C) and a set of relations (R)
between classesin C.
* Class (C) indicates a category of L,.., which has

the semantics generalized from objects belongto ¢ .

* Object (o) is an HTML document that consists of a

series of paragraphs (pg) enclosed with HTML tags.

o is an instance of one or several classes in L, .

* Termt t is the word or phrase extracted from objects
or generalized into classes by the learning process.

* Term : with support to an object o is defined as a
word (except stop word) extracted from any sentences
in an informative prargraph. The support (sup,),
whose value is estimated from the term frequency and
the weight of the enclosed HTML tag, is used to
denote the importance of 1 t0 o.

¢ Keyword corresponds a representative term, i.e., its
information quality is better than a term.

* Memership grade (MG) is the supporting degree of a
keyword to some object or class as if support is the
supporting degree of a term.

* Aset of selected terms in an object forms the object’s
Object Knowledge (know,). Know, is represented by
Term Support Graph (TSG(T,0, E)) with directed edges
in E linking terms in T to o. The edge from ¢ to
o is labeled with sup, , .

* By generalizing terms of objects in a class, a set of
terms swith supports (sup,,) to the class are used to
represent the class’s Classification Knowledge
(Know,). In the same way as Know,, we represent
Know, as a graph TSG(T.c,E) with directed edges in
£ linking terms in T to ¢. The edge from &, to ¢
is labeled with sup, .. .

* For each class ¢, mining association rules are
applied to mine associations among terms in Know, .
The mined term associations form a strongly
connected graph Term Association Graph (TAG(T.E))
which consists of a set of terms in T connected by
edges labeled with the confidence (conf,,) of
assocation between two terms.

* For each class, Term Semantics Network (TSM(T, ¢, E))

is constructed as the union of the TSG and TAG of
the class c. TSN is used to represent the semantics of
the class and the similarity between terms in the class.

Ouery
Reprasenishon

Fig 1. The overview of ACIRD.

In Fig 1, we summarize the overview of the system. First,
Document Collection and Class Lattice are borrowed from
Yam inventory. Then, terms with supports are extracted

-194-

from documents and generalized as Classification
Knowledge Know, . Finally, the classification knowledge

is refined to a set of keywords (i.e., Refined Classification

Knowledge Kknow,) by employing mining Term
Associations in each class. For query processing, the two-
phase search module parses Query into term-based Query
Representation that is used to match with Refined

Classification Knowledge and documents term indexes.

3. THE LEARNING MODEL

In this section, we describe the learning model of ACIRD
briefly. The details can be found in [10]. ACIRD applies
machine learning methods to object classification by the

following processes. In the training phase, ACIRD adopts

supervised learning techniques and regards manually
classified objects in Yam as the training set. The testing
phase is described in Section 4.

3.1 Document Parsing and Terms Extraction

In ACIRD, two parsers are designed to parse the
document, extract terms and calculate term supports.
HTML Parser parses an HTML document into paragraphs
enclosed by HTML tags to indicate the importance. A
paragraph consists of sentences separated by separators.
ACIRD categorizes HTML tags into four types:
informative, skippable, uninformative, and statistical.
Term Processor extracts terms in a sentence and counts
the term frequency. According to the constructed term-
base and segmentation rules of Chinese sentences, Term
Processor deals with ambiguous segmentations of terms in
Chinese sentence to extract terms from the sentence. After
aterm ¢ is extracted from an object o, the support sup,,

is measured based on the definition in equation (3.1). The
value indicates the importance of the term and is
normalized to {0, 1].

sup’y , = Y, ifij - wr,
7.I

where ¢; isa term in the sentence enclosed by TagPattern Tj,
tf;; is the term frequency of ¢; in T;. 3.1
and wy is the maximal weighed tag in TJ-.

4

SUP 40

MAX (sup’y)

5ine

supy o = ,i.e., sup is normalized to {0, 1]

3.2 Feature Selection

After parsing and transforming an object into a vector of
attribute-value pairs, the induction process introduced in
the following section is applied to generate the
classifcation knowledge. Since the complexity of the
induction process is exponentially increased by the vector
dimension and the noise may be increased during the
induction, feature selection is needed to reduce the
complexity and noise. For each object, extracted terms are
filtered by a pre-defined threshold of support 6,. Terms

not being filtered out are used to represent Know, . In this
way, feature selection is determined by the selection of 4,

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1988, N.C.K.U., Tainan, Taiwan, R.O.C.

By analyzing the distribution of ranges of term supports
shown in Fig 2, we observed that more than one half of
terms whose supports are in the range [0, 0.2). Thus, in the
feature selection, the system chooses ¢, =0.2 to filter out

terms with low supports.

Number ot Tere

ROGI Q14D MI0H QIO WS [MSLe WAGh BhOm DALy 690 (A1
Rangrs o Term Surpusts

Fig 2. The range distribution of term supports of training objects.

3.3 Induction Process

The induction process is applied from the most specific
classes to the most general classes. The class assignment
of training objects is done manually in Yam and assumed
correct. In the conventional Boolean IR systems, the term
supports to an object is TRUE or FALSE, and the
generalization of term ¢ to class ¢ is based on the
occurrence of objects in ¢ containing . That is the
generalization is according to document frequency df, ,

of 1, to the class ¢. However, in ACIRD, the term

supports to an objects is ranged from O to 1 rather than a
Boolean value. Intuitively, it is not proper to treat the
terms in an object equally significant that 4f; and sup, ,

of term 1+ should be considered simultaneously. Thus, the
support of ¢ to ¢, denoted by sup, ., is defined in
equation (3.2). Similar to (3.1), sup, . is also norlmaized.

sup’, . = z‘vup,”“,_ .sup,, . is the term support of r; to o,

2

and o is an object in the class c.

sup’, . . (3.2)
Sup o =T 18,
MAX (sup’,)

sup’, . is normalized into sup, . ranged [0, 1]

Likewise, terms with supports in a class form xmw, as
terms with supports to an object represent gnow, . Know, 1S
also represented as the feature vector.

0BCI 0182 9201 03A4 002 0306 GEOT 1TD8 9BID 0siw

Fig 3. The distribution of term supports of all classes in ACIRD.

-195-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

By analyzing the term distributions in each class, we
discovered that most term supports locate in low support
range (e.g., [0, 0.3)) as shown in Fig 3. If we directly filter
out the class’s features by a threshold 6, , in average, less

than 5% terms are left 4,=0.1. In ACIRD, Knowledge
Refining Process aims to alleviate the problem.

3.4 Knowledge Refining Process

As shown in Fig 4, if we apply the same feature selection
process in Section 3.2, almost all terms in Know, will be

filtered out because of very low supports. Hence, before
feature selection process, we apply mining term
associations and perfect term support algorithm to
promote terms with low supports.

Mining Term Associations

Two important issues should be considered before mining
term associations [1,2,16]. One is what granularity is used
to mine associations. The other is what boundary is to
generate association rules, which is corresponding to the
transaction database defined in [2].

* The granularity of mining associations. For Web
documents, the importance of a sentence of Internet
document depends on the enclosed HTML tags and
Internet documents are not always organized as
regular documents. Therefore, we regard every
informative paragraphs in an object as a transaction
defined in [2].

* The boundary of generating association rules.
Although the various semantics of a word is a
problem for traditional data mining problem, we
restrict our mining for term association only to
documents in the same class rather than all the
documents in the database.

Based on those reasons, we translate our problem domain

into the domain of mining association rules [2] by

regarding (i) terms are corresponding to items; (ii) a

document’s informative paragraphs in the class is

corresponding to a transaction; (iii) The class is
corresponding to the transaction database.

Concentrating on documents of a class instead of all
classes also takes the advantage of small database size,
since the complexity of mining associations is
exponentially increased with the size of the database. If
the size of database is not very large, a simple mining
algorithm, such as Apriori (1], can be efficiently applied
to our system. The definitions of confidence and support
[2] are modified as the follows.

. df {1, . .
conf, =41 ’)_wheredf(t;) is the number of documents with 1

=>, df (1,)
df(t;)
—N .

¢

.vuppurl =

oot where N is number of documentsin class c.
¢ i

? The support is different from the term support used in the
system. It means the percentage of transactions that support
the rule,

Confidence is regarded as the associative degree between
two terms and employed by PTS [9] to refine Know, to

Know, . Support is used to evaluate the correctness of the
rule and passed to a threshold to filter out noise. Based on
term associations in a class, the system constructs the
class’s TAG. Then, TSN is generated from TSG and TAG
as shown in Fig 4, i.e.,, TSN(T,c,E)=TSG(T.c,E)UTAG(T,E) .
Nodes of TSN are also in TSG, and edges of TSN are the
union of edges of TSG and TAG. Thus, the remaining task
is to efficiently inference the maximal sup; V1 ec from

TSN.

Term Semantic
Netwnrk (TSN)

/ Mining
(l) i Association
| \ RAutes
o O
Term Support
Graph(TSG)

Term Asnocintion
G h(TAG
® s ePRTAG)
O Tem
Leaming
Classification
Knowledge

Fig 4. Construction of Term Semantic Network.

Perfect Term Support (PTS) Algorithm

As we can see, term association between terms is
asymmetric. Thus, if all term associations have supports
larger than a pre-defined threshold, say 0.1, TAG forms a
strongly connected digraph, and so does TSN. If the
system try to inference all possible paths from terms to the

class, there are n-"fiz““ possible paths. Suppose a class

i=]
has 10 terms. Then there are 23x10* possible paths. In
ACIRD, the average number of terms of a class is 472 that
the exhaustive search becomes infeasible. We propose
PTS algorithm to find sup, ..V, € ¢ in polynomial time.

Based on sup,, = conf,, Xconf, , X..xconf, , xsup, ., and

conf and sup range in [0, 1], the more edges are involved
in the path from term r to class ¢, the smaller value sup;,
is. The proposed greedy heuristic is:

* Heuristic. For each term s associated by term

)

find a term 1, with sup, . =MAX {sup, IVt € c}.
The heuristic is recursively applied to the process:
selecting a term with maximal support, modifying other
term’s sup,,, and modifying sup,. as sup, if
sup,, >sup,, . Due to the restriction of paper length, we

omit the details of PTS algorithm that can be found in [9].

-196-

In [9], we have proved that PTS always finds the optimal
solution in polynomial time O(Know]") . It shows PTS

can efficiently infer TSN to promote some non-
representative terms to representative terms based on
associations with representative terms.

Threshold of Support in Class

The remaining task of the Knowledge Refining Process is
to select a threshold to filter out non-representative terms.
An experiment is designed to compare the precision and
recall of Know, and Know, which shows Knowledge

Refining Process indeed refines Know, . The experiment

also shows the way to find an optimal threshold with the
best compromise between precision and recall. There are
two criteria to select threshold used in the experiment.

» Top n The sup, of all terms are sorted in

descendent order. The first n ranked terms are

selected to be the class keywords.
¢ Threshold = 0.x. This criterion selects those terms

with sup, 20x, wherex=1,2,...9.
Observing the experiment results, we can find that, before
applying PTS, the least precision is 0.76, because the high
thresholds (Top 10, Top 20, T = 0.5, and T = 0.7) select
highly informative terms only. However, as we predicted,
the recall is low before PTS is applied. It implies that
Induction Process can not learn the implicit association
between terms, though it can generalize terms from
objects to class. As for PTS, in comparison with the case
without applying PTS, the precision is slightly decreased,
but the recall is dramatically increased. Thus, by applying
Induction Process and Knowledge Refining Process,
ACIRD can dig out the hidden semantics to increase the
recall rate without losing the precision. Also, among these
criteria, the criterion, “Threshold = 0.5, achieves best
based on the overall values of recall and precision.

Table 1. Simulation results of PTS based on precision/recall.

Before PTS algorithm | After PTS Algorithm
Precision Recall Precision Recall
Top 10 0.76 0.27 0.91 0.38
Top 20 0.78 0.53 0.85 0.62
Th=0.5 0.97 0.10 0.73 0.97
Th=0.7 0.96 0.07 0.79 0.83
4. EVALUATION OF AUTOMATIC
CLASSIFICATION

In this section, we first describe our automatic classifier.
Based on a series of analyses and experiments, we
conclude that know, is effective to be applied to

automatic classification of the Internet documents.

The Classifier Based on Similarity Match

ACIRD Classifier uses the conventional similarity
measurement, the cosine value of the vectorized document

and class, defined in equation (4.1).

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K .., Tainan, Taiwan, R.O.C.

ZWP.',D xXmg; .

yincando

lefl, < el

t; is a term shared by o and ¢, sup; , is the support of ¢; to 0,

sim(o,¢) = , where

and mg, . is membership grade of 1; toc,ie.. sup” ; 4.0

“oll2 = /supi + :upi +... is the norm of the object;
"c"2 = fmg |2 +mg f + ... is the norm of the class.

Since classes are not mutually exclusive, the assignment
of object to classes is not the answer of “true” or “false”.
For an input object, ACIRD Classifier gives the best N
classes that are close the concept of the object. The
classification accuracy is estimated by the criterion that if
the target class of a testing object is located in the set of
best N matched classes. The criterion is called “TopN”.

Fig 5. The experiment of classification accuracy.

In Fig 5, we compare the effective of PTS algorithm based
on two curves: “Without PTS” and “With PTS”. Since
training sets of many classes are not enough, the
classification accuracy is not well. To evaluate the quality
of Know,, keywords of each class are manually extracted
by 10 human experts to form the benchmark, denoted by
Know! . The same testing is performed based on Know!,
and Know, which are corresponding to “10 Users” and
“With PTS” according to well-trained classes. The result
shows that our learning methods are capable of
discovering Know, with quality in par with the manually
extracted classification knowledge Know? .

5. COLLABORATIVE TWO-PHASE
SEARCH ENGINE

In order to reduce the overload of a single search engine,
collaborative two-phase search is designed. In the first
phase, ACIRD central site matches the keyword of queries
with the class knowledge. Then, in the second phase, the
central site updates the query and redirects to ACIRD
search engines following users’ feedback. The efficiency
of the two-phase mode! depends on whether ACIRD can
provide user’s information need in the first phase (the
class level search) or not. Thus, if the assumption that
most terms in query are located in Know, is true, then

class-level search based on Know, has the searching

efficiency. We examine the assumption by the following
analysis on the query log of Yam. Then, we give the

-197-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1898, N.C.K.U., Tainan, Taiwan, R.0.C.

mechanism of collaborative two-phase search and some
query examples.

5.1 Analyses on the Query Log of Yam

In the experiment, we analyze the Internet search query
from the log of Yam collected in October 1997, and
extract Chinese terms from queries to count each term’s
frequency. By regarding each term as an information need
and its frequency as the reference count of the information
need, we can discover information needs that users of
Yam are interested in. There are 9644 terms, denoted by
the set CT,,,, with 648006 references. Then a series of

tests on the distribution of keywords of Kknow are

performed to verify that the above assumption. Each test
has a different threshold to select keywords for Know],
denoted by “Th = x.x”. If the selected keyword in Know]
is the same with some term in CT,,, the reference count
of the keyword is equal to that of the term; otherwise, the
reference count of the keyword is 0. The summation of the
reference count and the number of keywords (the index
rate) of each test are shown in Table 2. Regarding
references and query terms of Yam’s query log as the
based line, the recall rate and index rate of each test are
defined as:

Recall rate = references of the test / references of Yam.

Index rate = indexed terms of the test / query terms of
Yam.

For example, in the case “Th = 0” (i.e., no class keyword
is eliminated), indexed keywords cover 96.92%
information needs (the recall rate) with about double
index size of query terms (the index rate). However, the
case “Th = 0.5 covers 69.89% information needs with
about 30.91% index size of query terms. Based on the
result, we conclude the rule of thumb of ACIRD, which is
similar to the 80-20 rule in relational databases.

70% queries use 30% keywords of Know,.

Consequently, most query terms are keywords of Know,;
this result proves that the class-level index is capable of
satisfying information needs of most users. Thus, Two-
Phase Search shrinks the searching domain with little
information loss to achieve the efficient search engine.

Table 2. The summation of the recall rate) vs. the index rate.

Based Line: Yam] 9644 (100%)
uieiRecall T dex
628065 (96.92%) | 18076 (187.43%)
Th=0.1 477906 (73.75%) 3775 (39.14%)
Th=0.2 470277 (72.57%) 3446 (35.73%)
Th=0.3 465396 (71.82%) 3260 (33.8%)
Th=0.4 458468 (70.75%) 3090 (32.04%)
Th=0.5 452897 (69.89%) 2981 (30.91%)
Th=0.6 440661 (68%) 2723 (28.24%)
Th=07 421649 (65.07%) 2498 (25.9%)
Th=0.8 404615 (62.44%) 2277 23.61%)
Th=0.9 389439 (60.1%) 2015 (20.89%)
Th=1.0 378249 (58.37%) 1905 (19.75%)

5.2 Collaborative Two-Phase Search

In the coliaborative ACIRD system, there is one ACIRD
central site (class-level search engine) and several ACIRD
components (object-level search engines). A global
ACIRD lattice exists in the ACIRD central site and each
ACIRD component owns part of the ACIRD lattice, which
consists of partial classes and objects to form the shrunk
view of the lattice. The architecture of collaborative
ACIRD search engine is shown in Fig 6.

N

Collsborurtive ACIRD Engine

Fig 7. Global ACIRD lattice in the ACIRD Central Site.

Queries from Internet users are served by ACIRD central
site to find the matched classes, and the central site
determines the components involved in this query
processing. Then, the second phase search is carried out
by the ACIRD components. In order to illustrate the
process clearly, an example of the global ACIRD Iattice is
shown in Fig 7.

In this example, there are four most general classes, C,, C,,
C,; and C, and several component lattices. Let L,qpp
indicates the global ACIRD lattice and L' o, the
component lattice of ACIRD component i. The formal
definition of the relationship between L,y and L', pp is
defined as follow.

_ 7l n
Lacirp =Lacirp Y2 Lacirp

For instance, the global ACIRD lattice is decomposed into
three components, Component A, B and C that each
resides in an ACIRD component as shown in Fig 8. The
lattice in Component A consists of the class node C, and
all of its subclasses, and Component B consists of the
class nodes C,, C, and C;,,, which is a subclass of class C,.
At last, class C; and all of its subclasses except C,,, reside

-198-

in Component C. The allocation relation is kept by the
ACIRD central site to dispatch the second phase search.

s N

I P AY

/(/l\\c\...
I /-/A\

HRY

L S—

Fig 8. Lattice on ACIRD components.

5.3 Collaborative Two-Phase Search Algorithm

Based on the previous analysis of user log, it is worth to
perform class-level search in the first phase to shrink the
search domain. The first-phase search is capable of
satisfying about 70% queries efficiently and the outcome
can have a better presentation. The conventional searching
approach, i.e. search for all the objects, is also
implemented in the system. After the user quickly reviews
the result of class-level search, he or she can choose
object-level search in some classes or search all objects.
The algorithm of Collaborative Two-Phase Search is
described in the following and the data flow diagram is
shown in Fig 9.

Two-Phase Search Algorithm

1. Query Parsing: Remove stopwords from query string.

Parse the query string into a sequence of keywords
indicated by keyword IDs (KIDs).

2. Class-Level Search: Retrieve classes (CID)
associated to the KID, calculate the relevance score of
each matched class, and sort CID by the score in
decreasing order. The result presentation can be a
ranked class list or a hierarchical probability-tree
based on the lattice.

3. Object Query Dispatch: After the user selected the
interesting classes, the query is decomposed and
modified to the object query plan for thses class.

4. Object Query Refinement: the object query for each
component is refined to improve the query efficiency
and the precision/recall of results.

5. Object-Level Search: For each selected ACIRD
component, retrieve objects associated to the KID,
calculate each object’s relevance score, and sort OID
by the score in decreasing order.

6. Query Result Collection: Collect the results of
object level search from ACIRD components, retrieve
the object’s information, and present the result.

7. Search all objects: If Two-Phase Search was unable
to find the desired information (that is the 30% lost

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

rate in the Yam query log analysis), the user can
choose the conventional search approach to search all

objects.
Query
Swow i PR
! | ObleetQuey
T Dispateh -
Panae .
1 Kryword | Dipeictiag maaey 4o
e s ACIAD compmts
[ASequanceoft ' . T
Quary Keywords Objoct Query Objoct Query
i Refime Refine
Chass Leved .
Search Bl
Ranked clausses -
st mutch with 3 e A
£ e AT SRR
nva’s ey AR &
L Swsch All Olyocte
User Sciects the | Query Result
denred cluses Coilecting
phuinlshebniratidl :)

Fig 9. Data flow diagram of Two-Phase Search algorithm

ACIRD components selection

After user selects an interesting class, ACIRD must make
a decision: how many components to work cooperatively
to solve the query. The decision requires reasoning about
lattice location and ranking of the ACIRD components.
Because the lattice in each component is not mutually
exclusive, a class node may exist in several ACIRD
components. ACIRD central site has to find the
components, which contain the interesting classes, as the
candidates and generate query plans for them. For a class,
if there are more than one candidate component which
have redundant objects, ACIRD will choose one
component with lower processing load to maximize the
query parallelism to minimize the response time.

5.4 Examples of Two-Phase Search

Users can search desired objects from ACIRD?® by giving
their query strings.

For example, in Fig 10, the user selects the query mode
“Two-Phase Search” and gives the query “interesting
technical magazine”.

ACIRD: Search Eng!ne
Search Classex/Objects (XM FUIHE)

Query Mode (R, [TowBhare Searcy
Query sering [LnEOTR3EIN hatcal magazinet LT wy

The ms bere w 19913 AM 114814,
Your beawier & Mankaid C [en] (VaNT, 1t

i S e T e

Fig 10. Two-Phase Search in ACIRD (Query Interface).

The result of the query is shown in Fig 12. “Rank”
indicates the ranking order of the matched classes.
“Matched Class” presents the classes matched the query.
“Object In Class” shows two links, “All” and “Direct”.
“MG” indicates the normalized relevance score between

* hup//YamNG.iis.sinica.edutw/Acird/class.htm only provides
Chinese interface. The figures shown in this example are the
English translations.

-199-

'1998 International Computer Symposium
Workshop on Software Engineering and Data_base Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O0.C.

the query and matched classes. The page in Fig 11 shows
8 matched classes, and the user can press the link in the
bottom of the page to perform the conventional search on
all objects, if no classes are desired.

;A 1D Troihre

Fig 11. Query Result: Matched Classes.

If the user focuses on the class *“Technical Journal” and
clicks on it to perform object-level search, the search
result will be refined and shown in Fig 12. “In Class”
presents one or several classes that own the object. It can
be clicked to list all objects in the class. “Object Title” is
linked to the physical page on the Internet. “Latest Date”
indicates the latest date that the Internet robot visited the
page. “Status” shows the status of the latest visit.

1O BB MY

Fig 12. Query Result: Search Objects in Specific Classes.

If the user presses the link to perform “Search All
Objects”, the result is shown in Fig 13. There are totally
746 relevant objects in this example. In comparison with 8
relevant classes of class-level search, it is infeasible to
visit and find information from these 746 links.

4 T L8 2 1 Ao)00 1S
V1 2 TN 0 et I S T 29

s T e DL

P ararry

Fig 13. Query Result: Search All Objects.

6. CONCLUSIONS

In this paper, we shows that machine learning and data
mining techniques can be applied to learn and refine the
classification knowledge and mine the associations of
terms in a specific domain (class). Based on the

knowledge, automatic classification is also able to
organize the Internet documents in a class hierarchy.
According to the analysis of the query log of Yam, we
also prove that the knowledge can be the meta-index, and
ACIRD is capable of shrinking the searching domain
efficiently based on the index. The meta-index is also
useful to retrieve classes containing possibly desired
documents in very short time and to present a
comprehensible view of concepts in class-level search.
Considering the explesive growth of Internet documents
and Internet users, collaborative query archiecture can
reduce the consumption of network resource and provide
high performance of Internet document search.

7. REFERENCES

[1] R. Agrawal and R Srikant, “Fast Algorithms for Mining
Association Rules”, Proceedings of the 20" International
Conference on VLDB, September 1994,

[2]1 R. Agrawal, T. Imielinski, and Swami, A., “Mining
Association Rules between Sets of Items in Large

Databases”, Proceedings of the ACM SIGMOD
International Conference on Management of Data, May
1993.

{31 C. H. Chang and C. C. Hsu, “Customizable Multi-engine
Search Tool with Clustering”, The Sixth World Wide Web
Conference, April 1997.

[4] B. Yuwono, S. L. Y. Lam, J. H. Ying, and D. L. Lee, “A
World Wide Web Resource Discovery System”, World
Wide Web Journal, Vol. 1, No. 1, Winter 1996.

[5] William Cross, “All-In-One Search Page”, hitpi/
www. albany net/allinone/, 1995.

[6] David Eichmann, “Ethical web agents,” Electronic
Proceedings of the Second World Web Wide Conference
‘94: Mosaic and the Web, 1994,

[71 W. B. Frakes and R. Baeza-Yates, “Information Retrieval -
Data Structures & Algorithms”, Prentice Hall, 1992.

{8] S. H. Lin, M. C. Chen, J. M. Ho, and Y. M. Huang, “The
Design of an Automatic Classifier for Internet Resource
Discovery”, ISMIP’96, December 1996, pp. 181-188.

[9] S.H.Lin, C. S. Shih, M. C. Chen, J. M. Ho, M. T. Kao, and
Y. M. Huang, “Extracting Classification Knowledge of
Internet Documents: A semantics Approach”, ACM
SIGIR’98, 1998, pp. 241-249.

[10] S. H. Lin, C. S. Shih, M. C. Chen, J. M. Ho, M. T. Kao, and
Y. M. Huang, “ACIRD: Intelligent Internet Documents
Organization and Retrieval”, submitted to IEEE Trans. On
Knowledge and Data Engineering.

[11]1 G. Salton and M. J. McGill, “Introduction to Modern
Information Retrieval,” McGraw-Hill, 1983.

[12] G. Salton, “Automatic Text Processing”, Addison Wesley,
1989.

[13] E. Selberg and O. Etzioni, “Multi-service search and
comparison using the MetaCrawler”, Proceedings of the 4"
International World Wide Web Conference, December
1995.

[14] Erok Selberg and Oren Etzioni, “The MetaCrawler WW
Search Engine,” s.washington

(home html, 1995.
[15] InfiNET Services, “InfiNET META search,”
: g] , 1996.

[16]R. Srikant and R. Agrawal, “Mining Quantitative
Association Rules in Large Relational Tables”, Proceedings
of the ACM SIGMOD International Conference on
Management of Data, June 1996.

-200-

	
	193
	194
	195
	196
	197
	198
	199
	200

