1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1898, N.C.K.U.,, Tainan, Taiwan, R.0.C.

Implementing LDAP Directory Hierarchy with Relations

*Shepherd S.B.Shi, **C.S.Yang and *David Lin

*Distributed System Services, IBM Austin
11400 Burnet Rd. , Austin, TX 78758
**Institute of Computer and Information Engineering
National Sun Yat-Sen Unversity
Kaohsiung, Taiwan, R.O.C.

Abstract

LDAP, is one of the emerging technology which can
provide directory services to applications ranging from
email systems to distributed system management tools.
However, the reference implementation of LDAP from
University of Michigan needs a lot of enhancements for
being a reliable and Scaleable enterprise directory service.
This paper presents a design and implementation to use a
relational database as a robust, scaleable data store for
LDAP directory information. One of the sailent feature of
our solution is to be able to implement LDAP hierarchies
with relational tables efficiently.

1. Introduction

Directory services, a critical part of distributed computing,
is the central point where network services, security
services and applications can form a integrated distributed
computing environment. The current usage of a directory
service can be classified into the following categories:

Name Service - Use directory as a source to locate internet
host address or the location of the server. For example,
DNS and DCE CDS.

User registry - To store information of all users in a
system. Especially if the system is composed of a number
of interconnected machine, a central repository of user
information will enable the system administrator to
administer the distributed system as a single system image.
Novel's NDS, is an example.

Yellow page lookup - Some modern email clients provide
users with the capability of looking up people's names and
email addresses. The users typed in name, or part of the
name and the directory service will extract the email
information for the user. Netscape Communicator, Lotus
Notes, Endora and other email clients provide the address
book look up capability.

With more and more applications and system services
demanding a central information repository, the next

gener
ation directory service will be providing system
administrators with a data repository which could
significantly ease the administrative burden. In addition,
the future directory service will also provide end users
with a rich information data warehouse which allows them
to access department or company employee data, or
resource information such as name and location of printers,
copy machines, etc...
In the internet/intranet environment, users will be able to
use the public key certificates constrained in the directory
to handle encrypted or digitally signed documents.

LDAP, is one of the emerging technology which can
provide directory services to applications ranging from
email systems to distributed system management tools.
LDAP is an open Internet standard, produced by the
Integrated Engineering Task Force (IETF). LDAP
provides the capability for directory information to be
queried or updated. LDAP offers a rich set of searching
capabilities with which users can put together complex
queries to get desired information from the backing store.

LDAP is originally implemented by University of
Michigan. The U. of M. reference implementation is freely
available through the FTP site. The U. of M. LDAP is
implemented based on several freely available btree
packages, such as GNU dbm and Berkely db44 packages.
This reference implementation supports version 2 LDAP
protocol and is used as a basis for LDAP/DB2. LDAP
Version 2 protocol is defined in IETF RFCs 1778-1779.

The U. of M. LDAP is a sound reference implementation
for people to understand the internals of LDAP. However,
it still needs a lot of enhancements for being a reliable and
Scaleable enterprise directory service. The relational
databases, such as DB2 or Oracle, could be the ideal
backing store for LDAP directory. The relational databases
provide hard-won advantages such as scaleability,
transaction integrity, backup and recovery, stability and a
powerful query processing engine. However, Mapping the
LDAP model [5] to relational tables is not a trivial task.
First of all, it appears that the LDAP model is hierarchical.
It is known that hierarchies are very easy to represent in
the hierarchical databases (like IMS) , where the structure
of the data and the structure of the database are the same.
Unfortunately, it is a general opinion that relational

-144-

databases do not provide adequate support for such data.
Second, LDAP allows both single and multi-valued
attributes. But relational database does not deal with
multi-valued attributes well. This paper presents a practical
and efficient solution for the problems mentioned above.
The design and implemenation mentioned in this paper is
used in the IBM E-Directory LDAP server. Our
performance results showed that our implementation is
competitive to other directory products in the industry.

The rest of this paper is organized as follows: Section 2
descibes a summary of related work. Section 3 presents the
LDAP directory model. Section 4 describes our design and
implementation to map LDAP model to relational tables in
detail. Section 5 reports some performance measurements.
Section 6 is the conclusion.

2. Summary of Related Work

LDAP is originaily implemented by University of
Michigan. The U. of M. reference implementation [1] is
freely available through the FTP site. The U. of M. LDAP
is implemented based on several freely available b-tree
packages, such as GNU dbm and Berkeley db packages.
This reference implementation supports version 2 LDAP
protocol and is used as a basis for LDAP/DB2. LDAP
Version 2 protocol is defined in IETF RFCs 1777-1779
[3,6,7).

The U. of M. LDAP is a sound reference implementation
for people to understand the internals of LDAP. However,
it needs a lot of enhancements for being a reliable and
scaleable enterprise directory service. One of the
limitations is that it does not scale to more than a few
hundred thousand to possibly a million entries. The use of
simple file-system based hash and b-tree packages will not
be able to handle large amounts of data. On the other
hand, relational database technologies like DB2 [10] is
designed to handle up to tera bytes of data. Second,
populating directories with large numbers of entries is time
consuming work. It takes a lot of time to populate the
_directories with millions of entries. Third, because of
limited search and indexing facilities provided by the
file-system based back-end, only candidate entries can be
retrieved. Then each entry is filtered through the filter
program before it is returned to the client. However, in
some cases, when the set of candidates is large, the search
degenerates into a sequential search. For example, we
discovered that negation queries and existence queries are
fairly expensive with both the reference implementation
and LDAP server from Netscape. By using the powerful
search engines provided by DB2, we were able to address
some of the weak areas.

Mapping the LDAP model [5] to relational tables,
however, is not a trivial task. First of all, LDAP allows
both single and multi-valued attributes. But relational

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

database does not deal with multi-valued attributes well.
Second, the size of each DB2 table [10] is limited to 4K.
Third, it appears that the LDAP model is hierarchical. It is
known that hierarchies are very easy to represent in the
hierarchical databases (like IMS) , where the structure of
the data and the structure of the database are the same.
Unfortunately, it is a general opinion that relational
databases do not provide adequate support for such data. It
does not directly map hierarchical data into tables because
tables are based on sets rather than on graphs. Different
vendors provide different mechanisms for the tree
structure. For example, DB2 [10] provides the WITH
clauses in the select statement to provide subtree traversal
with arbitrary depth. Oracle [16] has CONNECT BY
PRIOR and START WITH clauses in the SELECT
statement to provide partial support for reachability and
path enumeration. But all mechanisms will end up with
recursive queries to handle hierarchical structures.
Through experiments, we discovered that recursive queries
do not scale up well for large number of records in the
table. We did a small experiment with 1000 LDAP entries
using DB2 recursive queries; a simple select takes more
than five minutes to complete.

U.S. patent 5467471 [16] presented a solution which does
not require recursive query. The invention provides a
genealogy table with which the directory hierarchy is
represented in a table form. Each column of the genealogy
table represents a level of the directory tree. This solution
might be fine for directories with limited hierarchy depth.
However, it is very difficult to realize the idea in practice
when the directory is infinitely deep and the number of
columns of a table is limited. We have attempted a similar
implementation but learned that the complexity is so great
and the performance implication is unclear.

To address this problem, we invented an efficient method
to represent LDAP hierarchies with relational tables
without the ~ overhead of recursive queries
[11,12,13,14,15]. Our performance results showed that our
implementation is competitive to other directory products
in the industry.

3. LDAP Information Model

The LDAP directory database consists of entries. Each
entry is composed of one more attributes. A type is
associated with each attribute, and an attribute can have
more than one value in an entry. The atiribute type
determines the syntax of the attribute. The syntax of an
attribute determines how the data will be compared against
the values in the query. In LDAP V2 [2,3,4,6,7], the
possible syntaxes and their meanings are:

bin: binary
ces: case exact string
cis: case ignore string

-145-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

tel: telephone number string (like cis but blanks and dashes

are ignored during comparisons)
dn : distinguished name

Users can define the attributes which can be included in
the entry in the LDAP schema. The set of attributes is
named object classes. Mandatory attributes are required to
have values in the entry. Optional attributes, on the other
hand, do not have to exist for the entry of an object class.
For example, to define an objectclass called Person, the
following is a possible definition:

objectClass Person
required cn,sn,objectclass
allows mail, phone, address, fax

In object class Person, cn, sn and objectclass are
mandatory attributes; mail, phone, address and fax are
optional attributes.

LDAP entries are arranged in a tree structure that follows a
geographical and organizational distribution. Each entry is
uniquely identified by a distinguished name (DN). The
formal definition of a distinguished name (DN) is given in
RFC 1779 [6].

The functions provided by LDAP can be categorized as:

®* Query: Search and Compare. These operations are
used to retrieve information from the database. For the
search function, the criteria of the search is specified
in the search filter. The search filter is a Boolean
expression which consists of attribute name, attribute
value, and Boolean operations like AND, OR and
NOT. Users can use the filter to perform fairly
complicated search operations. The filter syntax is
defined in RFC 1960 [8].

In addition to the search filter, users can also specify

where the search starts in the directory tree structure.
The starting point is called the based DN. The search
can be applied to a single entry (based level search),

an entry's children (one level search), or an entire
subtree (sub tree search). Although LDAP does not
support a head and list operation directly, the search
operation is used to emulate these operations by
setting the DN, scope, and filter appropriately.

* Update: Add, Delete Modify and Modify RDN. Users
can use these functions to update the contents of the
directory.

® Authentication. Bind and Unbind. LDAP supports
simple id and password based authentication scheme.
In the bind operation, user can specify the id and
password and the server will use this information to

authenticate the client. If successful, the authentication
is in effect for the life of a LDAP session.

* Others.
* MODRDN to rename an existing directory entry
¢ INIT to initialize LDAP client library and obtain
a session handle
¢ RESULT to retrieve the results of the search
operation

4. Model LDAP through Relations

At first glance, it seems very obvious that we should be
mapping a LDAP object class into a DB2 relation.
However, this mapping posed a serious problem since
LDAP model allows both single and multi-valued
attributes. In the database design guideline, the First
Normal Form requires that attributes within each tuple are
ordered and complete and that the domains permit only
simple values. Simple values can not be decomposed into
multiple values and cannot themselves be sets or relations.
Some database systems (like DB2) are attempting to
support multi-valued attributes. However, the
implementation is not available yet. UN-normalized
relations will make update operations (e.g.. add, modify
and delete) fairly difficult to manage. We also discovered
that we might lose some data semantics during the update
process when multi-valued attributes exist.

Instead, we mapped each LDAP attribute, which can be
searched by the user, to an attribute relation. This relation
consists of two columns: unique identifier EID and
normalized attribute value. In our system, each LDAP
entry is assigned an EID. Based on the attribute syntax, the
attributes are converted (or normalized) so that our system
can apply SQL queries to the attribute values. For
example, if the attribute syntax is case insensitive (CIS),
the attribute value will be converted to all upper case and
stored in the attribute table. The attribute table is used
mainly for search operation to find the entries which match
the filter criteria. The actual entry data, is stored in the
LDAP_ENTRY table. In other words, the SQL queries
generated by our system will use the attribute table to
locate the entry EIDs which match the filter expression and
use the EIDs to retrieve the entry data from the
LDAP_entry table. Another advantage of this per attribute
table is that the size of the entry is no longer bounded by
the DB2 4k limit. The attribute table and |dap_entry table
is similar to the id2entry and attribute indexes in the U. of
M. reference implementation. The main difference is that
our implementation is able to retrieve the exact target
entries instead of just “candidates”. As a result, no
post-processing of filtering entries is needed in
LDAP/DB2.

A second challenge is to map LDAP to relational tables
because the LDAP model is hierarchical. It is well known
that hierarchies are very easy to represent in the

-146-

hierarchical databases (like IMS) where the structure of
the data and the structure of the database are the same.

Unfortunately, relational databases provide inefficient
support for such data. It does not directly map hierarchical
data into tables because tables are based on sets rather
than on graphs. Different vendors provide different
mechanisms for the tree structure. For example, DB2
provides the WITH clauses in the select statement to
provide subtree traversal with arbitrary depth. Oracle has
CONNECT BY PRIOR and START WITH clauses in the
SELECT statement to provide partial support for
reachability and path enumeration. But all mechanisms will
end up with recursive queries to handle hierarchical
structures. Through experiments, we discovered that
recursive queries do not scale up well for large numbers of
records in the table.

However, we discovered that with simple relations, we
were able to support LDAP search (base, one level and
subtree) with decent performance.

In addition, we also have an LDAP entry table which
holds the information about an LDAP entry. This table is
used for obtaining the EID of the entry and supporting
LDAP_SCOPE_ONELEVEL and LDAP_SCOPE_BASE
search scope. Entries are stored using a simple text format
of the form "attribute: value" as in the U.M. reference
implementation. Non-ASCII values or values that are too
long to fit on a reasonable sized line are represented using
a base 64 encoding. Giving an ID, the corresponding entry
can be returned with a single SELECT statement.

4.1 Mapping LDAP Hierarchy through
Relations

Root (1)

c=a8 (2) c=us (3)

O«(BM (4) O=Netscape (§)

QU=IBM Ausiin ($) QU~IBM Rachester (7)

CN=John Dogh{t} CNsMary Bur(s) CN=Peler Mati{18)

As illustrated in the following figure, the LDAP naming
hierarchy includes a number of entries, with each entry
represented by a unique entry identifier (EID). Thus, for
example, the root node has an EID = 1. Root has two
children, entry GB (“Great Britain™) having an EID =2,
and entry US (“United States”) having and EID =3. Child
node US itself has two children, O=IBM (with EID=4) and

1998 international Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

O=Netscape (with EID = 5). The remainder of the naming
directory includes several additional entries at further
sublevels.

A particular entry thus may be a “parent” of one of more
child entries. An entry is considered a “parent” if it is
located in a next higher level in the hierarchy. Likewise, a
particular entry may be an ancestor of one or more
descendant entries across may different levels of the
hierarchy. A parent-child pair will also present an
ancestor-descendant pair.

We created two relations to model the hierarchy in LDAP:
parent-child relation (parent table) and
ancestor-descendant relation (ancestor table). The parent
table is created as follows. For each entry that is a parent
of a child entry in the naming hierarchy, the unique
identifier of the parent entry (PEID) is associated with the
unique identifier of each entry that is a child of that parent
entry. For corresponding parent table for the LDAP
hierarchy in Figure x is illustrated in the following table.
Thus, PEID 1 is associated with EID 2 and EID 3, PEID 3
is associated with EID 4 and EID 5, and so on. Each row
of the parent table includes a PEID:EID pair.

The descendant table is created as follows. For each entry
that is an ancestor of one of more descendent entries in the
hierarchy, associating the unique identifier of the ancestor
entry (AEID) with the unique identifier of each entry that
is descendent (DEID) of that ancestor entry. The AEID
field is the unique identifier of an ancestor LDAP entry in
the LDAP naming hierarchy. The DEID field is the unique
identifier of the descendent LDAP entry. Thus, in the
naming hierarchy illustrated in Figure x, AEID 1| has
DEIDs 2-10, because each of the entries 2-10 are also
descendants of the root node. AEID 3 has DEIDs 4-10,
AEID 4 has DEIDs 6-10, and so on. Each row in the
descendant table thus includes AEID:DEID pair.

For LDAP search operation, the criteria of the search is
specified in a search filter. The search filter typically a
Boolean expression that consists of attribute name,
attribute value and Boolean operations like AND, OR and
NOT. User-can use the filter to perform complex search
operations. The filter syntax is defined in RFC 1960. In
addition to the search filter, users can also specify where in
the directory tree structure the search is to start. The
starting point is called the base DN. The search can be
applied to a single entry (a base level search), an entry’s
children (a one level search), or an entire subtree (a subtree
search). Thus, the “scope” supported by LDAP search are:
base, one level and subtree. The parent and ancestor table
is used to facilitate one level and subtree searches without
recursive queries. In both cases, the search begins by going
into the database and using the LDAP filter criteria to
retrieve a list of entries matching the filter criteria. If the
search is a one level search, the parent table is then used to
filter out EIDs that are outside the search scope (based on

-147-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

the starting point or base DN). Likewise, if the search is a
subtree search, the descendant table is then used to filter
out EIDs that are outside the search scope (again, based on
the base DN). However, all the steps mentioned above are
performed in a single SQL query. The followings are some
examples of the SQL query skeleton that we used during
the one level and subtree search. In these examples, <data
fields> represent the SQL column name of the relations
defined in the LDAP/DB2 schema, which will be
described in more detail in the next section. <table list>
and <where-expression> are the two null terminated
strings returned by the filter translator. <root dn id> is the
unique identifier of the root dn.

One-Level Search:

SELECT <data fields>
from ldap_entry as entry
where entry.EID in (
select distinct ldap_entry.EID
from ldap_entry, <table 1ist>
1dap_entry as pchild, <list of
tables>
where ldap_entry.EID=pchild.EID
AND pchild.PIED=<root dn id> <sql
where expressions>)

In the one level search query, the parent table information
is contained in the ldap_entry table. Since ldap_entry table
also contains the entry information, we use the SQL as
operator to give an alias pchild to represent the parent and
child relation. Then in the where clause,
“ldap_entry.EID=pchild.EID” is used to filter out entries
which is not in the one level search scope.

Sub-Tree Search: .

SELECT <data fields>

from 1dap_entry as entry

where entry.EID in (
select distinct ldap_entry.EID
from ldap_entry, ldap_desc,
<tablelist>

where
(LDAP_ENTRY.EID=1dap_desc.DEID AND
ldap_desc.AEID=<root dn id>)
ldap_entry as pchild, <table 1ist>

where ldap_entry.EID=1dap_desc.EID

AND 1dap_desc.AEID=%d
<where expressions>)

In the sub-tree search query, the ancestor information is
stored in the ldap_desc table. The inner where statement
“Idap_entry.EID=Idap_desc.EID” is used to filter out
entries which is not the subtree search scope.

4.2 Database Schema

-148-

The following is the detail explanation of the tables that we
defined:

Entry table

This table holds the information about a LDAP entry. This
table is used for obtaining the EID of the entry and
supporting LDAP_SCOPE_ONELEVEL and
LDAP_SCOPE_BASE search scope. The parent and child
table is included in the Entry table since the all the other
attributes are dependent on EID.

EID - The unique identifier of the LDAP entry.
This field is indexed.

PEID - The unique identifier of the parent LDAP
entry in the naming hierarchy. For example, the
LDAP entry with the name "ou=Information
Division, ou=People, o=University of Michigan,
c=US' is the parent of "cn=Barbara Jensen,
ou=Information Division, ou=People,
o=University of Michigan, ¢c=US".

DN - The distinguished name of the entry.

DN_TRUC - Truncate DN to 250 characters so
that we can build indexes on this field.

EntryData - Entries are stored using a simple
text format of the form "attribute: value” as in the
U.M. reference implementation. Non-ASCII
values or values that are too long to fit on a
reasonable sized line are represented using a base
64 encoding. Giving an ID, the corresponding
entry can be returned with a single SELECT
statement.

Creator - The DN of the entry creator.
Modifier - The DN of the entry modifier.

modify_timestamp - Record the time when the
entry was last modified.

create_timestamp - Record the time when the
entry was created.
Attribute table:
One table per searchable attribute. Each LDAP entry is
assigned an unique identifier (EID) by the backing store.

The columns for this table are:

EID - The unique identifier of the LDAP entry.
Attribute value - Normalized attribute values.

Truncated attribute value. - If the length of the
column is longer than 250 bytes, a truncated

column is created for indexing. In DB2, the
maximum length for a indexed column is 255
bytes. The SQL type of the attribute depends on
the LDAP data type. Indexes can be created for
attributes whose size are less than 255 bytes

Descendant table

The purpose of this table is to support the subtree search
feature of LDAP. For each LDAP entry with an unique ID
(AEID), this table contains the descendant entries unique
identifiers (DEID). The columns in this table are:

AEID - The unique identifier of the ancestor LDAP
entry. This entry is indexed.

DEID - The unique identifier of the descend LDAP
entry. This entry is indexed.

4.3 LDAP filter to SQL Translation

This section discusses how our system translates LDAP
filters [8] to various types of SQL queries. We
implemented a filter translator to generate the equivalent
SQL expression corresponding to an LDAP filter that can
be used in the WHERE clause of an SQL SELECT
statement. For all queries, the general approach is to obtain
the entry EIDs which match the search criteria based on
the filter from the attribute table. Then the parent or
ancestor tables are used to check whether the EIDs are
located in the subtree under the base dn. After getting the
entry EIDs which satisfy the filter and search scope
criteria, the entry data are retrieved from the LDAP entry
table. However, all the operations mentioned above are
performed in a single SQL query. We discovered that
combining sub-queries into a single query is much more
efficient than performing sub-queries independently. The
combined SQL query not only saves context switching
cost, but also provides SQL query optimizer with more
information to come up with an optimum access plan.

LDAP filters consist of six basic search filters with the
format <attribute> <operator> <value>. Complex search
filters can be generated by combining basic filters with
Boolean operators AND. (&), OR (})}, and NOT (!).

The SQL SELECT statements used by LDAP/DB2 search
routines are in the following format:

Base Level Search:
SELECT entry.EntryData, <operational
attributes>
from ldap_entry as entry
where entry.EID in (
select distinct ldap_entry.EID
from <table list>
where (ldap_entry.EID=<root dn
id>) <sql where expressions>)

-149-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

One Level Search:
SELECT entry.EntryData, <operational
attributes>
from ldap_entry as entry
where entry.EID in (
select distinct ldap_entry.EID
from ldap_entry, <table list>
idap_entry as pchild, <list of
tables>
where ldap_entry.EID=pchild.EID
AND pchild.PIED=<root dn id>
<sql where expressions>)

Subtree Search
SELECT entry.EntryData, <operational
attributes>
from ldap_entry as entry
where entry.EID in (
select distinct ldap_entry.EID
from ldap_entry, ldap_desc,
<table list>
where
(LDAP_ENTRY.EID=1dap_desc.DEID
AND ldap_desc.AEID=<root dn id>)
ldap_entry as pchild, <table
list>
where
ldap_entry.EID=1dap_desc.EID
AND ldap_desc.AEID=%d <where
expressions>)

Based on the filter received, our SQL translator will
generate <table list> (a list of attribute tables) and
<where-expression> (the SQL expression). <root dn id> is
the unique identifier of the root dn. The where clause
should only be generated if <where-expression> is not the
empty string and no errors where detected in the parsing
the LDAP filter.

The translation rules for basic filters and Boolean filters
are presented in the following sections. In the translation
rules, the tablename is the SQL table for the specified
attribute and columnname is the column name containing
the attribute values.

4.3.1 Equality

The equality search operator locates entries with attributes
exactly equal to the given value. The translation rule is the
following:

LDAP fiiter:

(<attr> = <value>)
SQL expression:

(SELECT EID FROM: tablename WHERE
columnname = 'value')

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

For example, the filter (sn=Jensen) is to find surnames
exactly equal to Jensen. The corresponding SQL sub-query
generated for this filter is (SELECT EID FROM sn
WHERE sn = 'jensen’).

4.3.2 Ranges

For attributes supporting ordering, LDAP filter provides
inequality operators like "greater than or equal” and "less
than or equal". The translation rules are the following:

LDAP filter:
(<attr> >= <value>)
(<attr> <= <value>)

SQL expression:

(SELECT EID FROM tablename WHERE
columnname >= 'value")

(SELECT EID FROM tablename WHERE
columnname <= 'value”)

For example, the LDAP filter (sn >= Jesen) locates entries
with surnames lexicographically greater or equal to Jesen.
The corresponding SQL sub-query generated for this filter
is (SELECT EID FROM sn WHERE sn = ‘jensen’).

4.3.3 Substring

LDAP supports arbitrary substring matching for text
attributes. The user can put the wild card character (*) at
the beginning of a string, the middle of the string, the end
of the string, or any combination of these in the LDAP
filter. The format of the substring filter is:

(<atr> = [<leading>]* [any]*] [<trailing>])

The SQL operator LIKE is used for substring matching.
The SQL like operator has the following syntax:

column LIKE PATTERN

PATTERN combines string constants with wild-card
characters. SQL recognizes two wild-card characters:

* 9 Match zero or more characters
* -Match any one character

We use the SQL wild character "%" for the LDAP wild
card character. The LDAP substring filter
"(attribute=value-with-stars)" is translated into "(SELECT
EID FROM tablename WHERE columnname LIKE 'value
with percents')"

For example, the LDAP filter (sn=*jensen*) is to locate
surnames containing the string "jensen”. The following
SQL query is generated:

-150-

(SELECT EID FROM sn WHERE sn LIKE '%jensen%")
4.3.4 Approximate

The approximate search operator locates entries with
attributes which sound like the given attribute value. The
format of the approximate search filter s
(<attr>~=<value>).

The DB2 SOUNDEX library function is used for
approximate search. The SOUNDEX function returns a 4
character string that is either a CHAR or VARCHAR. The
SOUNDEX function is useful for finding strings for which
the sound is known but the precise spelling is not. It makes
assumptions about the way that letters and combinations of
letters sound that can help to search out words with similar
sounds.

The LDAP search filter "(attribute~=value)" is translated
to:

(SELECT EID FROM SSHI.SN WHERE
SOUNDEZX{(columnname)
= SOUNDEX('value")})

For example, the LDAP filter (sn~=jensen) locates entries
with surnames that sound like ‘jensen’. The following is
the SQL query generated:

(SELECT EID FROM SSHI.SN WHERE
SOUNDEX(sn)
= SOUNDEX('jesen')))

The basic LDAP filter can be combined to form more
complicated filters using the Boolean operators and a
prefix notation. The '&' operator represents AND, the ¥
operator represents OR and the "' operator represent NOT.

4.3.5 Others

The attribute values specified in the LDAP filters cannot
contain UN-escaped left or right parenthesis characters.
The following escape combinations (backslash followed by
any character) are translated as indicated.

\) will translate to) in the SQL value

\(will translate to { in the SQL value

* will translate to * in the SQL value

\\ will translate to \ in the SQL value

\c will translate to \c in the SQL value where c is any
other

characters other than) or (or * or\

Any single quote characters found in the attribute value
will be translated to two single quote characters since the

SQL value is enclosed in single quote characters.

4.3.6 Complex Queries

Based on the basic translation rules mentioned above, our
biggest challenges are to provide a algorithm which can
do the following:

* Combine the basic expressions to form a single SQL
query which will retrieve the target entries which

exactly match the search criteria.

* Deal with complicated LDAP queries with infinite
logical depth.

* Deal with ALL logical operators efficiently.

Entry | Entry 2 Entry 3

An intuitive solution is based on joining the attribute tables
and apply the basic expressions to the attributes in the
joined table. The LDAP AND (&) and OR ([} operator, in
this case, can be translated into SQL. AND and OR
directly. In addition to the combined SQL expression, we
need to include the JOIN condition based on EID.

The following is an example:

LDAP filter:
1dap filter (J(fl='vl1")(f2='v2"'))

SQL Query:
SELECT EntryData
FROM ldapentry, f1,f2
WHERE (fl1.fl='flvalue') OR
(f2.f2="'f2value')
AND (ldapentry.EID=f1.UID)
AND (ldapentry.EID=f2.UID)
AND (ldapentry.EID IN
SELECT DEID from ldapdesc
WHERE PEID=<UID>)

However, it is difficult to generalize this solution to handle
the NOT (]) operator. The LDAP NOT operator is
basically used to locate entries which do not match the

search criteria. A
naive solution is to directly translate the LDAP NOT

operator into a SQL NOT operator. The following is an
example:

LDAP filter:]
ldap filter (1(fl='v1'))

-151-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

SQL Query:
SELECT EntryData
FROM ldapentry, f1,f2
WHERE NOT (fl.fl='vl")
AND
(1dapentry.EID=f1.UID)
AND (ldapentry.EID IN
SELECT DEID
from ldapdesc

WHERE PEID=<U1D>)

The SQL query above does not yield the correct answer.
The following picture illustrates the problem. There are
five entries in this sample database (EID from 1 through
5) where the values of attribute f1 for entry 1,2,3 and 4 are
vl. However, f1 of entry 4 is a multi-value attribute which
has value v1 and foo. With the SQL statement above,
entry 4 is the answer. However, the correct

answer should be entry 5. We discovered the following
problems with the table join approach:

* Ifan entry does not contain the target attributes (for
example entry 5), this entry should not be selected by
the SQL statement above.

* Since an attribute can have multiple values in LDAP,
the table join query will select the entry in which one
of the value meet the criteria (for example, entry 4).
But this entry should not be selected based on the
LDAP filter. .

One solution to the problems above is to retrieve all the
entries from the database and filter out the candidate entry,
like Netscape server. However, with a LDAP directory
with large number of

entries, it takes forever to get back the results.

Another problem that we found with the intuitive solution
mentioned above is that the OR operation does not
perform well even for a small database with thousands of
entries. Because of it is using JOIN to combine the
attribute tables and Idap_entry tables. DB/2 will take a
cross product all the rows in the attribute tables and
Idapentry tables for the OR operation. Even though most
of the rows in the cross product are irrelevant, but DB2
SQL engine dutifully reports all these rows, probably a
lot more than are needed for the subquery evaluation.

Our solution is based on the concept of EID sets. First,
generate SQL subquery for each LDAP operator based on
the basic translation rules. The SQL subquery will generate
a set of entry EIDs which match the LDAP basic
operation. If the LDAP logical operator is OR()), use
UNION to union the sets generated from the subquery. If

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0O.C.

the LDAP operator is AND (&), use INTERCEPT to
intercept the sets generated from the subquery. We
experimented two different ways to put together the SQL
query based on the EID set concept.

The followings are the SQL queries that our systerri can
generate for LDAP filter ((f1="v1(£2="v2"):

Alternative 1:

SELECT entry.EntryData
FROM LDAP_ENTRY as entry
WHERE entry.EID in
(
SELECT distinct LDAP_ENTRY.EID
FROM 1dap_entry, ldap_desc, fl
WHERE
(1dap_entry.EID=1dap_desc.DEID AND-
ldap_desc_AID=<id>) AND
1dap_entry.eid=fl.eid AND
fl='vl")
UNICN
SELECT distinct tdap_entry.EID
FROM 1dap_entry, ldap_desc, f2
WHERE(1dap_entry.EID=1dap+desc.DEID
AND ldap_desc.AEID=<id>)
AND ldap_entry.EID=f2.eid
AND f2='v2'))

. Al_temative 2:

SELECT entry.EntryData

FROM LDAP_ENTRY as entry WHERE entry.EID in
(SELECT distinct LDAP_ENTRY.EID FROM
LDAP_ENTRY,1dap_desc

WHERE

(LDAP_ENTRY.EID=1dap_desc.DEID AND
Tdap_desc.AEID=<id>)

AND LDAP_ENTRY.EID

IN ((SELECT EID FROM f1 WHERE f1 = 'vl1')
UNION (SELECT EID FROM SN WHERE SN ='v2'
)

Both SQL statements mentioned above generates the
correct results. The first query is basically to perform the
JOIN operation with the Idap descendant table within each
subquery. The second

query is to perform the JOIN with the ldap descendant
table outside the subquery. Through extensive
measurement, e choose to use alternative 2 based on the
performance results. In addition to correct results, the OR
operation perform reasonably well with both alternative 1
and 2 since relevant entries will be filtered out in the
subquery and target entries will be reported back to the
main query.

With the set based approach, the NOT operation can be
performed y excluding entries through negating the IN
operation before he subquery. The following exarnple
illustrates the operation:

-152-

Filter String:
(1(f1="v1"'))

SQL Statement:

SELECT entry.EntryData,

FROM LDAP_ENTRY as entry

WHERE entry.EID in

(SELECT distinct LDAP_ENTRY.EID FROM
LDAP_ENTRY,1dap_desc

WHERE (LDAP_ENTRY.EID=1dap_desc.DEID AND
1dap_desc.AEID=<id>)

AND LDAP_ENTRY.EID NOT IN ((SELECT EID
FROM fl1 where fl='v1')))

With the basic translation rules and the EID sets approach,
we implemented a recursive algorithm which can deal with
complicated queries with infinite logical operators. The
following is an example of a SQL statement generated for
complex query with AND, OR and NOT operator.

Filter String:

(&(| (objectclass=PERSON) (objectclass=GROUP)
Y (sn=SMITH) (! (member=%*)))

SQL Statement:

SELECT entry.EntryData,

FROM LDAP_ENTRY as entry WHERE
entry.EID in

(SELECT distinct LDAP_ENTRY.EID FROM
LDAP_ENTRY,1dap_desc

WHERE (LDAP_ENTRY.EID=1dap_desc.DEID
AND ldap_desc.AEID=?) AND

LDAP_ENTRY.EID

IN (((SELECT EID FROM OBJECTCLASS
WHERE OBJECTCLASS = PERSON)

UNION (SELECT EID FROM OBJECTCLASS
WHERE OBJECTCLASS = GRCOUP))

INTERSECT (SELECT EID FROM SN WHERE SN
= SMITH) INTERSECT

(SELECT EID FROM LDAP_ENTRY WHERE EID
NOT IN

(SELECT EID FROM MEMBER))))

8. Performance

In IBM performance lab, we have measured the response
time with sample databases created form white page
information of IBM exployees. The size of the database
ranges from a 100k entries database up to 16 Million
entries database. We observed that our solution performs
reasonable well compared with the industry leading LDAP
server. Especially with databases with entries more than
one million entries, our server outperforms the competitor.
The peroformance results proved that if designed

appropriately, relational tables can be used to implment a
hierarchical directory structure like LDAP. An offical
performance results will be published as a white paper by
IBM later this year.

9. Conclusions

We have presented an efficient design and implementation
to use relational database as a respository of LDAP
directory information. The relational databases provide
hard-won advantages such as scaleability, transaction
integrity, backup and recovery, stability and a powerful
query processing engine. However, Mapping the LDAP
model to relational tables is not a trivial task. First of all,
it appears that the LDAP model is hierarchical. It is known
_ that hierarchies are very easy to represent in the
hierarchical databases (like IMS) , where the structure of
the data and the structure of the database are the same.
Unfortunately, it is a general opinion that relational
databases do not provide adequate support for such data.
Second, LDAP allows both single and muiti-valued
attributes. But relational database does not deal with
multi-valued attributes well. This paper presents a practical
and efficient solution for the problems mentioned above.
The design and implemenation mentioned in this paper is
used in IBM E-Directory LDAP server. Experiments
conducted in our performance lab showed that our
implementation is competitive to other directory products
in the industry.

Acknowledgments

Rod Mancisdor has inspired many of the ideas that we've
presented in this paper. Larry Fichmer, Chin-Long Shu,
Mark McConaughy, and Trung Tran also contributed
greatly to the design and implementation.

References

[1] The SLAPD and SLURPD Administrator's Guide,
University of Michigan, Release 3.3, April 30, 1996

[2] The Lightweight Directory Access Protocol: X.500
Lite, Timothy A. Howes, July 27, 1995, CITI
Technical Report 95-8

[3] Lightweight Directory Access Protocol, W. Yeong,
T. Howes and S. Kille, March 1995, RFC 1777

[4] The LDAP Application Program Interface, T. Howes
and M. Smith, August 1995, RFC 1823

[5] LDAP: Programming Directory-Enabled
Applications with Lightweight Directory Access
Protocol, T. Howes and M. Smith, Macmillan
Technical Publishing, 1997, ISBN 1-57870-000-0

[6] A String Representation of Distinguished Names, S.
Kille, March 1995, RFC 1779

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

[7] The String Representation of Standard Attribute
Syntaxes, T. Howes, S. Kille, W. Yeong and C.
Robbins, March 1995, RFC 1778

[8] A String Representation of LDAP Filters, T. Howes.
June 1996, RFC 1960

[9] A Scaleable, Deployable Directory Service
Framework for the Internet, T. Howes and Mark C.
Smith, April 1995, CITI Technical Report 95-7

[10].Database 2, Application Programming Guide for
common servers, IBM, S20H-4643-01

[11]An Efficient Relational Implementation of Recursive
Relationships using path signatures, J. Teuhola, The
10th International Conference on Data Engineering,
February, 1994, Houston, Texas

[12]Direct Algorithms for Computing the Transitive
Closure of Database Relation, R. Agrawal and H.V.
Jagadish, Proc. of 13th VLDB Conference, Brighton,
England, pp. 255-266, 1987

[13]An Amateurs Introduction to Recursive Query
Processing Strategies, Proc. ACM SIGMOD Confg,
Washington D.C., pp16-52, 1986

[14]A Method for Hierarchy Processing in Relational
Databases, P. Ciaccia, D. Maio and P. Tiberjo, Inf.
Systems, Vol. 14, No 3, pp 93-105, 1989

[15]Schema and tuple trees, an intuitive structure for
representing relational data, E.H. Herrin and R.A.
Finkel, Computing Systems: The journal of the
USENIX association, pp 93-118, 1996

[16]United States Patent, No 5467471, “Maintaining

Databases by Means of Hierarchical =~ Genealogical
Table”, Nov. 14, 1995

-153-

	
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153

