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ABSTRACT

Understanding program dependences is essential for
many software engineering activities including pro-
gram slicing, testing, debugging, reverse engineering,
maintenance, and complexzity measurement. This pa-
per presents the software dependence graph for Java
(JSDG), which eztends previous dependence-based rep-
resentations, to represent various types of program de-
pendences in Java software. The JSDG consists of a
group of dependence graphs which can be used to rep-
resent Java methods, classes and their extensions and
interactions, interfaces and their eztensions, complete
programs, and packages respectively. The JSDG can be
used as an underlying representation to develop soft-
ware engineering tools for Java software.

1 INTRODUCTION

Javais a new object-oriented programming language
and has achieved widespread acceptance because it em-
phasizes portability. As Java commercial applications
are going to be accumulated, the development of tools
to support understanding, testing, maintenance, com-
plexity measurement of Java software will become an
important issue.

Program dependences are dependence relationships
holding between program elements in a program that
are determined by the control flows and data flows in
the program. Intuitively, if the computation of a state-
ment directly or indirectly affects the computation of
another statement in a program, there might exist some
program dependence between the statements.

Many compiler optimizations and program testing
and analysis techniques rely on program dependence
information, which is topically represented in the form
of a program dependence graph (PDG) [8, 14]. The
PDG, although originally proposed for compiler opti-
mizations, has been applied to various software engi-
neering activities including program slicing, debugging,
testing, maintenance, and complexity measurements
for procedural programs [1, 7, 12, 17, 18]. Recently, re-
searchers have applied program dependence analysis to
object-oriented software [15, 16, 5, 6, 23] (for detailed
discussions, see related work section) as well as soft-
ware architectures [24]. However, although a number of
dependence-based representations have been proposed
for modeling various object-oriented features such as
classes and objects, class inheritance, polymorphism
and dynamic binding in object-oriented software, until
recently, no dependence-based representation has been

proposed which can be used to represent some specific
features such as Java interfaces and their extensions,
packages, and exception handling in Java software.

One of the best feature of Java is that it has ele-
vated interfaces to first class status. An interface con-
sists only of abstract methods and constants that de-
fine some functionality. An interface is a type and you
can define variables to have such a type. Interfaces
are implemented with classes. And an interface can
be implemented several times with different classes. A
variable of interface type can hold a reference to an ob-
ject of any of the classes that implement that interface.
Like classes, interfaces may also be extended.

In Java, code is collected into packages. A packages
can be used to create a grouping for related interfaces
and classes. Interfaces and classes in a package can
use popular public names that make sense in one con-
nect but might conflict with the same name in another
package. Packages can have types and members that
are available only within the package. Such identifiers
are available to the package code, but inaccessible to
outside code.

In order to represent the full range of Java software,
an efficient dependence-based representation must be
able to facilitate the analysis of these features such as
interfaces and their extensions, and packages in Java
software.

In this paper we present the software depen-
dence graph for Java (JSDG), which extends previ-
ous dependence-based representations [15], to represent
various types of program dependence relationships in
Java software. The JSDG of Java software consists of
a group of dependence graphs which can be used to
represent Java methods, classes and their extensions
and interactions, interfaces and their extensions, com-
plete programs, and packages respectively. The JSDG
can be used as an underlying representation to develop
software engineering tools for Java software.

The rest of the paper is organized as follows. Section
2 introduces various types of program dependences that
may exist in Java software. Section 3 presents the soft-
ware dependence graph for Java. Section 4 discusses
some applications of the JSDG. Section 5 discusses
some related work. Concluding remarks are given in
Section 6.
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2 PROGRAM DEPENDENCES IN
JAVA SOFTWARE

To perform program dependence analysis on Java
software, it is necessary to identify all primary depen-
dence relationships existing in Java software. In this
section, we present various types of primary program
dependence relationships which may exist in Java soft-
ware.

2.1 Control and Data Dependences

There are two types of primary program depen-
dences between statements in a Java method, i.e., con-
trol dependence and data dependence.

e Control dependences represent control conditions
on which the execution of a statement or expres-
sion depends in a single method. Informally, a
statement u is directly control-dependent on the
control predicate v of a conditional branch state-
ment (e.g., an if statement, switch statement,
while statement, for statement, or do-while
statement) if whether u is executed or not is di-
rectly determined by the evaluation result of v.

o Data dependences represent the data flow between
statements in a single method. Informally a state-
ment u is directly data-dependent on a statement
v if the value of a variable computed at v has a di-
rect influence on the value of a variable computed
at u.

2.2 Call and Parameter Dependences

There are three types of primary program depen-
dences between a call and a called method in Java
classes.

o Method-call dependences represent call relation-
ships between a call method and the called
method. Informally a method u is method-call
dependent on another method v if v invokes u.

Parameter dependence model the parameter pass-
ing between a call and a called method. There are
two types of parameter dependences, i.e., parameter-in
dependence and parameter-out dependence.

o Parameter-in dependences represent parameter
passing between actual parameters and formal in-
put parameter (only if the formal parameter is at

all used by the called procedure).

o Parameter-out dependences represent parameter
passing between formal output parameters and ac-
tual parameters (only if the formal parameter is
at all defined by the called procedure). In addi-
tion, for methods, parameter-out dependences rep-
resent the data flow of the return value between
the method exit and the call site.
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2.3 Membership Dependences

There are four types of membership dependences in
Java software.

o Class-membership dependences capture the mem-
bership relationships between a class and its mem-
ber methods. Informally, a method u is class-
membership dependent on class v if u is a member
method of v.

e Interface-membership dependences capture the
membership relationships between an interface
and its member method declarations. Informally,
a method declaration u is interface-membership
dependent on an interface v if u is a member
method declaration of v.

o Package-membership dependences capture the
membership relationships between a package and
its member classes, interfaces, and subpack-
ages. Informally, a class/interface/subpackage u
is package-membership dependent on a package v
if u is a member class/interface/subpackage of v.

2.4 Inheritance Dependences

There are two types of inheritance dependences in
Java software to represent Java class extensions and
interface extensions. Note that unlike C++, Java does
not support friend relationships among classes.

e Class-inheritance dependences capture the inher-
itance relationships between Java classes. Infor-
mally, a class u is class-inheritance dependent on
class v if u is an extending class of v.

o Interface-inheritance dependences capture the in-
heritance relationships between Java interfaces.
Informally, an interface u is interface-inheritance
dependent on an interface v if u is an extending
interface of v.

3 THE SOFTWARE DEPENDENCE
GRAPH FOR JAVA

In this section, we show how to construct the soft-
ware dependence graph for Java (JSDG for short). The
JSDG of Java software consists of a collection of de-
pendence graphs which can be used to represent Java
methods, classes and their extensions and interactions,
interfaces and their extensions, complete programs,
and packages respectively. It basically takes advantage
of constructing techniques of previous dependence-
based representations [10, 15].

3.1 Dependence Graphs for Java Methods

A method of a Java class is similar to a procedure
in conventional procedural languages. Thus it is rea-
sonable to use the usual procedure dependence graph
introduced in [10] to represent a single method in a
Java class. In contrast to the procedure depgndence
graph, we call such a graph the method dependence
graph (MDG for short). The MDG of a method is an
arc-classified digraph whose vertices are connected by
several types of dependence arcs. The vertices of the
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Figure 1: A Java class and its CDG methods

MDG represent statements or control predicates of con-
ditional branch statements in the method. There is an
unique vertex called method start verter to represent
the entry of the method. In order to model parameter
passing between methods, an MDG also includes for-
mal parameter vertices and actual parameter vertices.
At the method entry there is a formal-in vertez for
each formal parameter of the method and a formal-out
vertez for each formal parameter that may be modified
by the method. At each call site there is an actual-
in vertez for each actual parameter at call site and an
actual-out vertez for each actual parameter that may
be modified by the called method. In addition, at each
call site of the method, a call vertez is created for con-
necting the called method.

The arcs of the MDG represent two types of de-
pendence relationships in a method, i.e., control de-
pendences, and data dependences. There is a control
dependence arc between two vertices v and v if u is
control dependent on v, and there is a data dependence
arc between two vertices 4 and v if u is data dependent
on v. In addition, each formal parameter is control de-
pendent on the method start vertex, and each actual
parameter is control dependent on the call statement.

Ezample. Figure 1 shows a Java method run and its
method dependence graph.

3.2 Dependence Graphs for Java Classes

This section describes how to construct dependence
graphs for Java single classes, class extensions and in-
teractions. The section also discusses how to represent
polymorphism.

Single Classes

we use the class dependence graph (CDG for short)
to represent a single Java class. The CDG of a Java
class is an arc-classified digraph which consists of a col-
lection of method dependence graphs each representing
a single method in the class, and some additional ver-
tices and arcs to model parameter passing between dif-
ferent methods in a class. There is an unique class
start vertex for the class to represent the entry of the
class, and the class start vertex is connected to the
method start vertex of each method in the class by

class-membership dependence arcs. If a method in-
vokes another method in the class, the method de-
pendence graphs of two methods are connected at call
site. In such a case, a call dependence arc is added be-
tween a call vertex of a method and the method start
vertex of the method dependence graph of the called
method, and parameter dependence arcs are added to
connect actual-in and formal-in vertices, and formal-
out and actual-out vertices to model parameter pass-
ing between the methods in the class. Unlike C++,
Java does not support global variables. However, the
instance variables of a Java class are accessible to all
methods in the class, and therefore we can regard them
as “global variables” to every method in the class, and
create formal-in and formal-out vertices for all instance
variables that are referenced in the methods.

In [10], interprocedural slices are computed by solv-
ing a graph reachability problem on an SDG. To obtain
precise slices, the computation of a slice must preserve
the calling context of called procedures, and ensure
that only paths corresponding to legal call/return se-
quences are considered. To facilitate the computation
of interprocedural slicing that considers the call con-
text, an SDG represents the flow dependences across
call sites. A transitive flow of dependence occurs be-
tween an actual-in vertex and an actual-out vertex if
the value associated with the actual-in vertex affects
the value associated with the actual-out vertex. The
transitive flow of dependence can be caused by data de-
pendences, control dependences, or both. A summary
arc models the transitive flow of dependence across a
procedure call. Similar to [10], we use summary depen-
dence arcs to represent this kind of transitive flow of
dependences in the class dependence graph.

Ezample. Figure 1 shows the CDG for a Java
class Producer. In the figure, a rectangle represents
the class start vertex and is labeled by the statement
label related to the class entry. Circles represent state-
ments in the class, including method start, and are la-
beled with the corresponding statement number in the
class. Ellipses in dashed line represent actual parame-
ter vertices and Ellipses in solid line represent formal
parameter vertices. For example, cel is the class start
vertex, and e4 and e8 are the start vertices of meth-
ods Producer and run. Bold dashed arcs represent
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class-membership dependence arcs that connect the
class start vertex to each start vertex of the methods.
Therefore, (cel, e4) and (cel, e8) are class-membership
dependence arcs. Each start vertex of the methods is
the root of a subgraph which is itself a method depen-
dence graph corresponding to the method. Hence each
subgraph may contain control, data and parameter de-
pendence arcs. Finally, constructor method Producer
has no formal-in vertices for the two instance variables
cubbyhole and number, since these variables cannot be
referenced before they are allocated by the class con-
structor.

Class Interaction

In Java, a class may create an object of another class
through a declaration or by using an operator such as
new. When a class cl creates an object of class c2,
there is an implicit call to ¢2’s constructor. To repre-
sent this implicit constructor call, we adds a call vertex
in ¢l at the location of object creation. A call depen-
dence arc connects this call vertex to ¢2’s constructor
method. We also adds actual-in and actual-out vertices
at the call vertex to match the formal-in and formal-
out vertices in ¢2’s constructor. When there is a call
site in method m; in ¢; to method my in the public
interface of ¢z, we connect the call vertex in ¢; to the
method start vertex of ms to form a call dependence
arc, and also connect actual-in and formal-in vertices
to form parameter-in dependence arcs and actual-out
and formal-out vertices to form parameter-out depen-
dence arcs. As a result, we can get a new CDG which
represents a partial Java program by connecting these

two CDGs.

Ezample. Figure 3 shows the representation of in-
teraction classes. In the main class of the program,
there is a statement s51 which instantiates an object
of type Producer. The construction includes adding
actual-in and actual-out vertices at call vertex for s51
to match the formal-in and formal-out vertices asso-
ciated with e4 which is the method start vertex of
constructor Producer, and connecting the call vertex
for s51 to the method start vertex for e4 to form a
call dependence arc, actual-in and formal-in vertices to
form parameter-in dependence arcs and actual-out and
formal-out vertices to form parameter-out dependence
arcs.

Class Extending

One of the major benefits of object orientation is
the ability to eztend the behavior of an existing class
and continue to use code written for the original class.
When you extend a class to create a new class, the
new extended class inherits all the fields and methods
of the class that was extended. Unlike C++ that sup-
ports multiple inheritance, Java only supports single
inheritance, i.e., a new class can extend exactly one
superclass. This, among other things, can certainly
simplify the analysis of Java class extension. However,
Java provide a novel mechanism called interface to sup-
- port multiple inheritance (we will introduce it in the
next section). Just as class inheritance permits code
reuse in Java software, a dependence-based representa-
tion for extended classes should also reuse the analysis
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information.

To construct a CDG for an extended class, we first
construct the representation for each method defined
by the extended class, and then reuse the represen-
tations of all methods that are inherited from super-
classes. There is a class entry vertex for the extended
class, and the class-membership dependence arcs are
used to connect this class entry vertex to the method
entry vertex of each method in the definition of the ex-
tended class. The class-membership dependence arcs
are also used to connect the class entry vertex to the
method entry vertices of any methods defined in the
superclass that are inherited by the extended class.
Formal-in vertices for a method represent the method’s
formal parameters and instance variables in the ex-
tended or superclass that may be referenced by a call
to this method. Similarly, formal-out vertices for a
method represent the method’s formal parameters and
instance variables in super or extended classes that may
be modified by a call to this method.

Polymorphism

Another important feature of object-oriented lan-
guages is polymorphism. In Java software, a polymor-
phic reference can, over time, refer to instances of more
than one class. As a result, the static representation
should represent this dynamic feature in Java software.

In this paper, a CDG represent such polymorphic
method calls by using a way that all possible desti-
nations of a method call are included in the represen-
tation, unless the type can be determined statically.
We use a polymorphic choice vertex similar to that in
[15] to represent the possible destinations of the poly-
morphic call in the CDG. A polymorphic choice vertex
represents the selection of a particular call given a set
of possible destinations.

3.3 Dependence Graphs for Java Inter-
faces

This section describes how to construct dependence
graphs for Java single interfaces and interface exten-
sions.

Single Interfaces

We use the interface dependence graph (IDG for
short) to represent a Java interface and its correspond-
ing classes that implement it. The IDG of a Java inter-
face is an arc-classified digraph which consists of a col-
lection of method dependence graphs each represent-
ing a single method in a class that may implement a
method declaration declared in the interface, and some
additional vertices and arcs to model parameter pass-
ing between different methods in a class.

There is an unique vertex called interface start ver-
tez for the entry of the interface. Each method dec-
laration in the interface can be regraded as a call to
its corresponding method in a class that implement it,
and therefore a call vertex is created for each method
declaration in the interface. The interface start vertex
is connected to each call vertex of the method declara-
tion by interface-membership dependence arcs. If there
are more than one classes that implement the inter-
face, we connect a method call in the interface to every
corresponding method that implement it in the classes.
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Figure 2: Two Java interfaces and Their IDGs.

Ezample. Figure 2 (a) shows the IDG for the in-
terface A and the classes C1 and C2 that implement it.

Interface Extending

Similar to represent java class extending, we con-
struct an IDG for an extended interface by construct-
ing a representation for each method defined by the ex-
tended interface, and reusing the representations of all
methods that are inherited from superinterfaces. We
create an interface entry vertex for the extended inter-
face, and add interface-membership dependence arcs
connecting this interface entry vertex to the method
call vertex of each method declaration in the definition
of the extended interface. We also create interface-
membership dependence arcs to connect the interface
entry vertex to the method call vertices of any method
declarations declared in the superinterface that are in-
herited by the extended interface.

Ezample. TFigure 2 (b) shows the IDG for the in-
terface B and the class C3 that implements it. The
interface B is extended from the interface A, and there-
fore, class C3 should contain three methods, two for
interface A, and one for interface B.

3.4 Dependence Graphs for
Java Programs

Complete

Generally, a complete Java program consists of
classes and interfaces. In order to execute the pro-
gram, the program must include a special class called
main class. The program first starts the main class,
and then transfers the execution to other classes.

We use the system dependence graph (SDG for short)

proposed in [15] to represent a complete Java pro-
gram. The SDG of a complete Java program is an
arc-classified digraph which consists of a collection of
dependence graphs each representing a single method

~.in the class, and some additional vertices and arcs to

meodel parameter passing between different methods in
a class.

To construct the dependence graph for a complete
Java program, we first construct the class dependence
graph for the main class, then connect the class depen-
dence graph of the main class and other methods in
other Java classes at call sites. A call dependence arc
i1s added between a method call vertex and the start
vertex of the method dependence graph of the called
method. Actual and formal parameter vertices are con-
nected by parameter dependence arcs,

Ezample. Figure 3 shows a complete Java program

and its SDG.
3.5 Dependence Graphs for Java Packages

Java code is collected into packages. We use the
package dependence graph (PADG for short) to repre-
sent a Java package. The PADG of a Java package is an
arc-classifled digraph which consists of a collection of
dependence graphs each representing a Java class, in-
terface, and subpackage, and some additional vertices
and arcs to model the relationships among the package
and its member classes, interfaces, and subpackages.

There is an unique vertex called package start vertex
for the entry of the package. The package start ver-
tex is connected to each class, interface, or subpackage
start vertex of each class, interface, or subpackage by
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Figure 3: A complete Java program and its SDG.

package-membership dependence arcs.

Ezample. Figure 4 shows a simple package
collections and its corresponding PADG. The pack-
age contains one interface A and two classes C1 and
€2. pi is the package start vertex and i2 is the in-
terface start vertex of interface A. ¢3 and c4 are class
start vertices of classes C1 and C2. Therefore, (p1,12),
(p1,c3), and (p1,c4) are package-membership depen-
dence arcs.

4 APPLICATIONS OF THE JSDG

Having JSDG as an unified dependence-based repre-
sentation for Java software, we discuss some important
applications of the JSDG which include program slicing
and software maintenance.

4.1 Program Slicing

The most direct application of JSDG is to slice Java
software since the explicit representation of various
program dependences in Java software makes the JSDG
ideal for computing slices of a Java program [23].

Program slicing, originally introduced by Weiser
[22], is a decomposition technique which extracts from
program statements related to a particular computa-
tion. A program slice consists of those parts of a pro-
gramn that may directly or indirectly affect the values
computed at some program point of interest, referred
to as a slicing criterion. Program slicing has many ap-
plications in software engineering activities such as pro-
gram understanding, debugging, testing, maintenance,
reverse engineering, and complexity measurement. For
more information, see Tip’s survey on program slicing
techniques [21].

In the following, we introduce some notions about
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Figure 4: A simple package and its PADG

statically slicing of a complete Java program.

A static slicing criterion for a Java program is a
tuple (s,v), where s is a statement in the program and
vis a variable used at s, or a method call called at s. A
static slice SS(s,v) of a Java program on a given static
slicing criterion (s, v? consists of all statements in the
program that possibly affect the value of the variable
v at s or the value returned by the method call v at s.

Since the SDG proposed for a complete Java pro-
gram can be regarded as an extension of the SDGs
for sequential object-oriented programs [15] and pro-
cedural programs [10], we can use the two-pass slicing
algorithm proposed in [10, 15} to compute static slices
of a Java program based on the JSDG. In the first step,
the algorithm traverses backward along all arcs except
parameter-out arcs, and set marks to those vertices
reached in the SDG, and then in the second step, the
algorithm traverses backward from all vertices having
marks during the first step along all arcs except call
and parameter-in arcs, and sets marks to reached ver-
tices in the SDG. The slice is the union of the vertices
of the SDG have marks during the first and second
steps. Similar to the backward slicing described above,
we can also apply the forward slicing algorithm {10] to
the SDG to compute forward slices of Java programs.

In addition to slicing a complete Java program, we
can also perform slicing on Java classes, interfaces,
and packages based on the class dependence graphs,
interface dependence graphs, and package dependence
graphs.

4.2 Software Understanding and Mainte-
nance

When we attempt to understand the behavior of a
Java program, we usually want to know which vari-
ables in which statements might affect a variable of in-
terest, and which variables in which statements might
be affected by the execution of a variable of interest
in the program. As discussed above, the slicing and
forward-slicing based on the JSDG can satisfy these
requirements. On the other hand, one of the problems
in software maintenance is that of the ripple effect, i.e.,
whether a code change in a program will affect the be-
havior of other codes of the program. To maintain a
Java program, it is necessary to know which variables
in which statements will be affected by a modified vari-
able, and which variables in which statements will af-
fect a modified variable. The needs can be satisfied

by slicing and forward-slicing the program being main-
tained.

5 RELATED WORK

It is the first time, to our knowledge, to extend previ-
ous dependence-based representations to represent the
full range of Java software.

Ferrante et al. [8] presented a dependence-based
representation called the program dependence graph
(PDG) to explicitly represent control and data depen-
dences in a sequential procedural program with single
procedure. Horwitz et al. [10] extended the PDG to
introduce an interprocedural dependence-based repre-
sentation called the system dependence graph (SDG) to
represent a sequential procedural program with multi-
ple procedures. Although these representations can be
used to represent many features of a procedural pro-
gram, they lack the ability to represent object-oriented
features in Java software.

Larsen and Harrold {15] and Chan and Yang [5] ex-
tended the SDG for sequential procedural programs
[II'O] to the case of sequential object-oriented programs.

he SDGs they compute for sequential object-oriented
programs can be regarded as a class of SDGs in [10)].
Malloy et al. [lﬂ proposed a new dependence-based
representation called the object-oriented program de-
pendency graph (OPDG) for sequential object-oriented
programs. Chen et al. [6] also extended the pro-
gram dependence graph to the object-oriented depen-
dency graph (ODG) for modeling sequential object-
oriented programs. Although these representations can
be used to represent many features of sequential object-
oriented programs, they lack the ability to represent
some specific features such as interfaces and packages
in Java software.

Zhao et al. [23, 23] presented a dependence-based
representation called the system dependence net (SDN)
to represent concurrent object-oriented programs. Al-
though the SDN can be used to represent many object-
oriented features as well as concurrency issues of con-
current object-oriented programs, it lacks the ability to
represent some specific features such as interfaces and
packages in Java software.

6 CONCLUDING REMARKS

We have presented, the software dependence graph
for Java (JSDG), which is an extension of previous de-
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pendence representations, to represent Java software.
The JSDG consists of a group of dependence graphs
which can be used to represent Java methods, classes
and their extensions and interactions, interfaces and
their extensions, complete Java programs, and Java
packages respectively. The JSDG can be used to rep-
resent either object-oriented features or some specific
features in Java software. We also discussed some ap-
plications of the JSDG which include program slicing
and software maintenance. Now we are developing a
maintenance environment for Java software in which
the JSDG has been used as an underlying representa-
tion for developing software engineering tools including
a program dependence analyzer and a program slicer.
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