1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.X.U., Tainan, Taiwan, R.0.C.

A PRE-FETCH MECHANISM FOR PROXY SERVERS:
USING ASSOCIATION RULES

Kuen-Fang J. Jea, and Cho-Jan Chen

Institute of Computer Science, National Chung-Hsing University,
250 Kuo-Kuang Rd., Taichung, Taiwan, R.O.C.
Email: {kfjea,cjchen}@cs.nchu.edu.tw

ABSTRACT

We consider the problem of decreasing users’ waiting time
in accessing WWW objects. The traditional solution uses
the proxy server to cache remote objects. In this study, we
propose a pre-fetch mechanism which uses the technique
of mining association rules to improve the cache hit ratio
of the Squid proxy server. According to the requests made
by proxy server users, this mechanism can pre-fetch
WWW objects that are probably accessed next and store
them in the local cache of the proxy server. The user can
then fetch the next objects in a short time. To verify the
feasibility of this pre-fetch mechanism, we use user access
logs in the proxy server to test the performance of our
mechanism. Experimental results show an improvement of
about 30% of the cache hit ratio, and learning more
association rules can even increase the cache hit ratio
about 47%.

1. INTRODUCTION

World Wide-Web is a fast growing medium which works
like a distributed multimedia database system. The
increasing number of WWW users and huge amount of
WWW information make a heavy workload of the Internet.
Users usually spend a lot of time in waiting data transfer.
The traditional solution to this problem is using the proxy
server [7). The proxy server is generally good for users
who are interested in the same information because the
cached objects can be reused. But most of the time, the
proxy server can not satisfy the need of information from
users with diverse interests. And many configuration
setups of the proxy server, like the size of the cache disk,
the expiration time of the cached objects, etc., also
influence the performance of the proxy server. There is no
simple way to manage it except the manager’s experience.
This may lead some proxy servers to only 10% of cache
hit ratio. So in this study, we develop an approach that can
increase the cache hit ratio of the proxy server and reduce
users’ waiting time in accessing WWW objects.

The proxy server provides some useful mechanisms for
people in the subnets to access the Internet. Its main idea is
that the same documents may be requested more than once
by the same or different users, so it makes sense to save a
local copy in the proxy server and no longer go to the
source again to request the same documents in a period of
time. Squid [12] is one of the popular proxy servers. It
offers high performance proxy caching for Web clients,

and supports FTP, Gopher, and HTTP requests. Its cache
can be arranged hierarchically for an improvement in
response time and a reduction in bandwidth usage. This
software is designed to operate on any modern Unix
system. The above merits make Squid be widely used by
many campuses and ISPs.

Data mining [3, I, 2, 10}, or knowledge discovery in large
databases, is a technique of combining machine learning,
statistics and database. It analyzes enormous sets of data in
a large database and extracts both the implicit meaningful
relations and the implicit interesting knowledge. Recent
development has several directions for different
applications. One of various important techniques is
mining association rules [3, 4, 11] from a large database.

The association rules describe the implied relations
between sets of data in a large database. Some famous
algorithms for mining association rules are proposed in the
related work, which are Apriori [4], AprioriTid {4], DHP
[8, 9]. Generally speaking, these algorithms first generate
potentially large itemsets based on some candidates and
count the actual support for these candidates over the
original data. Finally the large itemsets can be determined
from these candidates.

Proxy servers can not alleviate the heavy traffic in the
Internet efficiently. So in this study, we propose a pre-
fetch mechanism which can reduce more users’ waiting
time than that of a pure proxy server. This mechanism is a
combination of the technique of mining association rules
and Squid proxy server [12]. This idea comes from the
W3 Miner system [6]. The working procedure of the W3
Miner system is as follows. When a WWW object request
is passed through the interface of this system to the
Internet, a message is sent to the W3 Miner, waiting for
the predicted next document from the W3 Miner, making
another WWW request to pre-fetch the predicted
document, and storing the predicted document in the local
cache. Then the interface will also reply a message about
the predicted document to the user’s browser, which
becomes a reference document for the user when he
fetches the next one. But there exist several problems in
this design. First, the main function of this pre-fetch
system is very similar to that of a proxy server. Since the
proxy server has been accepted in many fields, to
implement and promote such a similar system is a difficuit
task if it is not powerful enough. Second, in the HTTP 1.0
protocol, one WWW document (homepage) consists of
several objects. The predicted object may be just a

-178-

background of a homepage or an advertisement. It may not
have any important meanings as a reference document for
users. Third, a new web browser needs to be used when
the user uses the W3 Miner. These are all the difficulties in
implementing the W3 Miner.

A similar pre-fetch mechanism, Wcol, is also proposed by
Ken-ichi Chinen (from Nara Institute of Science and
Technology, Japan). Wcol simply analyzes the WWW
request and pre-fetches all the linking text objects. Then it
caches these text objects like a proxy server does. This
mechanism however, cannot save users’ waiting time very
much because only text objects are pre-fetched and other
types of objects (such as graphics, audio, images) are
ignored.

In order to overcome the disadvantages of W3 Miner and
Weol, we treat WWW as a large database and every
WWW object is an item in this database. We develop an
algorithm for mining association rules in WWW and use it
to implement a pre-fetch mechanism in the Squid proxy
server. Our mechanism first collects data from the proxy
server. We use the algorithm of mining association rules to
count out the associative objects beyond some specified
minimum support and minimum confidence. The support is
the number of transactions where the object appears. And
the confidence is the probability that the antecedent may
imply the descendant. Later, when a user makes a request
for a WWW object which corresponds to some association
rule, the mechanism will pre-fetch the predicted object
specified in that rule and store it in the cache of the proxy
server. So the user can save his time in waiting object
transfer if he indeed requests the predicted object next
time.

The rest of this paper is organized as follows. Section 2
describes the pre-fetch mechanism and its features. In
Section 3, we design several experiments to test this
mechanism and show that this mechanism can raise the
cache hit ratio of the proxy server. Last, we discuss the
impacts of our pre-fetch mechanism and conclude this
study in Section 4.

2. PRE-FETCH MECHANISM

The problem that this study investigates can be defined as
follows: i

In a WWW environment, given a proxy server, how
can we find an approach that can increase the cache
hit ratio of the proxy server and reduce users’
waiting time in accessing WWW objects?

In order to solve this problem, we design an algorithm for
mining association rules in WWW and use this algorithm
to implement a pre-fetch mechanism.

2.1 Approach

We divide our approach into three phases. The first two
phases are derived from mining general association rules,

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
Decemper 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

while the third one is an application of the association
rules discovered in the previous two phases. In the first
two phases, we use a similar procedure as showed in [1, 4,
5] but adapt it for the WWW application.

There are two kinds of association rules existing in WWW.
The first one is that the antecedent and descendant objects
belong to the same homepage. The other is that antecedent
and descendant objects do not belong to the same
homepage but they have semantic relationships so that
they will be accessed in sequence. If we want to find out
the relationships between them, we need a lot of user
access records to support this type of association rules.

Before describing the mining procedure, we give some
definitions. An item means a WWW object; an itemset is a
set of WWW objects; a transaction indicates the itemsets
visited by some WWW users in a period of time. And all
of the transactions are stored in a database.

¢ Phase 1: Find Out Large ltemsets

In this phase, we scan the original transaction database to
find out all large itemsets.

The algorithm for discovering large itemsets can be
separated into several passes. In the first pass, we count
the support of individual items and determine which of
them are large (i.e. beyond the minimum support). We call
them large [-itemsets. Then we store them into a new
database table as a seed set. [n the next pass, we use this
seed set to generate potentially large 2-itemsets, called
candidate itemsets. Every pair of two items can form an
itemset. We start with this table to find out the actual large
2-itemsets. Those 2-itemsets, which are beyond the
minimum support, are stored in a table for counting out the
desired association rules.

e Phase 2: Generate Desired Association Rules

We use <s, £> to denote the two components of each
itemset in large 2-itmesets. We have already counted the
support of s, ¢ and <s, £, then we count the confidence of
every pair of <y, . If the quotient of support<s, £/
support<s> is larger than the minimum confidence, then
this itemset is our desired association rule. We store this
rule in a database table for the next phase. The item s is the
antecedent of the association rule, and the item ¢ is the
descendant.

We do not limit the number of times that an item appears,
so the antecedent and descendant are not one to one
mapping although every pair is unique. That means one
antecedent may lead to several descendants, and one
descendant may have several antecedents. The
relationships between them may be either in sequence or
correlated. A user may visit one of these association rules
or none.

e Phase 3: Pre-fetch Next I1tem

We have already derived some association rules of which
items were visited by some WWW users. When someone

-179-

1988 intemational Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

7~ N 7*
© Squid ¢ T
[.
S

le

" Pre-fetch
Mechanism

oy

s -
Y e ————
3

Figure 1: System Model

visits the antecedent of one of the rules, he may visit one
or none of the descendants following the antecedent. If we
pre-fetch all the following descendants, the user can easily
read one of them in the cache of the proxy server. But this
action will make the Internet traffic worse, so we just
choose the one with highest confidence to pre-fetch. If this
antecedent does not exist in our association rules, we just
do nothing.

2.2 Implementation

According to our pre-fetch algorithm, we implement a
mechanism in the following platform to verify its
feasibility.

Machine Sun SPARC classic with
32MB DRAM
OS SunOS Release 4.1.3
Proxy server Squid 1.1.18 with 500MB cache
Database Informix 4.11
Language GNU C and C++ compiler v2.7

Informix ESQL/C version 5.0
AWK
Our pre-fetch mechanism is independent of the Squid
proxy server, and all messages are passed through the
proxy server. All the mining information including
association rules is stored in Informix. The system model
for our mechanism is showed in Figure 1.

The meaning of each message passing in the model is
described as follows.

1. Users — Squid: Requesta WWW object.

2. Squid —> Pre-fetch Mechanism: Pass the

requested object to predict the next requested

object.

Pre-fetch Mechanism — Informix: Use this

requested objet to search association rules in the

Informix table, and find out the corresponding

antecedent.

4. Informix —> Pre-fetch Mechanism: Reply the
descendant of the antecedent in some association
rule.

5. Pre-fetch Mechanism -» Squid: Make a
request for the descendant.)

6. Squid — Internet: Make a request to the
original web site in the Internet if Squid does not

(V%)

have the requested object in its cache.

7. Internet — Squid: The Internet replies the
WWW object.

8. Squid — Users: Return the requested object to
the user.

We use the access.log file of Squid to collect the mining
information. This file is used to store the information of
the request, like timestamp, requested URL, client address,
and so on. The details are described in [12].

Before we start mining association rules according to the
mining algorithm, we separate these request objects into
transactions. The set of WWW objects, which are visited
by the same client in a period of time, is defined as a
transaction. We only count the object which will take a
long transmission time, because short transmission time
will not make the user spend a lot of time in waiting. In the
first phase, we give an identifier for each transaction and
store the information of the transaction objects into the
access_log table (as showed in Table 1). Then we can
easily find out the items (I-itemset) which are larger than
the specific minimum support value, and store them into
another table, first_frequency (as showed in Table 2). Like
the previous procedure, we set a different minimum
support value at this procedure to find out large 2-itemsets.
All the 2-itemsets are stored into the Informix table
pre_rule (as showed in Table 3). In this table, each pair of
two objects is a potential association rule. All the above
procedures can be finished by SQL query statements.

Then we enter the second phase. By using these supports
of large 2-itemsets, we can calculate their confidences and
generate the desired association rules. If the confidence of
a 2-itemset is larger than the specific minimum confidence,
we store them into the ass_rule table (as showed in Table
4).

In the third phase, when Squid receives a request from its
user, it will record the request in the access.log file while
the socket closes. So we monitor this file, and if some log
record has been appended, we use this log record as our
candidate item. Then we scan the Informix table to decide
whether the candidate item exists in the antecedent list.

Because the same antecedent may have several
descendants, we have to count out the corresponding

-180-

descendants with the largest frequency as our pre-fetch
item. Then the mechanism will work like a client to make
a request to Squid with the descendant.

In the implementation detail, in order to find out the
descendant with the largest frequency in a short time, we
deal with the “ass_rule” table first. The step is to count out
all antecedent and descendant pairs with largest frequency
and store them in the ass_rule_max table (as showed in
Table 5). This step can save a lot of time when we have a
lot of association rules which all satisfy the minimum
confidence.

We also implement some functionalities which can make
our pre-fetch mechanism more powerful and efficient.
First, we design a configuration file which records the
setup information of the mechanism. The minimum
support and minimum confidence can be setup and tuned
in this file. Second, our mechanism can learn more rules
automatically after setting the duration of the maintenance
time.

3. PERFORMANCE

In order to verify the feasibility of our pre-fetch
mechanism, we design two experiments to test the Squid
combined with our pre-fetch mechanism.

We use three testing data sets for measurement.
Experiment 1 measures the cache hit ratios based on
different confidence settings, while Experiment 2
measures the hit rates of cache based on different supports
in order to find out the proper setting for our mechanism.
Then we compare the hit rates of our pre-fetch mechanism
with those of the original Squid proxy server.

Our testing data is collected from three proxy servers
which are used by different groups of users at National
Chung-Hsing University. The proxy server I is in the
Database Laboratory, Institute of Computer Science. The
proxy server 2 is in the Institute of Computer Science. And
the users’ group of the proxy server 3 is in the National
Chung-Hsing University. Table 6 lists the information
with regard to our testing data.

We use the following two training data sets to generate
association rules.

+ Training Data 1
Collecting time: 1998/4/1 ~ 1998/4/8
Data source: Proxy Server |
Data size: 9450 tuples

« Training Data 2
Collecting time: 1998/4/1 ~ 1998/4/8
Data source: Proxy Server 2
Data size: 5837 tuples

3.1 Experiment 1: Different Confidences

In this experiment, we use three different minimum

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.Q.C.

confidence values with the same support value to derive
six sets of association rules from the two training data sets.
Then we use the six rule sets in our pre-fetch mechanism
to test the testing data. We simulate the actions of our pre-
fetch mechanism running with the Squid proxy server.
That means if the descendant of some requested object is
not in the cache of the proxy server, it is pre-fetched by the
mechanism. When a pre-fetch is made, the cache hit
number will be increased by one if the descendant is used
in the following requests. We count the total cache hit
number no matter what the requested objects are in the
cache or pre-fetched by our mechanism, and the results are
showed in Table 8.

From Table 8, we observe that when we change the
minimum confidence value, the hit ratio is affected
slightly. That means the association rules with lower
confidences are not used very often. The association rules
derived from different training data will have different
performance impacts on different testing data. Generally
speaking, training data and testing data belonging to the
same access domain will result in a higher hit ratio. As
showed in Table 8, the performance of the shadowed parts
(indicating the same access domain) in each column is
better than that of non-shadowed parts in the same column.
Further measurement is the usage of the rule sets. This
usage ratio indicates the proportion of association rules
that have been used. The results are showed in Table 9.

For a higher confidence, the usage rate of our association
rules becomes lower. That means some rules with lower
confidences are still used sometimes.

It may be realized from this experiment that a higher
confidence can not save much database space for storing
rules and may lead to a lower cache hit ratio and a lower
rule usage ratio.

3.2 Experiment 2: Different Supports

In this experiment, we use three different minimum
support values to derive six sets of rules from the two
training data sets. It is obvious from Table 10 that, a
higher support results in a lower number of association
rules in a rule set. And the testing results are showed in
Table [1. In Table 11, although the number of rules
decreases a lot, its cache hit ratio is not affected as much
as we might expect.

Further, we measure the rule usage ratio with different rule
sets. The rule usage ratio with a high support is higher than
that with a low support. The results in Table 11 and Table
12 point out one thing: the tule generation procedure using
a higher support can find out more accurate association
rules. I we want to increase the rule usage of our pre-fetch
mechanism, we can set a higher support. This can save
database space and rule searching time.

According to the above two experimental results, when we
use the pre-tetch mechanism, we should use proper

-181-

1998 international Computer Symposium
Workshop on Soffware Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

Column Name Type Length(bytes)
transaction_id Integer 4
ip_address Character 15
time_stamp Float 8
“request_url Character 128
content_type Character 9

Table 1: Schema of the access_log Table

Column Name Type Length(bytes)
request_url Character 128
frequency Integer 4

Table 2: Schema of the first_frequency Table

Column Name Type Length(bytes)
antecedent Character 128
descendant Character 128
frequency . Integer 4

Table 3: Schema of the pre_rule Table

Column Name Type Length(bytes)
antecedent Character 128
descendant Character 128
frequency Integer 4

Table 4: Schema of the ass_rule Table

Column Name Type Length(bytes)
antecedent Character 128
descendant Character 128
frequency Integer 4

Table 5: Schema of the ass_rule_max Table

Proxy Server Collecting Time Data Size Hit Ratio
Testing Data 1 Proxy Server | 1998/4/8 ~ 1998/4/15 2273 tuples 8.34%
Testing Data 2 Proxy Server 2 1998/4/8 ~ 1998/4/15 2362 tuples 17.44%
Testing Data 3 Proxy Server 3 1998/4/15 78226 tuples 17.23%

Table 6: Testing Data from Access Log

Data Source <support, confidence> # Association Rules
Rule Set 1 Training Data | <5, 0> 2273
Rule Set 2 Training Data 1 <5, 0.25> 1979
Rule Set 3 Training Data | <5, 0.5> 1770
Rule Set 4 Training Data 2 <5, 0> 500
Rule Set 5 Training Data 2 <5, 0.25> 434
Rule Set 6 Training Data 2 <5, 0.5> 378
Table 7: Rule Sets with Different Confidences
Testing Data1 | Testing Data 2 Testing Data 3

Rule Set 1 22.78% 18.01%

Rule Set 2 22.78% 18.01%

Rule Set 3 -20% 22.78% 18.01%

Rule Set 4 11.20% = 22.82%: 18.02%

Rule Set 5 11.20% : 18.02%

Rule Set 6 11.20% 17.81%

Table 8: Hit Ratio Comparison with Different Confidences

-182-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Testing Data 1 Testing Data 2 Testing Data 3
Rule Set 1 6.64% 10.38%
Rule Set 2 10.01%
Rule Set 3 9.83%
Rule Set 4 15.80%
Rule Set 5 14.74%
Rule Set 6 15.08%

Table 9: Rule Usage Ratios with Different Confidences

Data Source <support, confidence> # Association Rules
Rule Set 7 Training Data | <5, 0.5> 1770
Rule Set 8 Training Data 1 <6, 0.5> 411
Rule Set 9 Training Data | <7,0.5> 199
Rule Set 10 Training Data 2 <5, 0.5> 378
Rule Set 11 Training Data 2 <6, 0.5> 300
Rule Set 12 Training Data 2 <7,0.5> 296
Table 10: Rule Sets with Different Supports
Testing Data 1 Testing Data 2 Testing Data 3
Rule Set 7 ' 22.78% 18.01%
Rule Set 8 22.61% 17.81%
Rule Set 9 076780 17.76%
Rule Set 10 11.20% 17.81%
Rule Set 11 11.20% 17.80%
Rule Set 12 10.43% 17.80%
Table 11: Hit Ratio Comparison with Different Supports
Testing Data 1 Testing Data 2 Testing Data 3
Rule Set 7 : 6.33% 9.83%
Rule Set 8 13.62% 29.93%
Rule Set9 | 14.57% 28.64%
Rule Set 10 :30:95Y% 15.08%
Rule Set 11 11.33%
Rule Set 12 3.04% IS 11.49%
Table 12: Rule Usage Ratios with Different Supports
Testing Data 1 Testing Data 2 Testing Data 3
Rule Set 1 v VR _ 22.78% 18.01%
Rule Set 4 11.20% o 22.82% 18.02%
Original Proxy Server 8.34% 17.44% 17.24%

Table 13: Hit Ratio Comparison

25.00%
2. 20.00%
% 13.00% g Rule Set]
= 10 00% o Ruie Set 2
’:S: V ’ O Original Proxy Server
E} <
o] 5.00%
0.00%

! 2

(%]

Proxy Server

Figure 2: Hit Ratio Comparison with Original Squid

training data to derive association rules. As fewer rules are
stored in the database, we may set a lower confidence and
lower support in order to obtain a good cache hit ratio. As

the number of rules grows, we should set a medium
confidence and higher support to get a better rule usage
ratio and to spend less time in searching rules.

-183-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
Decernber 17-19, 1998, N.C K.U., Tainan, Taiwan, R.0.C.

~ Proxy Server 1 Proxy Server 2 | Proxy Server3
Rule Set 1 | -7 3549% 30.56% 4.47%
Rule Set 4 34.22% 4.52%
Table 14: Increasing Rate of Cache Hit Ratio
Proxy Server Collecting Time Data Size Hit Ratio
Testing Data 4 Proxy Server 1 1998/4/15 ~ 1998/4/22 10014 tuples 23.66%
Testing Data 5 Proxy Server 2 1998/4/15 ~ 1998/4/22 5358 tuples 16.14%
Table 15: New Testing Data Sets
- | Testing Data1 | Testing Data 2
Rule Set 1 (from Training Data 1)

22.78%

Rule Set 4 (from Training Data 2) 11.20% 7%
‘ Squid 8.34% 17.44%
Testing Data 4 Testing Data 5
Rule Set 13 (from Training Data 3) 9995 17.711%
Rule Set 14 (from Training Data 4) 24.20% F79Y
Squid 23.66% -
Table 16: Cache Hit Ratios with Different Training Data
Testing Data 1 Testing Data 2
Rule Set 1 (from Training Data 1) L T6Y 6.64%

Rule Set 4 (from Training Data 2)

2.80%

R ——

o3 2
Testing Data 5

Testing Data 4

Rule Set 13 (from Training Data 3)

99 1.54%

Rule Set 14 (from Training Data 4)

10.83% e 1639%

Table 17: Rule Usage Ratios with Different Training Data

3.3 Comparison with Original Squid

We choose the results from Rule Set 1 and Rule Set 4,
which have the better performance in our experiments, to
compare with the cache hit ratio of the original Squid. The
results are showed in Table 13, which are derived from
Table 6 and Table 8.

From Table 14, we observe that the cache hit ratios of the
proxy server combined with our mechanism is clearly
higher than those of the original proxy server. This indeed
shows that our mechanism can increase the cache hit ratio
of the proxy server. We may show this result more clearly
in Figure 2.

The increasing rate of cache hit ratios is computed in
Table 14. For Proxy Servers | and 2, our mechanism can
increase the hit ratio about 30%. In the case of Proxy
Server 3, it only increases the ratio about 5%. The reason
is the users’ domains of these three proxy servers are quite
different. Proxy Server 3 has a user group much larger
than the other two, and its users’ interests are so diverse
that the cache object reuse rate is low. From these results,
we know that the training data for association rules play an
important role if we want to have a good performance pre-
fetch mechanism. If the proxy server users have the same
access domain as the training data, we can derive more
accurate association rules and have better cache hit ratios.

3.4 Performance of Rule Maintenance

In this section, we use Training Data 3 and Training Data
4 to test the rule maintenance function of our mechanism.
From them we obtain two new sets of rules: Rule Set 13
and Rule Set 14, whose numbers of rules are 5548 and 720,
respectively.

» Training Data 3
Collecting time: 1998/4/1 ~ 1998/4/15
Data source: Proxy Server |
Data size: 10361 tuples

+ Training Data 4

Collecting time: 1998/4/1 ~ 1998/4/15

Data source: Proxy Server 2

Data size: 8200 tuples
We also use two new testing data sets to test the new rule
sets. They are Testing Data 4 and Testing Data 3, collected
from April 15 to April 22. And the testing results are
showed in Table 16.

From the Database Laboratory cases in Table 16 (the
marked areas in the second column), we can observe that
after training more rules, the hit ratio increases. The
increasing rate is about 47.93%. This indicates that our
mechanism makes Squid more powerful after working
with it for a period of time.

~184-

But in the cases of Institute of Computer Science (the
marked areas in the third column), training more rules
does not increase the cache hit ratio. This is because the
collecting time includes the spring vacation, and fewer
users used this proxy server. From this, we can also
observe that the number of users and their using time may
influence the cache hit ratio.

Further, we compare the rule usage ratios. The results are
showed in Table 17. The Database Laboratory cases also
show the improvement. From this, we can know that, after
training more rules, more accurate rules can be found. If
we also change the minimum support and minimum
confidence when the number of rules increases, we can
obtain a better rule usage ratio.

4. CONCLUSION

In order to aileviate the problem of long waiting time
when we access the WWW information through the proxy
server, we propose a pre-fetch mechanism which can
increase the cache hit ratio of the proxy server. This
mechanism is a combination of the technique of mining
association rules and Squid proxy server. When a user
accesses a WWW object, the pre-fetch mechanism will use
relevant association rules to predict the object to be
accessed next and pre-fetch it from the Internet. In order to
implement this mechanism, we develop a mining
algorithm in accordance with the characteristics of the
HTTP 1.0 protocol. And we use an Informix database
system to handle the mining information.

To show the feasibility of our pre-fetch mechanism, we
perform experiments to measure it with several testing
access logs. From the experiments, we observe that our
mechanism can increase about 30% of the cache hit ratio
in the proxy server and hence reduce the user’s waiting
time effectively. Furthermore, it can increase about 47% of
the cache hit ratio after learning more rules.

The design of our mechanism is independent of the Squid
proxy server, so it is easy to use this mechanism in other
existing Squid proxy servers without any changes or
recompiling. If the mechanism is removed from Squid,
Squid can still work like it used to be. This design hence
can increase the portability of our mechanism.

This research work can be extended in several ways. First,
the Informix database system plays an important role in
our mechanism. But if the cost of the database system is a
major concern, we may want to use a file system instead.
Second, we may use association rules to implement the
cache replacement algorithm in the proxy server. Squid
uses the LRU algorithm to decide which expiring cache
objects should be swapped out when the cache is full.
However, since association rules have more information
than the LRU strategy in predicting which objects are
frequently used and which objects will be used next, a
better cache replacement strategy based on association
rules can be expected.

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

5. REFERENCES

['] R.Agrawal, T. Imielinski and A. Swami, “Mining
association rules between sets of items in large
database,” Proc. of ACM SIGMOD, 1993, pp.207-
216.

[2] R. Agrawal, T. Imielinski and A. Swami, “Database
mining: a performance perspective,” /[EEE
Transactions on Knowledge and Data Engineering,
Vol. 5, No. 6, 1993, pp.914-925.

[3] R. Agrawal, M. Mehta, J. Shafer, R. Srikant, A.
Arning and T. Bollinger “The Quest data mining
system,” Proc. of the 2nd Int'l Conference on
Knowledge Discovery in Databases and Data
Mining, 1996.

[4] R. Agrawal and R. Srikant “Fast algorithms for
mining association rules,” Proc. of 1994 Int’l
Conference on Very Large Data Bases, September
1994, pp.487-499.

[5] R.Agrawal and R. Srikant, “Mining sequential
patterns,” Proc. of the Int'l Conference on Data
Engineering (ICDE), 1995, pp.3-14.

[6] J.-C. Chen, Data mining of strong association rules
in the world wide web, Master thesis, Department of
Computer Science, National Chung-Hsing
University, Taiwan, R.0.C., 1996.

{71 A. Luotonen and K. Altis, “World-wide web
proxies,” Proc. of the Ist Int’l. World Wide Web
Conference, 1994,

[8] J.S.Park, M. S. Chen and P. S. Yu, “An effective
hash-based algorithm for mining association rules,”
Proc. of ACM SIGMOD, 1995, pp.175-186.

[9] J.S.Park, M.S. Chen and P. S. Yu, “Using a hash-
base method with transaction trimming for mining
association rules,” /EEE Transactions on Knowledge
and Data Engineering, Vol. 9, No. 5, 1997, pp.813-
825.

{10] T. Rathburn, “Data-mining.in the financial markets,”
PC Al, 1997, pp.19-20.

[11] R.Srikant and R. Agrawal, “Mining generalized
association rules,” Proc. of the 21st VLDB
Conference, 1995.

[12] htp://squid.nlanr.net/ - Proxy Server: Squid.

-185-

	
	178
	179
	180
	181
	182
	183
	184
	185

