1998 International Computer Symposium
Workshop on Scoftware Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

AN EFFICIENT ALGORITHM FOR COMPUTING
PARTIAL TRANSITIVE CLOUSERES

Yan Feng Wen-Chi Hou
Department of Computer Science
Southern Illinois University at Carbondale
Carbondale, IL 62901 U.S.A hou@cs.siu.edu

Abstract

This paper focuses on the computation of
partial transitive closures (PTC) in deductive databases.
We present an algorithm that takes advantage of
topological sort and a tagging technique to achieve better
performance. The algorithm has two phases. The first
phase, like many others, is to generate a topologically
sorted subgraph, containing only the reachable nodes
and edges of the query. In the second phase, we evaluate
the nodes from sources to leaves in topological order.
Since the reachable subgraph is already sorted, the
evaluation of nodes can be fully sequenced. A tag is
associated with each node traversed, indicating from
which source nodes the node can be reached. This
tagging technique simplifies the storage of intermediate
results and speeds up the computation. The new
algorithm is simple, easy to implement, and yet efficient.
It compares favorably to well-known algorithms,
especially when the number of source nodes is not large.

Key Words : Deductive Databases, Transitive Closures.

1. Introduction

Much research on deductive database systems
has been done in the past decade to meet the
requirements of new database applications. The success
of such systems largely depends on the efficiency of the
recursive query processing techniques used. The
complete transitive closure (CTC) of a directed graph is
a binary relation, such that tuple (i, j) is in CTC if, and
only if, there is a path from node i to node j. The partial
transitive closure (PTC) of a given source set S is a
subset of CTC that contains only those tuples (i, j),
ie S. It has been pointed out [11] that the computation
of partial transitive closures is very common in recursive
query processing. Jiang (6] has further suggested to

implement PTC computation as an elementary database
operation in new database systems.

In this paper, we present a new algorithm to
compute PTC. The algorithm takes advantage of
topological sort and a tagging technique to achieve better
performance. The tagging technique simplifies the
storage of intermediate results and speeds up the
computation.

The rest of the paper is organized as follows. In
Section 2, we first discuss some related work, and then
introduce our algorithm in Section 3. In Section 4, we
present the results of empirical performance evaluation
of our algorithm. Section 5 is the conclusion.

2. Related Work

In this section, we define notations and discuss
related work.

2.1 Notations

We seek to compute PTC of a directed graph
G(V, E) for a given set of source nodes S, where V is the
set of nodes and E is the set of edges in the graph G. We
use VREACHG(i) to denote the set of nodes in G that are
reachable from i, and EREACHG() to denote the set of
edges in G that are reachable from i. VREACHG() is
also called the reachability set of i. For simplicity, the
subscript G in VREACHG(i) and EREACHG() is often
omitted when there is no ambiguity. IVREACH(i)l and
[EREACH(i)! denote the cardinalities of the respective
sets, and IS| denote the cardinality of the source set S.
SUC(i) is the set of immediate successors of node i.

The magic set of S [2, 5, 3], denoted M, is the
set of nodes that are reachable from nodes in S. The
magic graph GM for S [2, 3] is the part of graph G whose
nodes are in the magic set M. In other words, the magic
set and magic graph are the reachability set and

-129-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

reachable graph of S, respectively.
2.2 Jiang’s Algorithm

Jiang's algorithm [7] uses a combination of
direct search and dynamic programming, in which
breadth-first search is the dominant traversal strategy.
The directed graph is stored as (immediate) successor
lists (i.e., (parent, childl, child2, ...) lists) on disk. To
avoid repeated traversals of common subgraphs,
intermediate results (i.e., the reachability sets) of multi-
input nodes (i.e., nodes with multiple incoming edges)
are saved for potential reuse, as they may be visited again
from other source nodes. The reachability set of a node
can be obtained by taking a union of its reachable single-
input nodes and the reachability sets of its descendant
multi-input nodes.

It can be observed that the more multi-input
nodes a graph has, the more the algorithm performs like
dynamic programming. When all the nodes have
multiple incoming edges, the algorithm becomes the
dynamic programming. On the other band, the algorithm
degenerates to the direct search algorithm when all the
nodes are single input nodes. The algorithm is an
improvement over the dynamic programming because it
does not save VREACH for any single-input node,
which will not be visited from other source nodes.
However, it also has a drawback. That is, some of the
intermediate results saved with multi-input nodes may be
of no use later because there is simply no path from other
source nodes to them.

2.3 Jakobsson’s Algorithm

It is assumed [5] that the magic graph has
already been derived beforehand and stored as
predecessor lists. The intermediate result is stored as a
special-node tree for each node in the magic graph. A
special-node tree is a predecessor tree containing only
special-nodes, except probably for the root of the tree. A
special-node is a source node or the nearest common
successor of at least two special nodes. For each node in
the magic set, the special-node tree is constructed by
merging the special-node trees of its immediate
ancestors.

Jakobsson's has the following drawbacks. The
algorithm requires that the magic graph be derived first,
while Jiang’s doesn’t. The storage of a special-node tree

-130-

for each node in the magic graph may turn out to need
more space than the reachability sets of Jiang’s multi-
input nodes. Moreover, the tree operations (i.e.,
searching and merging) of Jakobsson’s may be more
time consuming than the set operations of Jiang’s.

2.3.3 BTC Algorithms

The algorithm computes PTC in two phases.
First, the magic graph is extracted and sorted
topologically. Then, in the second phase, PTC is
computed on the derived magic graph. The nodes in the
magic graph are processed in reverse topological order.
The reachability set of a node is obtained by merging the
reachability sets of its immediate successors, however, in
topological order to avoid unnecessary set unions. For
example, to compute VREACH(d) in Figure 2.1, a union
with VREACH(f) should be performed before the union
with VREACH(1) because node f precedes i in
topological order. Since node i is also a successor of f,
VREACH(f) must have already contained all the nodes
of VREACH(I). Therefore, the union between

ag

Figure 2.1. Marking Optimization

VREACH(d) and VREACH() can be omitted once we
find out that successor i has already been added to
VREACH(d). A redundant edge like e(d, i) can either be
a cross or a forward edge [1]. This is referred to as
marking optimization in [4].

As a simple comparison, BTC attempts to avoid
unnecessary unions through the use of marking
optimization, while Jiang’s and Jakobsson’s algorithms
incorporate special mechanism (i.e., multi-input nodes,
special-node trees) to achieve the same goal and reduce
storage space for intermediate results. Both BTC and
Jakobsson's require the extraction of the magic graph
before traversing, while Jiang’s doesn't.

3. The New Algorithm

Except for the base graphs, which are originally
stored on disks, all other data structures, including magic
graphs, intermediate results, etc., are stored in memory.
This implementation assumption also applies to all other
algorithms. The algorithm has two phases. The first
phase is the same as that of BTC, that is, to generate a
topologically sorted magic graph. In the second phase,
we evaluate nodes from sources to leaves in topological
order, instead of from leaves to sources in reverse
topological order as in BTC. A tag is associated with
each node traversed, indicating from which source nodes
the node can be reached. The tag values directly translate
into output tuples.

3.1. The First Phase - Preprocessing

The preprocessing phase generates an acyclic
yet topologically sorted magic graph by applying
Tarjan’s algorithm [9]. Nodes in a cycle are collapsed
into a single node [10] for efficiency. This preprocessing
phase is the same as that of BTC. Although Jakobsson'’s
.and Jiang's do not specify such a preprocessing phase,
they all use Tarjan’s algorithm for more or less the same
purpose. Specifically, Jakobsson’s algorithm requires
that cycles be removed beforehand since it assumed
acyclic magic graphs. Jiang’s algorithm deals with
cycles using Tarjan’s algorithm at run-time during PTC
computation.

3.1.1 Storage Structure

The resulting magic graph is stored in the form
of (immediate) successor lists [4, 7] and is here called the
main table. A record in the table has three fields:
Orderkey, (node-)ID; and SUC-list. The Orderkey,
obtained in the topological sorting, stores the topological
order key of the node; the ID specifies the name of the
node; and the SUC-list stores the order keys of its
immediate successors. The records are stored in
topological order of nodes (i.e., Orderkey). Table 1
illustrates the table structure for the graph (assumed a
magic graph) shown in Figure 2.1.

3.2. The Second Phase - Computation of PT

We attempt to explore reachable node, from
sources to leaves, in topological order. Initially, only the
source nodes are considered as (known) reachable nodes.
We process a known reachable node, say, i that has the

1998 International Computer Symposium

Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

smallest order key (i.e., in topological order) by first
retrieving its corresponding record from the main table.
The immediate successors of the node thus become
(known) reachable nodes. Meanwhile, we write output
tuples (s, i) for all s (s € S, s #1) that reach i. Such s can
be obtained using a simple tagging technique (discussed
shortly). We repeat the above process for each
unprocessed reachable node in topological order until
there is no unexplored reachable node. It can be observed
that records are retrieved from the table in the same order
as they are stored and thus yields minimat /O if the table
is stored on disk. In the following, we first introduce a
tagging technique that is used for storing intermediate
results as well as for computing PTC. And then we
describe a simple mechanism that uses a queue to help
sequence the retrieval.

3.2.1. A Tagging Technique

An array of bits, which we call a tag, is
associated with each node, indicating from which source
nodes the node can be reached. The algorithm uses tags
to store intermediate results and produce PTC during
traversal. Assume that there are k source nodes, say, sy,
$9...., Sg- Then, a tag with k bits will suffice to serve the
purpose. Note that the intermediate result stores source
nodes that reach the node in question, instead of
reachable nodes of the node as in other approaches, e.g.,
BTC, Jiang’'s. This presents a unique advantage (over
storing reachable nodes) when the number of source
nodes is not large.

The rules for assigning values to tags are stated
as follows. The ith bit, counted from left to right, of a tag
associated with a node is set to 1, if and only if:

1. the node is the source node si (i.e., source node
number i); or
2. the node is reachable from the source node s;.

The first rule initializes the tag values of source
nodes, indicating that a source node is reachable from
itself. The second rule defines the tag values of ordinary
reachable nodes.

Let’s again consider the magic graph in Figure 2.1.
Assume that ¢ and a are source nodes, which are
arbitrarily numbered as source node number 1 and 2,
respectively. Note that the source node numbers 1, 2
assigned to c, a have nothing to do with their Orderkeys.

-131-

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Since there are two source nodes, two bits are sufficient
for each tag. For source nodes ¢ and a, as they are the
number 1 and 2 source nodes, their tags are initialized to
10 (i.e., the first bit is set) and 01 (i.e., the second bit is
set), respectively, following the tagging rule 1.

Since node d is reachable only from source node a,
its tag will eventually be set (discussed later) to 01 to that
effect following rule 2. The tag value 01 associated with
d, indicating that source node 2 has a path to d, can easily
be translated into output tuples (a, d). By the same token,
nodes f, i, and e will all eventually have their tags set to
01, which translate to output tuples (a, f), (a, i) and (a,),
respectively. Node g will have its tag set to 11 because it
is reachable from both the source nodes c and a, which in
turn translates into output tuples (s, g), where s =c¢, a.

Now, let us discuss how these tag values are
computed during the traversal. When the record of
source node a is retrieved from the main table, its
immediate successor d is identified as a reachable node
through the SUC-list. The tag of d is set to 01 by
performing a bitwise OR operation on the tag of a (01)
and the tag of d (00, initially), meaning that any source
node that has a path to a also has a path to d. Similarly,
when node d is processed, the tags of its immediate
successors T, i, and g are all set to 01 by an OR operation
on the tag of d (01) and the respective tags (all initialized
to 00), indicating that they are reachable from a. Later
on, when c is processed and g is found to be a successor,
we modify g’s tag to 11 by again performing an OR on
¢’s tag (10) and g’s tag (01). It can be conceived that the
tag value of a node, obtained by bitwise OR operations
on the tags of its parents and its own, reflects the fact that
if a source node can reach the parent of a node, it can also
reach the node, too. The tags store intermediate results
and the tagging process is actually the process of

computing PTC.
3.2.2 Sequence the Search Using a Queue

It can be observed from the above discussion
that the tag value of a node is computed from the tags of
its immediate ancestors. Therefore, the tag value of a
node is not completely set until all its immediate
ancestors have their tags set properly. In an attempt to
compute the PTC in a single traversal of the graph, the
nodes must be visited in their topological order.

For simplicity, we assume that Orderkeys take

consecutive integers from 1 to IMI (the size of magic set).

‘The queue can be easily implemented as an array of

pointers pointing to the tags, with the ith element of the
array designated to a node whose Orderkey is i.
tag = array [1.. k] of bit; * k=ISi */
Q: array [1.. IMI] of (pointer to tag);

We assume that initially all elements of Q point
to clean tags (all bits set to 0). The tag values of source
nodes are to be set first following rule 1. Nodes (or
elements) in the queue are processed one by one in order.
As a node, say, i becomes the head of the queue, we
retrieve the record for i from the main table. The
immediate successors of i are identified, and their tag
values are obtained by an OR operation on the node i’s
tag and their respective ones, reflecting the fact that
source nodes that can reach i can also reach its
successors. Note that no records for the successors are
actually retrieved from the main table until the
corresponding nodes become the head of the queue. This
ensures topological traversal of the magic graph.
Whenever a node i becomes the head of the queue, all of
its ancestors must have been processed completely, and
its own tag has also been set completely. The tag of i
indicates from which source nodes node i can be reached.
We can translate the tag value into output tuples of the
form (s, 1), where s is a source node whose corresponding
bit in the tag is set. After the queue is processed
completely, the set of output tuples is exactly the PTC we
are trying to compute. Note that no duplicates will ever
be produced, no records will be retrieved twice from the
main table, and no disk blocks will ever be read twice if
the main table is stored on disk.

3.2.3 The Algorithm

The algorithm is presented in Procedure
FindPTC. For ease of presentation, we assume that
procedures Newtag() and GetRecord(y) are already
implemented. Newtag() allocates space for a tag and
initialize it. GetRecord(y) is to read the record for node y
from the main table.

Procedure FindPTC (S: source set)

{ tag = array [1..k] of bit;
Q: array [1..IMI] of (pointer of tag);
i, y, orderkey: integer;
s, si:ID;

-132-

For(i:=1toMI) do Q[i] := Newtag();
For (each node si inS) do
set the ith bit of si‘s tagtol;
For (orderkey :=1 to MI) do
{
r := GetRecord (orderkey);
For each bit set to 1 in *Q[orderkey] do
/* let s be the corresponding source node*/
if (s r.ID) write an output tuple (s, r.ID);
For each Orderkey y in r.SUC-list do
/* y is an orderkey of a node */
*Qly] == *Qly] | *Qforderkey];
/* a bitwise OR on its parent and its own tags */
}
}

Theorem 1: The algorithm computes PTC correctly for
a given set S of source nodes.

Proof sketch : The tag bit of a node r corresponding to a
source node s in S is set if, and only if, there is a path
fromstor.

Theorem 2: The algorithm has a complexity of
© (ISLIEy), where IEyl is the number of edges in the
magic graph.

Proof sketch : An OR operation is performed on tags (of
size IS each) for each edge in the magic graph.

3.3. Comparisons with BTC Algorithm

The BTC algorithm deserves special attention
because it bears the most similarity to our algorithm and
has generally better performance than other previously
mentioned algorithms [3]. While both BTC and ours
have exactly the same first phase, ie., generating
topologically sorted magic
differences appear in the second phase. Our algorithm

graphs, significant

explores nodes from- sources to leaves in topological
order, while BTC explores from leaves to sources in
reverse topological order. In BTC, the set of reachable
nodes of a node is obtained by performing union
operations on sets of reachable nodes of its children.
Instead, ours computes the set of source nodes that
reaches a node by performing union operations (bitwise
ORs) on the sets of source nodes that reach its parents.
The union operations on reachable node sets can be

extremely expensive, especially when the sets are large.

1998 International Computer Symposiumn

Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0.C.

According to our careful study, it shows that it would be
most computationally efficient to represent sets of
reachable nodes as bit vectors, like tags of ours, and use
bit ORs for the unions. Therefore, reachable nodes (or
intermediate resuits) in both BTC and Jiang’s will all be
implemented as tags for comparisons. This uniform
implementation adds another resemblance between BTC
and ours, and makes comparisons simple. However, the
size of our tags is IS, while it is IMI for both BTC and
Jiang’s. Note that [SI<MI
significant impact on the performance. On the other

and this could have

hand, BTC may perform less ORs by identifying cross
and forward edges. Essentially, BTC has a complexity of
© (IMLIEpp!), where |Eyp! is the number of edges,
excluding cross and forward edges, in the magic graph.
It can be observed that ISI, IMI, and IEy| are the major
factors determining the performance.

4. Preliminary Experimental Results
The experiments are run on Sun Sparc3, with
110 MHZ speed and 32MB memory.

4.1. Assumptions

For simplicity, we shall assume, as in {3], that
all algorithms have the same preprocessing phase (like
BTC and ours) of generating a topologically sorted
magic graph in the form of successor or predecessor lists.
Although Jakobsson’s does not require a sorted magic
graph, it assumes an acyclic magic graph, which requires
essentially the same amount of work as obtaining a
sorted magic graph, yet it can greatly benefit from using
a sorted magic graph by sequencing the search in the
graph. As for Jiang’s, it simply moves the job of
removing cycles from run-time to the preprocessing
phase. Moreover, studies [3, 8] have shown that the cost
of a topological sort is negligible and thus is often
ignored. As a result, we believe such an assumption of a
uniform preprocessing phase should not yield any
unfairness in the comparisons.

4.2 Query Parameters

- We generate synthetic graphs in the same way
as [3] to study the performance of the algorithms. An
acyclic, topologically sorted graph is generated by first
numbering the nodes and then adding arcs from low

-133-

1998 international Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

numbered nodes to high numbered nodes. A graph is
characterized by its number of nodes, average out-degree
(average number of outgoing edges of nodes), and
locality, which is defined to be the maximum difference
between pairs of node numbers of edges.

4.3 Experimental Results

We consider CPU time and VO of all
algorithms. VO cost for reading magic graphs is not
discussed due to our simplifying assumption that the
magic graph is already stored in memory. In addition, the
cost of writing output tuples will also not be included in
the comparisons as each algorithm writes the same
amount of output tuples. Due to space limitation,
interested readers are referred to [8] for more
comprehensive experimental results.

4.3.1 CPU Time

The CPU cost not only has to do with the number
of operations performed but also the complexity of the
operations themselves. Consequently, the storage of
intermediate results and the operations on them can have
great impact on the performance. As mentioned earlier,
we have chosen bit vectors (tags) to store intermediate
results of Jiang’s, BTC, and ours as it is most efficient for
the dominant union operations. Jakobsson’s has its own
data structure for special-node trees, which could not be
replaced by tags effectively. Therefore, we will stick to
Jakobsson’s original data structures.

In general, our algorithm is the simplest, BTC is
the next, and Jakobsson's is most complex. Recail that
while a tag in BTC and liang’s requires IM! bits, ours
needs only IS bits (11 < IMI). However, BTC and Jiang’s
algorithms may perform less ORs than ours due to their
respective optimization measures. Specifically, Jiang's
algorithm performs set unions only on intermediate
results of multi-input nodes, while BTC does not
perform unions on forward and cross edges.

In Figures 4.1.(a) and (b), we show the CPU cost
of the algorithms on average out-degree value 2. The
graphs have 10,000 nodes with a locality 10,000. It is
observed that Jakobsson's algorithm performed much
siower in all cases than others. This is mainly due to its
complex representation of special-node trees (versus the
bit vectors), expensive tree merging operations (versus

the OR operations), and extensive use of stacks. The .

special-node trees become large as the number of source
nodes and average out-degree increase, and thus increase
the cost of merging rapidly. Moreover, since Jakobsson’s
derives a superset of the PTC, extra computation is
incurred in deriving such extra tuples and later removing
them.

As shown in Figure 4.1.(a), our algorithm clearly
outperformed Jiang’s and BTC when the number of
source nodes is not very large (or when ISVIMI is small,
to be more precise). This is mainly due to the smaller size
of our tags (IS| << IMI). Jiang’s algorithm did perform
slightly better than BTC when the out-degree is low. This
is mainly due to the fact that the graphs have a relatively
larger number of single-input nodes than forward/cross
edges whea the out-degree is low. However, much of the
gain is offset by its complex stack management.

100 -

10 «

3

400 500
Number of Scurca Nodes

100 200 300

(a) Small Numbers of Source Nodes

Tima{ln seconds)

§00 700 306 900 1.000

i

Q -+ + ¢ o ¢ :

1,000 2.000 3,000 4,000 5,000 §.000 7,00 3000 3.00C¢ 10,000

Number of Sourcs Nodss

(b) Large Number of Source Nodes
Figure 4.1 CPU Time

-134-

As illustrated in Figures 4.1, when the number of
source nodes increases, ISI/ IMl ratio is getting closer to
1, the advantage of smaller tags dwindles, and the
performance of BTC catches up. As shown in Figure
4.1.(b), BTC outperformed ours when the numbers of
source nodes are greater than 7,000 (out of 10,000). This
is mainly due to the fact that there are around 15% of the
edges in the graphs (of average out-degree 2) are forward
or cross edges, and this outweighs the gains of smaller
tags and less overhead (due to the simplicity) of our
algorithm.

4.3.2 Pagel/O

Space requirement also has a great impact on
the performance of an algorithm. If the data structures of
an algorithm can not be accommodated in memory, page
faults could result and thus degrade the performance.
The more space an algorithm needs, the more likely page
faults will occur.

BTC and our algorithm use the same and the
simplest data structures, bit-vectors and arrays, and have
the same access pattern. Any page replacement policy is
expected to have the same effect on both algorithms.
Jakobsson’s has the most complex tree structures and
operations, and uses stacks extensively. [t might be quite
tedious for a simulated buffer manager to keep track of
all the activities. Moreover, since page and list
replacement policies have only secondary effects on the
performance (3], we will not implement a simulated
buffer manager and simply let the OS manage the
available space. The underlying page replacement policy
of the system is LRU. We generate graphs with 40,000
nodes, which are large enough to generate large numbers
of page faults to view the trend.

The main data structure in our algorithm is an
array of pointers and tags. The space required for the
array is IMI . sizeof(pointer) and the space for tags is MI.
ISI bits.

BTC essentially uses the same data structures as
ours, however, with tags of size IMI bits. In Jiang’s
algorithm, the intermediate result (tag) for each source
node and each node with multiple incoming edges, is to
be kept. That is, there are |S U V qyjei.in! reachability sets,
where S is the set of source nodes and Vp.in IS the set
of nodes with multiple incoming edges. The size of each
tag is IMI bits. It is worth mentioning that if we had not

1998 international Computer Symposium

Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

assumed a preprocessing phase for Jiang’s algorithm, it
could have needed tags of size N bits, where N is the
number of nodes in the entire graph. In addition, each
source node or multi-input node needs to have a problem
list storing descendant multi-input nodes. The algorithm
also needs a stack, an array of IMl integers, and two M-
bit vectors indicating node types (leaf nodes, multi-input
nodes).

Jakobsson’s algorithm needs to store a speciai-
node tree with each node traversed. It also employs a bit-
vector to record the set of nodes for which the special-
node trees have been computed. Note that the structure of
the special-node tree is more complex than the tags.

120,000 T
—p—3TC {
. 100.000 4 THFe3 |
: —r—— i S
£y
2 80,000 +
=
50,000 +
3
e
~ 40,000 +
=]
I
& 20,000 A
b : ; ; ; ;
) 5000 10,000 15,000 20,000 25,000
Number of Scurce Nodes
(a) Locality : 5,000 Average Out-degree : 2
120,000 /" —aT
— —J—Fwg's
g 100000 7 !
3 80,000 +
=
@ 50,000 +
3
0
w 40,000 =
-]
o]
& 20000 +

30.000

10,000 15,000

Number aof Source Nodes

0

Q 3,0C0

(b) Locality : 40,000 Average Out-degree : 2

Figure 4.2 Page /O

It is obvious that our algorithm uses less space
than BTC due to smaller tags. The space requirement for

-135-

20,000 25,000

30,000

1998 internationai Computer Symposium
Workshop on Software Engineering and Database Systems -
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Jiang’s is dependent upon the particularity of the graph.
If few nodes have multiple incoming edges, it may have
good performance. As for Jakobsson's, if there are many
special-nodes (quite often that is the case when the
number of edges is large), the algorithm may require a
very large amount of memory space.

Figure 4.2 shows the page I/O of each algorithm.
For simplicity, we show only the case where the average
out-degree is 2. Locality also has some effect on the
performance. Jakobsson’s requires lots of space for
special node trees and thus generated extremely large
numbers of page faults. Its results will not be discussed
further.

Our algorithm initially performs best. While
other algorithms have large numbers of page faults, ours
has only few or no page fauits initially. This is due to the
fact that our algorithm requires less space than others. As
the number of source nodes increases, more space is
required, and more and more tags could not be stored in
memory. Since BTC performs less unions of which some
can cause page faults, page fault rates of our algorithm
increases faster than BTC. BTC eventually has a better
performance when the size required for intermediate
results is much larger than the memory space. As the
number of source nodes increases beyond 30,000, the
system essentially thrashes for all algorithms due to the
lack of memory.

Locality also has effects on the
performance. An edge that links two nodes far apart (in
terms of their topological order keys) is more likely to
generate a page fault. As shown in Figure 4.2.(b), higher
page fault rates are observed when the locality is larger
(locality=40,0000) than in (a) & (c) (locality=5,000),
respectively.

some

5. Conclusion and Future Work

In this paper, we have proposed a new
algorithm for computing PTC. The algorithm is so
designed that nodes are visited in topological order. The
new algorithm is conceptually simpler and easier to
implement than others. The tagging technique allows us
to store and derive intermediate results efficiently. In
addition, the algorithm also requires less space than
others. In general, it has very good performance when
the number of source nodes (compared to total number of
nodes) is not very large. It is most suitable for small to

median-sized PTC queries.

References

[1]] A. Aho,J. Hopcroft and J. Ullman, Data structures
and algorithms. Addison-Wesley, 1983.

[2] F. Bancilhon, D. Maier, Y. Sagiv, J. Ullman, Magic
sets and other strange ways to implement logic
programs, Proc. ACM PODS, 1-15, 1986.

[3] S.DarandR. Ramakrishnan, A performance study
of transitive closure algorithms. Proc. ACM SIGMOD
Conf. Management of Data, 454-465, 1994.

(4] Y. Ioannidis, R. Ramakrishnan, and L. Winger,
“Transitive Closure Algorithms Based on Depth-First
Search”, ACM TODS, to appear. '

[51 H. Jakobsson, On tree-based techniques for query
evaluation. Proc. 11th ACM Symp. Principles of
Database Systems, 380-392, May 1992,

[6] B.Jiang, Making the parﬁa.l transitive closure an
elementary database operation. Proc. GI Conf. Database
Systems for Office Automation, Engineering and
Scientific Applications, 1989.

(71 B.IJiang, A suitable algorithm for computing
partial transitive closures in databases. Proc. IEEE Conf.
Data Engineering, 264-271, 1950.

{8] M. Qian, Performance evaluation of partial transitive
closure algorithms, M.S Thesis, SIU, January, 1997.

{91 R. Tarjan, Depth-first search and linear graph
algorithms. SIAM J. Comp., 146-160, June 1972.

[10] M. Yannakakis, “Graph-Theoretic Mehtods in
Database Theory”, Proc. 9th PODS, Nashville,
Tennessee, 230-242, April 1990.

[11] C.Youn,L.]. Henschen, and J. Han, Classification
of recursive formulas in deductive databases. Proc. ACM
SIGMOD Conf. Management of Data, 320-328, June
1988.

-136-

	
	129
	130
	131
	132
	133
	134
	135
	136

