1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Transition from ANSI to Unicode: Multilingual Support in
Operating Systems and Programming Languages

Pei-Chi Wu

Department of Information Management
Department of Computer Science and Information Engineering
National Penghu Institute of Marine & Management Technology
300 Liu-Ho Road, Makung City, Penghu, Taiwan 880, R.O.C.

Email: pcwu@npit.edu.tw

ABSTRACT

Character sets are one of basic issues for information
interchange. Most current character sets extend
ANSI’s 7-bit character set. These extensions are
conflicted with each other and make the design of
multilingual information systems complicated.
Unicode or Universal Character Set (UCS) is a
character set that covers symbols in major written
languages. Text files and strings usually have no
"header to indicate which character set is in use, and
they currently use ANSI by default. The transition
from ANSI to Unicode may last a longer time than
expected. This paper presents the following methods
to help the transition: 1) A text file format of fixed-
width characters 2) A tagged string storage: Each
string has a tag representing which character set or
coding format is in use. 3) A method for assigning
the format of string literals. These methods can
improve multilingual support without introducing
much complexity.

Keywords: character sets, text files, control codes,
byte order, string literals, source files.

1. INTRODUCTION

Character sets are one of basic issues for information
interchange. Most current character sets extend
ANSI’s 7-bit character set (ASCII) [1]. For example,
countries of East Asia use double-byte character sets:
ANSI characters (00);6~7F)is are represented in
Single=byte, but some code points of (80);s—(FF)s are
used as leading bytes. A double-byte character is
represented by a leading byte in addition with a
trailing byte. Such ANSI extensions are national
standards of many countries. These extensions are
also informally called "ANSI" character sets by some
manufacturers; these actually are different extensions
of ANSI These extensions are conflicted with each

other and make the design of multilingual
information systems complicated. One of the major
problems is mixing single-byte and double-byte
characters in one character stream. Each double-byte
ANSI extension uses a different set of code points for
leading bytes, so information systems should be
tailored to each ANSI extension.

Example multilingual information systems
include library automation systems and global
information environments, such as Internet.
Professionals of information processing are thus
seeking for a character set that can be shared by all
countries. Unicode [8] is such a character set that
covers symbols in major written languages. Unicode
is a fixed-width coding architecture: a 16-bit code
point represents one character. Unicode unifies
conflicted ANSI extensions into one coding
architecture. Many manufacturers now support
Unicode, or at least claim to adopt Unicode. It is
expected that Unicode will be widely accepted for
use in information interchange. Unicode is a subset
of ISO/IEC 10646 Universal Character Set (UCS), a
31-bit coding architecture. Unicode is UCS's 0-plane:
Basic Multilingual Plane. ISO/IEC 10646 defines
two alternative forms: UCS-4 (4-byte) and UCS-2 (2-

" byte, i.e., Unicode). Although ISO/IEC has not yet

filled planes other than 0, information systems should
better prepare for such movements.

Due to the fast rising of Internet applications,
multilingual support in operating systems becomes
more and more important than ever before. Transiting
to a new character set influences both storage formats
of text data and programs of text processing.
Although manufacturers of information systems start
to support Unicode and UCS, contents encoded with
Unicode are still in rare use. Text files and strings
usually have no header to indicate which character
set is in use. Text files currently use ANSI character
set by default. The transition from ANSI to Unicode

-123-

1998 international Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

may last a longer time than expected.

This paper presents the following methods to
help the transition from ANSI to Unicode: 1) A text
file format of fixed-width characters: If the first
character in a text file is a nonzero control code, such
as U+007F (DEL), the file is in UCS; otherwise, it is
in ANSI. This control code is called UCS control
code. The control code indicates which UCS format
or byte order is in use. 2) A tagged string storage:
Each string has a tag representing which character set
or coding format is in use, e.g., ANSI, 8-bit subset of
UCS-2, UCS-2, or UCS-4. 3) A method for assigning
the format of string literals in source files: String
literals of various character sets use the same syntax
notation, and their storage formats are the same as
that of their source files. These methods can improve
multilingual support in operating systems and
programming languages without introducing much
complexity.

2. RELATED WORK

One of the problems in adopting Unicode is that
Unicode doubles the storage space for characters in
ASCII and ISO 8859-1 (ISO Latin-1), which are
originally encoded in single-byte. Another problem is
that Unicode mixes characters in several languages.
For example, a Han character both in Chinese and
Japanese is represented by one code point. This
complicates information processing that is dedicated
to one language only. Mudawwar [7] argues this
issue and proposes Multicode, which is similar to
switching between code pages of various languages.

Recent Internet protocols are designed with
multilingual support. XML [9] provides a means for
declaring encoding formats, for example:

<?xml encoding="UTF-8'7>
XML processors can automatically detect the
encoding format by reading the first characters
'<?xml’' in the encoding declaration [9, Appendix F].
However, if a program changes the XML entity's
encoding format without updating the encoding
declaration, the storage and the declaration
mismatch.

Character sets are also an important issue in
programming languages. Strings in Java language [3]
use Unicode. Current Java virtual machines [6] adopt
UTF-8 encoding format [8, p. A-7] for Unicode
characters. The C [5] and C++ [2] languages provide
two data types to handle characters of different

widths: conventional characters (char) and wide
characters (wchar t). There are also two kind of
string literals:

"This is a character string literal” and

L"This is a wide-character string literal”.
This complicates the design of programming
languages and their related libraries. In string
functions of the C standard library, there are versions

- for both character data types, for example:

double
**endptr);
double westod(const wchar_t *nptr, wchar t
**endptr);
Both functions convert a string (char* or wchar_t¥)
to a double-precision floating-point numbers
(double). '

strtod(const char ‘*nptr, char

Visual C++ 2 run-time libraries contain
single-byte, multi-byte, and Unicode versions of
functions that take parameters of strings [4, Ch. 3].
The function prototypes resolve to single-byte
functions by default. If the compile-time flag
_UNICODE is defined, the prototypes resolve to
wide-character functions. If the _MBCS flag is
defined, the prototypes resolve to multi-byte
functions. Visual C++ also defines TCHAR as the
generic type of characters.

UTF-8 has been served as an intermediate
format for transiting from ANSI to Unicode. UTF-8
is an encoding of Unicode into 8-bit characters. It is
variable-length: Each code value (non-surrogate) is
represented in 1, 2, or 3 bytes. Although UTF-8 in
single-byte form is the same as ASCH, it is
incompatible with ISO 8859-1. Each Han character,
which originally occupies 2 bytes when encoded in
Big-5 or GB, is expanded to 3 bytes. This wastes
storage space and complicates the processing of Han
characters. UTF-8 is best suitable only for English
text data, which are already best served by ASCII. In
addition, UTF-8 cannot support encoding of UCS-4.
Thus, it is questionable that UTF-8 will be widely
adopted in multilingual information systems.

3. TEXT FILE FORMAT

Text files usually have no header to indicate which
character set or encoding format is in use. A text file
contains just a series of characters. Most text files
currently use ANSI character set by default. It is
almost impossible for so many programs that use text
files to agree on one text file format, such as adding a
declaration of encoding formats like XML. In

-124-

addition, a text file format should provide a space-
~ efficient means for characters in ASCII, ISO 8859-1,
CJK, etc. The header in the text file format should be
kept as minimal. This file format should also be
applicable to UCS-4.

Our text file format is outlined below:

1. Providing an 8-bit fixed-width format: The 8-bit
format uses the subset of UCS-2 U+0000—
U-+0Q0FF. There is no way to switch between 8-
bit and 16-bit formats. The 8-bit subset includes
Basic Latin (U+0000-U+007F) and Latin-1
Supplement (U+0080—-U-+00FF). The former is
ASCII; the latter is ISO 8859-1. This subset
covers languages of most western countries. In
the following, to have a name like UCS-2 and
UCS-4, this subset is also called UCS-1.

2. Using a control code to distinguish ANSI and
UCS formats: If the first character in a text file
is a nonzero control code, such as U+007F
(DEL), the file is in UCS; otherwise, it is in
ANSI. This special control code is called UCS
control code. When the UCS control code is in
single-byte, it denotes that the text file is in 8-bit
subset of UCS-2. Double-byte denotes UCS-2;
quad-byte denotes UCS-4. The byte order of
UCS data has the same order as UCS control
code.

Use UCS-2 and control code U+007F as an
example: If the first 2 bytes are (00);6 (7F)is, they
denote Big-Endian (high-byte first). The first 2 bytes
(7F)16 (00);6 denote Little-Endian (low-byte first).

This method is simple yet powerful:

1. 8-bit UCS format: 8-bit character sets such as

* ISO 8859-1 have been used in many countries;
however, they are conflicted with double-byte
character sets in East Asia. Text files in ISO
8859-1 can be inserted with the 8-bit UCS
control code, and then become 8-bit UCS text
files. This storage format can solve the space
expansion problem, which occurs when files in
ASCII and ISO 8859-1 are converted to Unicode.
This method is also superior to UTF-8 format,
which 8-bit format covers only ASCII.

2. Fixed-width encoding: Although there are three
encoding widths for UCS, these encodings do
not mix themselves. Fixed-width encoding is the
simplest and most efficient format for character
processing,.

3. Distinguishing storage formats: The UCS
control code can distinguish ANSI and three
UCS formats. Text files having the UCS control

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

code are in UCS; otherwise, they are in ANSI.
For example, use U+007F (DEL) as the UCS
control code. Since (00);s and (7F);s do not
appear in typical ANSI text files, they can be
used for UCS applications to distinguish UCS
and ANSI data. This can avoid loading text data
erroneously. When the UCS control code is
represented in k-byte, it denotes k-byte storage
format in a text file.

4. Byte ordering: Unicode allows two kind of byte
orders. The standard suggests using U+FEFF
(byte order mark) and U+FFFE (non-character)
to detect the byte order and to indicate that the
text file contains Unicode text. However, (FE);s
and (FF);s have already been used in other
character sets. For example, ISO 8859-1 defines
these codes as ’b’ and ’y’. Although it is
unlikely that a file begins with these characters,
using an ASCII control code may be better.

5. Aligned addresses: Most modern computers
allow only addresses aligned with data widths:
When a program accesses k-bit data, the address
must divide k. In our method, UCS control code
has the same width as that of other characters.
Thus, if the buffer of a text file starts at an
address dividing 4, there is no problem to load
and access characters of 1, 2, or 4 bytes.

6. Minimal changes: UCS control code is also a
character, so our method does not change the
definition of text files: files containing a series
of characters.

Since UCS control code is important, it is
necessary to allocate an ANSI control code dedicated
for this purpose. UCS control code should meet the
following criteria: (a) 8-bit control code, represented
in one byte and not conflicted with typical ANSI data;
(b) non-zero, to denote byte orders. The control code
(7F)1s meets both criteria. Control codes (00);s
(NULL) and (7F)s (DEL) currently have no real
effect in text files. NULL originally represents the
unused space in a punched paper tape; DEL
represents the mark of all holes for deleting a
punched character. Most other ASCII control codes
have real effects in text files. Control codes (81)5—
(9F);6 have been used as leading bytes of double-byte
character sets in code pages 932 (Japanese) and 949
(Korean). Only (80),¢ is available. However, there
may exist sloppy programs that test only the most
significant bit when detecting leading bytes. These
programs will erroneously treat (80);s as a leading

byte.

In according to byte erders and three UCS

-125-

1998 internationatl Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-18, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

formats, totally there are 6 cases in the header of a
text file: (A denotes ANSI data; U denotes UCS data;
each letter or digit denotes 4 bits; 7F and 00 are
control codes)

AA ...: ANSI data, containing no UCS control

code.

7F UU ...: 8-bit USC-2 subset.

00 7F UU UU ...: UCS-2, Big Endian:

7F 00 UU UU ...: UCS-2, Little Endian.

00 00 00 7F UU UU UU UU ...: UCS-4, Big

Endian.

7F 00 00 00 UU UU UU UU ...: UCS-4, Little

Endian.

Our method does not mix different encoding
formats in a text file. Sometimes this may waste
space. For example, consider a document in English
with a Chinese abstract. The document will be
encoded in UCS-2, and all ASCIH characters in the
document are encoded in double-byte. To reduce
space, the Chinese abstract can be stored separately
in another file. On the other hand, typical Chinese
text files may contain characters in ASCII. However,
in these files, the number of such characters is
usually relatively small.

4. STRINGS TAGGED WITH CHARACTER SET

There are two kind of strings in programming
languages: null-terminated strings (e.g., in C and C++)
and strings tagged with lengths (e.g., in Basic and
Java). In these strings, the character set or encoding
format in use is implicitly defined. There is no way to
specify a code page number or an encoding format ID
in a string. These storage formats work fine when
there is only one standard character set and encoding
format, but they cannot handle more than one
character set or encoding format.

We propose a tagged string storage: Each
string has a tag indicating which character set or
encoding format is in use, €.g., ANSI, UCS-1, UCS-2,
or UCS-4. Figure 1 shows class String in Java-like
syntax. Class String has three data fields: tag, length,
and contents. The tag can be 0 (ANSI), 1 (UCS-1), 2
(UCS-2), and 3 (UCS-4). The length is the number of
characters. The contents are a byte array, whose size
is determined by the tag and the length of the string.
For UCS subsets and single-byte ANSI extensions,
size = nbytes(tag) - length, where nbytes(0..3) are the
widths (in bytes) of character sets: 1, 1, 2, and 4,
respectively. For double-byte ANSI extensions,
length < size < 2 - length. The ansi, ucsl, ucs2, ucsd

are conversion functions for corresponding encoding
formats. When a conversion fails, class String raises
ConversionFailed exception. Operator '[]' accesses a
character in a string by an index and returns a Code,
which is implemented as an unsigned integer.

public class String extends Object {
private int tag;
private int length;
private byte contents(size];
public Code operator(] (int index);
public String operator+
(String a, String b);
public String ansi()
throws ConversionFailed;
public String ucsl()
throws ConversionFailed;
public String ucs2()
throws ConversionFailed;
public String ucsé4()
throws ConversionFailed;

Figure 1. The interfaces of class String.

Operator '+' can concatenate strings of any
tag. To avoid conflicts in ANSI and UCS, we prefer
using a UCS format as the resulting format when
concatenating ANSI and UCS strings. The following
shows the concatenation of strings in various tags:

ANSI + ANSI - ANSI;

UCS-2 + UCS-2 — UCS-2;

ANSI + UCS-2 — UCS-2;

UCS-1 + UCS-2 » UCS-2;

UCS-2 + UCS-4 — UCS-4.
The tag of the resulting string can be different in
according to which ANSI extension is in use:

ANSI +UCS-1 — UCS-1; or

ANSI + UCS-1 —» UCS-2.
The former is for single-byte ANSI extensions; the
latter is for double-byte ANSI extensions.

In C/C++ languages, the length in class
String can be omitted, but the end of the contents
must be appended with a null character. To obtain a
string storage format suitable for various
programming languages, we combine both structures
as shown in Figure 2. [NULL| denotes the size of a
null character.

Public class String extends Object ({
int tag;
int length;
byte contents{size + [NULL}];

}

Figure 2. A string storage appended with a null
character.

-126-

If the value of a tags is restricted to ANSI,
UCS-1, UCS-2,.and UCS-4, a tag occupies only 2
bits. We can allocate the tag and the length both in
bit fields or in bits of a 32-bit integer, called
tag length. Let the tag be in the high bits and the
length be in the low bits. When tag = 0 (ANSI), this
string format is compatible to conventional ANSI
strings, just having a slightly limited string length (2
bits less).

Public class String extends Object ({
int tag:2;
int length:30;

}

or:

public class String extends Object ({
int tag_length;

}

Figure 3. The interfaces of string with bit fields.

The design of library routines can also be
simplified. For example:

int to_int(String s);

double to_double(String s);
String functions such as to_double() can be applied
to strings in any character set or encoding format.
When the value of the tag extends to other character
sets or encoding formats, e.g., UTF-7, UTF-8, and
UTF-16 [8, Appendix A}, the interface of these
functjons remains unchanged.

There are many standard system functions
that take parameters of strings. Consider the
following C functions:

FILE* fopen(const char *filename, const
char *mode);

int rename(const char *oldname, const char

*newname);
The data type char* can only represent strings of one
specific character set or encoding format. This
limitation can be removed by replacing char* with
tagged strings:

FILE* fopen(const String filename, const
String mode);

int rename(const String oldname,

String newname);
Operating systems for western countries can use
UCS-1; systems for countries in East Asia can use
UCS-2. Both versions of operating systems provide
the same interface for these system functions,
although their internal implementations may be
different. This method simplifies application program
interfaces. Operating systems can provide just one set
of application program interface instead of two: one
for ANSI and another for Unicode.

const

1998 international Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

5. STRING LITERALS IN SOURCE FILES

Programming languages that provide more than one
kind of strings or character types should provide a
means for assigning the format of string literals. In C
and C++ languages, string literals of wide characters
are denoted with 'L'. Unfortunately such notation
does not work very well. In this section, we propose a
simple means for automatically assigning the format
of string literals in source files.

In C and C++ languages, let conventional
characters be in ANSI, wide characters be in UCS-2,
and the source files (usually text files) be in ANSI.
Consider the following cases:

1. "This is a character string literal"

2. L"This is a wide-character string literal”

3. "ER-RFANHNTETHR"

4. L"EX—AFAHFEEHR"

Cases 1 and 3 are conventional characters (char), so
the compiler takes no conversion when reading these
string literals from source files and writing them to
object files. In case 2, the compiler needs to convert
single-byte ANSI data to UCS-2: appending each
character with a 0 at the high byte. In case 4, the
compiler needs to convert double-byte ANSI data
(e.g., traditional Chinese in Big-5 character set) to
UCS-2. The case 4 is the most difficult to handle
without operating systems support, such as standard
conversion functions for various character sets and
encoding formats. '

One way to solve this problem is completely
eliminating multilingual string literals from source
files. The following coding practice has been
strongly suggested for writing global software [4,
Ch.2]: Any element of a program that requires
translation for different languages should be
separated from source programs. Following this
coding convention, most string literals left in source
files will be in 7-bit ASCII. However, the problem is
just left to so called resource editors, which handle
strings and graphical user interface components.
Resource editors are usually platform-dependent,
while major programming languages have
international standards. Thus, it is still better to be
able to solve the problem inside programming

languages rather than left to programming
environments.
Instead of wusing syntax notation to

distinguish string literals of various formats, we use
the character set and the encoding format of source

-127-

1998 International Computer Symposium
“Workshop on Software Engineering and Database Systems
 December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0.C.

files. All string literals use the same syntax notation,
and their storage format is the same as that of their
source files. In a source file having the first character
to be a UCS control code, all its string literals are in
the format of UCS; otherwise, they are in ANSIL
Consider the following examples:

File 1: "This is a character string
literal" ...

File 2: 0x7F 0x0 ... "This is a wide-character
string literal"

File3: .. "EX —MFAAF & HH"

File 4: 0x7F 0x0 0x0 0x0 ... "# & —HF T
HEFEBTH" ..
In Filel and 3, their first characters are not the UCS
control code, so they are ANSI files and all string
literals are in ANSI. File 2 begins with the double-
byte UCS control code (0x007F), so it is a UCS-2 file
and all string literals are in UCS-2. File 4 begins with
the quad-byte UCS control code (0x0000007F), so it
is a UCS-4 file and all string literals are in UCS-4.

Using the format of source files to determine
the format of string literals makes the programming
languages and their compilers independent of
character sets and encoding formats. String literals
have the same encoding format when they are in
source files and when they are used at run-time.
Compilers only need to handle the byte order of
string literals, when the byte order used in source
files is different from the byte order of the target
machine.

Converting a program to a new character set
is also easy: just convert the character set or the
encoding format of the source files. For example,
consider converting all string literals in a program
from ANSI to Unicode. There is no need to apply any
special programming tool to denote each string literal
with an 'L'. Any ANSI-to-Unicode conversion utility
will work much better for this purpose.

6. CONCLUSIONS AND FUTURE WORK

This paper has presented methods to help the
transition from ANSI to Unicode. Firstly, we have
presented a text file format, which provides three
UCS subsets, fixed-width encoding, byte orders, and
aligned addresses. Secondly, we have presented a
string tagged with the character set or encoding
format in use. Using this string data type, operating
systerns and standard libraries of programming
languages can provide just one set of program
interfaces for functions taking parameters of strings.

Thirdly, we have presented a method that assigns the
format of string literals to be the same as that of their
source files. This makes programming languages and
their compilers independent of character sets and
encoding formats. Converting a program to a new
character set is also easy: just convert the character
set or the encoding format of the source files.

The methods presented here can influence
the design of operating systems, programming
languages, and compilers. Multilingual support in
operating systems and programming languages can
be achieved without introducing much complexity to
these system programs, which are already very
complicated today. Transiting from ANSI to Unicode
can be smoothly. Multilingual applications built on
this technique can work with ANSI data and be ready
for future adoption of UCS-2 and UCS-4.

REFERENCES

[1] American National Standards Institute, Coded
character set - 7-bit American national
standard code for information interchange,
New York, 1986 (ANSI X3.4 - 1986).

[2] Ellis, M.A., and Stroustrup, B., The Annotated
C++ Reference Manual, Addison-Wesley,
Massachusetts, 1990.

[3] Flanagan, D., Java in a Nutshell, O-Reilly &
Associates, Inc., 1996.

[4] Kano, N., Developing International Software
for Windows 95 and Windows NT, Microsoft
Press, 1995.

[5] Kemighan, B.W., and Ritchie, D. M., The C
Programming Language, 2nd Ed., Prentice-Hall,
New Jersey, 1988.

[6] Meyer, J., and Downing, T., Java Virtual
Machine, O'Reilly & Associates, Inc., 1997.

[7] Mudawwar, M. F., "Multicode: A Truly
Multilingual Approach to Text Encoding,"” IEEE
Computer, Vol. 30, No. 4, April 1997, pp. 37-
43.

[81 The Unicode Consortium, The
Standard, Version 2.0,
Reading, Massachusetts, 1996.

[9] World-Wide Web Consortium, Extensible
Markup Language (XML), Version 1.0, W3C
Recommendation, Feb. 10, 1998.

Unicode
Addison-Wesley,

-128-

	
	123
	124
	125
	126
	127
	128

