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Abstract

Business intelligence has been the driving force for tight
integration of traditional and non-traditional data, such
as geographical information, in databases and database
applications. Database vendors are finding ways to ex-
tend their RDBMS to support these new types of data.
In this paper, we present the technology behind the DB2
Spatial Extender that directly supports spatial data types
used by geographical information systems (GIS) applica-
tions. We also describe our index extensions to the B-tree
indexes, so that spatial indexes can be built upon existing
B-tree indexes, without changing the underlying B-tree
index structures.

1 Introduction

Recently there has been a tremendous interest in busi-
ness intelligence (BI) to uncover new business informa-
tion, derive new business rules, and assist decision mak-
ing, as companies are looking for ways to gain competi-
tive advantages and grow their business. BI has been a
driving force for data integration of traditional businéss
data, and non-traditional data, such as geographical in-
formation. For example, to select a location for a new
store, the decision may depend on many factors that in-
volve geographical data, such as the future growth of the
surrounding neighborhood, the distance to highways, and
proximity of major competitors.

Most business data today is stored in relational
databases. However, traditional RDBMSs can not eas-
ily support the new geographical data types required by
these new applications. Thus, geographical information
systems {GIS) have been built as database applications
that model, manipulate, query, and analyze spatial data,
while handshake with RDBMSs where other business data
resides. These GISs rely on a separate data engine, with
proprietary APIs, that understands spatial data and is
responsible for the management of spatial data and its
computations. Figure 1(a) illustrates such GISs. As more
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Figure 1: (a) Traditional GIS systems (b) GIS systems
with eztended RDBMSs supporting spatial data

business decisions rely on spatial data, however, these
GIS engines become very complicated, ineffective, hard
to manage, and unable to react fast to the ever-changing
market needs.

At the same time, because of the strong need of stor-
ing non-traditional data, such as audio, video and spa-
tial data into databases, several RDBMS vendors are now
adding object extensions to their databases. These new
extensions allow applications to store and manipulate ap-
plication objects directly inside the database, and relieve
them from dealing with complicated tasks, such as data
recovery, backup, and separate query engines. It is now
possible to build a tightly integrated consistent system
that can exploit the full power of business intelligence
through SQL interface. Figure 1(b) illustrates such new
systems.

In this paper, we present our work that has been
implemented in IBM’s DB2 [IBM97] Spatial Extender’
[DJS98, Dav98] for building such an extended RDBMS
that supports spatial data. It relies on two impor-
tant extensions to traditional RDBMS: abstract data
types (ADTs) and user-defined index extensions. With
ADTs, which are now in the forthcoming SQL3 standard
[Mel97], user-defined complex objects can be stored in
the database, while maintaining individual properties of
their fields (instead of black box objects like BLOBs), and
user-defined functions (UDFs) can be used to manipulate
these objects by the database. In order to efficiently ac-
cess and search spatial data, which is now stored in the
database as ADT objects, we have introduced new exten-
sions to the existing B-tree indexes supported by most

!DB2 Spatial Extender is a product jointly developed by
IBM and Environmental System Research Institute (ESRI),
which is a leading GIS vendor in the world.
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RDBMSs. These index extensions provide an extensible
index interface that allows various user-defined functions
to be integrated into the B-tree index manager for storing
and searching, without modifying the underlying B-tree
index structures.

There have been other approaches for implementing
integrated GIS systems. For example, Informix’s Dat-
aBlade [Inf97a] allows application-defined index managers
to be integrated into their database system. Thus, GIS
applications can implement R-tree [Gut84, BKSS90}, R*-
tree [FSR87], kD-trees [BF79], or grid files [Nie84] as the
spatial indexes to be utilized by the database engine. In-
formix’s own Geodetic DataBlade [Inf97b] supports R-
tree indexes. Our approach is different from others in the
following aspects. First, we do not implement a new in-
dex structure and its index manager, which can be very
complicated, and requires a deep understanding of under-
lying database systems to work correctly. Our approach
creates spatial indexes directly upon existing B-tree in-
dexes, while opens up several places in the index man-
ager to allow application-specific functionalities. Second,
our index extensions are very extensible: updating and
searching the index are all user-definable through UDFs.
Thus, according to application needs, the user can create
various indexes that suit each individual need, without
additional supports from the database system.

This paper is organized as follows. In section 2, we
will briefly introduce geographical data types, functions,
and indexes. In section 3, we describe the existing GIS
systems and their weakness. In section 4, we present our
implementation of DB2 Spatial Extender for a fully in-
tegrated GIS architecture. We describe our spatial data
types, and our extensions to the existing B-tree index
that allow user-defined functions to be invoked by the
index manager. We give the external language specifi-
cations of these extensions, without getting into much
technical detail, which most likely will be described in a
separate paper. Section 5 gives an example of typical GIS
applications,. as a thorough work-through about how the
extensions are used in the DB2 Spatial Extender. Section
6 concludes the paper and discusses some future work.

2 Spatial Data, Functions, and
Indexes

Geographical information is described by a coordinate ge-
ometry and a reference system. The coordinate geometry
consists of the number of dimensions, the coordinates,
and a sequence of coordinate points in the same refer-
ence system. Data from different data sources likely will
have different reference systems; thus, their integration
and manipulation require translations to a common ref-
erence system. Geometry data is built using points (0-
dimension), lines (1-dimension), polygons (2-dimension),
polyhedra (3-dimension), and even spatial-temporal data
(4-dimension) Readers may want to consult the docu-
ments by Open GIS Consortium [Ope98a] for a complete
specification. In this work, we only focus on geometry of
dimensions 0, 1, and 2, and we will use spatial data to

refer to such geometry data.

Real world geographical data is represented using these
basic spatial data types. For example, a park site is rep-
resented by the location of its geographical center, a river
system is represented by a set of sample points along the
path, and a county is represented by a polygon that ap-
proximately matches the boundary of the county. With
the basic spatial attributes being collected and modeled,
complex spatial information such as the length or area of
a geographical object can be derived. Moreover, spatial
relationships between objects can be computed, for ex-
ample, intersection, within, distance, contain, touch, and
so on [Ope98b]. These derived information, together with
data mining, often provides tremendous values to decision
support systems.

The envelope of a geometry is the bounding geometry
formed by a maximum and minimum coordinates. It is a
rectangle, called minimal bounded rectangle (MBR), ex-
cept the case of points where the envelope of a point is
the point itself. An envelope is a simple approximation of
a geometry, and is good for fast approximate evaluations
as early filters to reduce the cost in full evaluations. For
example, if the envelopes of two objects do not overlap
(easy to compute by comparing the coordinates), then
certainly the objects do not overlap (hard to compute).

Indexes are necessary for fast searches of spatial data.
A set of access methods and evaluation functions that take
advantages of the spatial index must also be implemented.
R-trees, grid files, and their variations are commonly used
structures for spatial indexes. R-trees [Gut84, BKSS90]
and R¥-trees [FSR87] are based on B-trees, where the leaf
nodes contain actual rectangular data and a non-leaf node
corresponds to an MBR that contains the rectangles of
its children. Overlaps of rectangles described by non-leaf
nodes are also allowed. On the other hand, indexes based
on grid files divide the space into grids of either fixed-
sized cells [BF79], or unequal-sized cells [Nie84]. The grid
cells that intersect with the given object (or the object’s
envelope) become the index entries of the object. Multiple
layers of index grids can also be used to provide different
resolutions, so that fast evaluations can be done at a low
resolution layer.

The index extensions proposed in this work do not as-
sume a specific type of spatial index structures. The
actual implementation in the DB2 Spatial Extender,
however, uses multiple layers of fix-sized grid indexes
logically (physically they are B-tree indexes). An in-
dex key is in fact denoted by the following tuple
<level,gx,gy,xmin,ymin,xmax,ymax>, where level is
the grid layer, gx and gy are the x- and y-coordinates
of the lower-left corner of a grid cell, and the last four
values are the coordinates of the lower-left corner and the
upper-right corner of the MBR of the object overlapped
with the grid cell. This kind of index keys has the follow-
ing characteristics. First, more than one index entries,
denoting different layers and grid cells, can be associated
with a geometry object. Second, index keys with the same
grid cell <level,gx,gy> denote objects that overlap with
the cell. Thus, the index can be used to evaluate range
queries asking for objects that are located within a cer-
tain range. Third, the index keys are not unique, because
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Figure 2: A typical existing GIS architecture

more than one object may have the same MBR.
We will describe the creation and usages of this index
In section 5.

3 Existing GIS Systems

Figure 2 shows a typical GIS architecture in the mar-
ket today. We use ESRI's ArcView [ESR] as our exam-
ple. A set of proprietory spatial functions and predicates
are maintained by the Spatial Data Engine (SDE). The
RDBMS must be first enabled by external commands for
spatial support, which will create meta tables for the ad-
ministration of spatial operations. Each spatial column
in a business table is represented by a unique feature [D
(indicated by fid) and is associated with a couple of side
tables: the feature table that contains the spatial infor-
mation for the spatial column, and the index table that
contains the index entries of the spatial data.

A spatial query is composed by the user through Ar-
¢View GUI interface, and sent to SDE using non-standard
spatial APIs. A spatial query contains spatial constraints
in addition to normal database queries, as shown in Fig-
ure 3.

SDE processes the query by transforming the spatial
constraints into a complicated set of SQL predicates, in-
volving the side tables and spatial predicates, to exploit
the spatial index, as shown in the figure. The result-
ing complicated SQL query is then sent to RDBMS via
ODBC interface, and finally the RDBMS compiles and
executes the query without knowing that the query is a
spatial query.

Due to the lack of tight integration with RDBMS, this
architecture results in the following weakness:

s Data integrity: The spatial information is still not
directly integrated into other business data. Spatial
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Find all customers whose income in greater than 30.000 and
location is within 10 miles from a particular location.

Tables Predicates
customers inceme < 30000
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~T.gx >= xmin(:circle) and L.gx <= xmax(:circle) and
. 1.gy >= ymin{:circle) and i.gy.€= ymax(:circle) and |

Spatial index
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data are manipulated outside of RDBMS, and thus
various data integrity problems, such as error recov-
ery and rollback, can not be easily maintained.

o Ineffective use of storage: Because computation in-
volving spatial data are carried out in the GIS en-
gine, data must be moved out of the RDBMS, and
in fact data is often duplicated in the GIS engine.

o Usability and complexity of maintenance: Two side
tables are created for every spatial column, and their
integrity must be maintained in sync with the busi-
ness table, for example, by triggers.

e Complexity of the GIS engine: All the computation
and management of spatial data are done by the GIS
engine. The GIS engine manages the spatial indexes
by itself, and needs a smart query optimizer to ex-
ploit spatial indexes by transforming a spatial query
into a SQL query, which hopefully is compiled by
the RDBMS as expected, although there is no such
a guarantee that the RDBMS will choose a plan an-
ticipated by the GIS engine.

o Performance: The RDBMS is unaware of the spa-
tial data it is dealing with, and thus may choose a
sub-optimal join order. Furthermore, the GIS en-
gine maintains its own indexes and can not exploit
the performance benefits that integration with the
RDBMS can offer, such as predicate evaluations, and
results in huge amounts of data movement.

4 Extensions to RDBMSs for
Supporting Spatial Data

The lack of tight integration with the RDBMS data has
been a major obstacle for GIS vendors to provide their
services to large IT organizations. The following are some
key issues that must be addressed before we can design
or enhance a RDBMS that understands spatial data:

1. storing spatial data: how to store the non-relational
data into relational databases, and still maintain the
spatial properties in a reasonable and effective way?
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Figure 4: The gray bozes, Key Transformer, Range Pro-
ducer, Filter, and DMS Filter, are the places that a UDF
can be plugged in through the CREATE INDEX EXTENSION

statement.

2. invoking spatial functions and predicates: how does
the RDBMS invoke spatial functions and predicates
in addition to its relational functions? and can they
be executed in an optimal way?

3. index structures: what kind of index structures that
must be supported in order to achieve good perfor-
mance on spatial data?

4. index exploitation: how to teach the RDBMS com-
piler to exploit spatial indexes? can it achieve
global optimization of spatial and non-spatial data
accesses?

In this section, we will present our architecture (shown
in Figure 4) that fully integrates spatial data into rela-
tional databases and solves the weakness in current GIS
systems. This architecture has been implemented in the
DB2 Spatial Extender [DJS98] that directly integrates
GIS functionality into the database engine. Our architec-
ture relies on two important extensions to the traditional

RDBMS:

e Abstract data type: this allows us to store complex
data in an organized way that co-exists with other re-
lational data, and most importantly, it can be man-
aged by the RDBMS consistently and effectively.

o Index extension: this allows user-defined indexes to
be created inside the database, using the traditional
B-tree indexes that most RDBMSs support.

We will present this architecture in the context of DB2,
although we believe a similar design of the architecture
can be implemented in other RDBMSs.

4.1 Spatial Data Types

Abstract data types are new features in the SQL3 stan-
dard, and have been supported by several relational
databases with object extension. With ADTs, complex
objects in applications can be stored in and manipulated
by the database engine directly, while the object hierar-
chy and inheritance being observed, for example, by UDF
invocations and index accesses.

. ADTs are defined by the CREATE ADT statements and
subtypes are defined by the UNDER clause as shown below.

CREAT ADT shape (gtype char(1),area float,length float,
xmin fleat, ymin float, xmax float, ymax float,
numOfParts int, num0fPoints int,
geometry blob(iM));

CREATE ADT point UNDER shape;

CREATE ADT line UNDER shape;

CREATE ADT polygon UNDER shape;

CREATE TABLE customers (cid int, name varchar(20),

address varchar(50), income float,
location point LENGTH 100,
zone polygon LENGTH 1000);

Here we create the shape ADT, and its subtypes,
point, line, and polygon for our spatial data, and how
they are used in the customers table. The gtype attribute
indicates whether the associated entity is a point, a line
or a polygon. The xmin, ymin, xmax, and ymax attributes
model the minimum bounded rectangle of the spatial en-
tity. The actual geographical boundary of the spatial en-
tity is modeled by attributes numOfParts, numOfPoints,
and geometry.

ADTs allow business data and spatial data to be stored
together naturally in a table, and remove the need for the
feature table presented earlier. Moreover, the type hier-
archy of spatial data represented in the database reflects
the semantics expected by the application.

4.2 Index Extensions

Once we have stored the spatial data into the database,
the next question is how we can access them efficiently.
In DBMSs, indexes are often created for fast retrieval of
data that 1s frequently used. An index support normally
involves three main tasks: index maintenance (e.g., cre-
ate, drop, insert, update, and delete operations), index
search (e.g., range queries), and index exploitation (e.g.,
determining predicate evaluation order, with the interac-
tion from other database operations).

Traditional index structures supported by RDBMS are
B-tree or its variation, and in the case of DB2, B-tree
1s the only index structure available. Although B-tree in-
dexes have been extensively tested and enhanced, they are
only able to deal with basic data types, such as integers or
character strings. Naively coercing complex objects into
these B-tree indexes is often awkward and results in bad
performance.
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< create inder extension>
< header> =
<indez maintenance>

= CREATE INDEX EXTENSION <header> <index maintenance> <inder search>
<inderEztensionName> ( { <parmName> <parmType> }* )
== WITH INDEX KEYS FOR ( { <colName> <colType> }*)

GENERATED BY <function invocation>
<indez search> ::= WITH SEARCH METHODS FOR INDEX KEYS ( { <colName> <colType> }* ) <method>

<method>

u= WHEN <methodName> USING ( { <colName> <colType> }* )

RANGE THROUGH < function invocation> CHECK WITH <function invocation>

<drop indez enztension>> :

::= DROP INDEX EXTENSION <inderEztensionName>

<create tndez> n= CREATE (UNIQUE] INDEX <indezName> ON <tableName> ({ <colName> [ASC | DESC ] }*)
USING <indezEztensionName> ( { <constant> }* )

Figure 5: Language specifications for indez extensions. N* specifies one or more occurrence of N, with separator ’,’.

’

In order to access spatial data and evaluate spatial
predicates efficiently, we have introduced general user-
defined extensions to the B-tree functionality, without
changing the underlying B-tree index structure. This re-
sults in two major advantages of this approach. First,
we can use the existing index structures to support new
kinds of data types, without requiring a completely new
index manager, which can be very costly to implement in
a matured commercial product. Second, this general ap-
proach allows various index functions to be user-definable.
This can offer significant performance improvement when
domain-specific predicates can be pushed deep down into
the index manager.

We introduced the concept of index extension specifi-
cation that supports parametric user-defined index types,
using the CREATE INDEX EXTENSION statement. Figure 5
shows the language specifications for these index exten-
sions. This statement defines an index extension over
the existing B-tree indexes, and acts like a template that
can be instantiated at index creation time by the CRE-
ATE INDEX statement into different index instances. Es-
sentially, this statement associates user-defined behaviors
to various functions of an index manager that we have
opened up and parameterized. Figure 4 shows these ex-
tensions in the index manager, indicated by gray boxes.

The <header> specifies the index extension name and a
list of instance parameters, which will be used in the new
USING clause of a CREATE INDEX statement. For ex-
ample, we can create an index extension for spatial data,
and its instance parameters specify multiple grid levels
and allow different grid sizes to be used in an index that
uses this index extension.

For index maintenance, since now an index can be de-
fined over a complex object type, to use the B-tree index,
the user can define how B-tree index entries are computed
from the complex objects through UDFs. This is specified
by the GENERATED BY clause, and is indicated by the
key transformer box in the Figure 4. For index search, we
allow a user-defined range producer (specified by RANGE
THROUGH clause) that specifies how a search argument
is translated to search key ranges of a B-tree index. This
is indicated by the range producer box. Furthermore, in
addition to the normal B-tree search methods, we allow
further user-defined search methods (through CHECK
WITH clause) to be invoked by the index manager during

an index search, in order to filter out non-qualified tuples
as early as possible. These are indicated by the Filter box.
For index exploitation, we modify the DB2 optimizer to
understand spatial predicates, and to generate an access
plan that globally optimizes both spatial and non-spatial
data accesses. And finally, to exploit indexes during pred-
icate evaluations, a list of search methods can be specified
in the WITH SEARCH METHODS clause, indicated by
the predicate spec box. These search methods, coupled
with the new extensions added to the CREATE FUNCTION
statement, allow fine-tuned user-defined functions to be
invoked for further data filtering, indicated by the DMS
filter box, depending on the context where the function is
used as a predicate.

After an index extension has been created, the user
then can create an index using the index extension
through the new USING clause in the CREATE INDEX
statement, and afterwards, all user-defined functions will
be invoked at appropriate places along an index opera-
tion.

Figure 6 shows the extension to user-defined functions.
The CREATE FUNCTION statement now can have a
list of predicate specifications. Each predicate specifica-
tion defines when (the matching context) the UDF be-
ing defined is considered as a predicate and, if so, how
(data filter) can the optimizer optimize the execution of
this UDF and how (index exploitation) this UDF can be
used to exploit indexes. The matching context is spec-
ified by the AS PREDICATE WHEN clause, the data
filter is specified by the FILTER BY clause, and the
index exploitation rule is specified by the WHEN KEY
<paramName> USE <methodName>(...) clause, where
<methodName> is a method defined in the index exten-
sion <indezEztensionName>.

The following example defines a UDF, within, and it
is used in a SELECT statement. The within function is
defined as a predicate if its result is compared with the
constant 1; thus, the optimizer will consider this predicate
to exploit indexes. Furthermore, since the evaluation of
the second argument (circle(:x, :y, :r))in the query
can be performed before the tuple is fetched from the
customer table, it can be picked up by the optimizer as a
search argument. Similarly, the first argument is a simple
column from the customer table. Therefore, the optimizer
will consider it as a search target.
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<create function> ::= CREATE FUNCTION <functionName> { <parmName> <dataType> }* <predicate specification>”
< predicate specification> = AS PREDICATE WHEN < comparisonOp> <constant>
[ FILTER BY <function invocation> | [ <indez ezploitation> ]

<indexr ezploitation> ::= SEARCH BY INDEX EXTENSION <indezEztensionName> <ezploitation rule>™
<ezploitation rule> ::= WHEN KEY ( { <peramName> }* ) USE <methodName> ( { <paremName> }" )

Figure 6: Language specifications for user-defined functions

CREATE FURCTION within(x shape, y shape)
RETURNS INT

LANGUAGE C

EXTERNAL NAME " /u/fuh/db2sde/gis!within”
AS PREDICATE WHEN = 1

FILTER BY mbrOverlap(x..mbr, y..mbr)
SEARCH BY INDEX EXTENSION grid

WHEN KEY(x) USE searchFirstBySecond(y);

SELECT * FROM customer
WHERE within(location, circle(:x,:y,:x)) = 1;

To summarize the extensions to the B-tree index man-
ager, there are four places that UDF's can be invoked to
apply application-specific operations:

¢ Key Transformer: the UDF specified in the GEN-
ERATED BY clause. This is the only one that is ap-
plied at insert/update/delete time. The others are
applied at query time. Given a record, a UDF for
key transformer (a table function®) can be invoked
to generate a set of keys to be used by the index
manager for index maintenance. Note that multiple
entries can exist in the index for a single record.

e Range Producer: the UDF specified in the
RANGE THROUGH clause. Given a user search
predicate, a UDF for range producer (a table func-
tion) can be invoked to generate a set of start/stop
key pairs for searching in the B-tree index.

e IDX Filter: the UDF specified by the CHECK
WITH clause. This boolean filter UDF is invoked
right after a RID is retrieved from the index. A
common use of this UDF is to remove duplicates,
because multiple entries may exist for a RID.

¢ DMS Filter: the UDF specified by the FILTER
BY clause of CREATE FUNCTION statement. This
boolean filter UDF is invoked after the RID is used to
retrieve the data record and before the original pred-
icate is applied. This adds another filter operation
early in the index operations right after non-indexed
column values are fetched.

5 A Complete Example

In this section, we will go through a real scenario of mod-
eling/indexing spatial data using the new extensions. We
will focus on the creation and exploitation of spatial in-
dex, and leave out other issues such as bind-in/bind-out

2 A user-defined table function is a UDF that returns a set
of tuples [IBM97].

of spatial data and implementation details of user-defined
functions.

5.1 Modeling Spatial Data

The following create adt statements define an envelope,
and a type hierarchy of geometric shapes, with shape as
the supertype and nullshape, point, line, and polygon
as its subtypes. Each instance of these ADTs models a
spatial entity such as the location of a store (point), the
path of a river (line), or the boundary of a business zone
(polygon). The gtype attribute indicates whether the as-
sociated entity is a point, a line, or a polygon. The mbr
attribute models the minimum bounded rectangle of the
spatial entity. The geographical boundary of the spatial
entity is modeled by attributes numpart, numpoint, and
geometry. The refsystem attribute specifies the refer-
ence system.

create adt envelope (xmin int, ymin -int,
xmax int, ymax int);
adt shape not instantiable (
gtype varchar(20),
refsystem int,
mbr envelope,
numpart sint, numpoint
geometry blob(im));

create

sint,

create adt nullshape under shape;
create adt point under shape;
create adt line under shape;
create adt polygon under shape;

5.2

The statement in Figure 7 creates an index exten-
sion, named grid_extension, with a instance parameter

Index Extension grid_extension

levels for grid levels. This index extension specifies the
index is for shape data type, whose entries are gener-
ated by the UDF gridEntry (as the key transformer).
It has two search methods, searchFirstBySecond and
SearchSecondByFirst, each of which specifies its range

producer and index filter UDF. See Table 1.

5.2.1 Key Transformer gridEntry

The key transformer UDF takes as input the mbr at-
tributes of the index column (of type shape) and the in-
stance parameter (of type varchar(20) for bit data)
and generates as output a set of index keys, where each
key consists of 7-tuple, as described in section 2. Recall
that a shape may generate multiple index keys; thus, the
result of this UDF 1s a set of keys.
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search method search target | range producer

IDX filter

description

searchFirstBySecond shape gridRange checkDuplicate | Used for the within predicate where
the first argument is the search target
and the second argument is the search
argument.

searchSecondByFirst shape gridRange mbrQOverlap Used for the within predicate where the

second argument is the search target
and the first argument is the search
argument.

Table 1: Search methods for grid_extension.

create index extension grid_extension(levels varchar(20)
with index keys for (shapeCol shape)

generated by gridEntry(shapeCol..mbr..xmin, shapeCol..mbr

for bit data)

..ymin,

shapeCol..mbr..xmax, shapeCol..mbr..ymax, levels)
with search methods for index keys (level int, gx int, gy int, xmin int, ymin int, xmax int, ymax int)

when searchFirstBySecond using (searchArg shape)

range through gridRange(searchArg..mbr..xmin, searchArg..mbr..ymin,
searchArg. .mbr..xmax, searchArg..mbr..ymax, levels)

check with checkDuplicate(level, gx, gy, xmin, ymin

,Xmax, ymax, searchArg..mbr..xmin,

searchArg. .mbr..ymin, searchArg..mbr..xmax, searchArg..mbr..ymax, levels)

when searchSecondByFirst using (searchArg shape)

range through gridRange(searchArg..mbr..xmin, searchArg..mbr..ymin,
. searchArg..mbr..xmax, searchArg..mbr..ymax, levels)
check with mbrOverlap(xmin,ymin,xmax,ymax, searchArg..mbr..xmin, searchArg..mbr..ymin,
searchArg..mbr..xmax, searchArg..mbr..ymax);

Figure 7: Create inder eztension grid_extension

create function gridEntry (xmin int, ymin int,
fmax int, ymax int, levels varchar(20) for bit data)
returns table (level int, gx int, gy int, xmin int,
ymin int, xmax int, ymax int)
language ¢ parameter style db2sql
not variant not fenced no sql no external action
external name °/u/fuh/db2sde/gis!gridEntry”;

Most of the clauses in a CREATE FUNCTION state-
ment are not of our interest (see {IBM97] for the detailed
description). The external name clause points to the C
implementation of this UDF.

5.2.2 Range Producer gridRange

The range producer UDF takes an mbr and the instance
parameter, and returns a set of search ranges, where each
range is specified by a start and stop key.

create function gridRange (xmin int, ymin irt,
xmax int, ymax int, levels varchar(40))
returns table (slevel int, // Start of the range

SgX int, sgy int,
sxmin int, symin int,
sxmax int, symax int,
elevel int // Stop of the range
egx int, egy int,
exmin int, eymin int,
exmax int, eymax int);
language ¢ parameter style db2sql

not variant not fenced no sql no external action
external name ‘/u/fuh/db2sde/gis'gridRange”;
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5.2.3 IDX Filter and

mbrQverlap

checkDuplicate

The IDX filter UDF's are invoked as filters right after keys
in search ranges are retrieved from the index. Since a sin-
gle shape object may produce multiple keys in the index,
we use checkDuplicate and mbrOverlap to filter out keys
that are from the same objects.

create function checkDuplicate (gx int, gy int,

x1 int, y1 int, x2 int, y2 int, xmin int,

ymin int, xmax int, ymax int, level varchar(40))
returns integer
language ¢ parameter style db2sql
not variant not fenced no sql no external action
external name °/u/fuh/db2sde/gis!checkDuplicate’;

create function mbrOverlap (xminl int, ymin! int,
xmaxl int, ymaxl int, xmin2 int, ymin2 int,
xmax?2 int, ymax2 int)

returns integer

language ¢ parameter style db2sql

not variant not fenced no sql no external action

external name ‘/u/fuh/db2sde/gis!mbrOverlap‘;

5.3 Creating Spatial Predicate within

We now create the spatial predicate, within, that tests
whethér one shape is within another.

create function within (shape, shape)

returns integer

language c parameter style db2sql

not variant not fenced no sql no external action
external name */u/fuh/db2sde/gis!within”
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as predicate when = 1

filter by mbrWithin(x..mbr..xmin, x..mbr..ymin,
x..mrb..xmax, x..mbr..ymax,
y..mbr..xmin, y..mbr..ymin,
y..mrb..xmax, y..mbr..ymax)

search by index extension grid_extension
when key(x) use searchFirstBySecond(y)
when key(y) use searchSecondByFirst(x);

This spatial predicate specifies mbrWithin as the DMS
filter. It also specifies that a spatial index can be ex-
ploited when the result of this predicate is tested against
1. If so, the index extension grid_extensionand its asso-
ciated UDF's will be used. In this case, the search method
searchFirstBySecond is used (i.e., with the gridRange
and checkDuplicate UDF) when x is a key, or the search
method searchSecondByFirst is used (with gridRange
and mbrOverlap UDF) when y is a key.

The mbrWithin is just a normal UDF to test whether
one mbr is within another.

create function mbrWithin(int, int, int, int,
int, int, int, int)

returns integer

language ¢ parameter style db2sql

not variant not fenced no sql no external action

external name */u/fuh/db2sde/gis!mbr¥ithin”;

5.4 Creating Application Tables and
Spatial Indexes

We now are ready to create the application tables that
use our spatial data type, and create spatial indexes for
them.

varchar(10), ...
1),
1));

create table store(sid int, name
loc point check(loc..refsystem =
zone shape check(zone..refsystem =

create index store_zone on store(zone)

using grid_extension( 10 100 1000°);

create table customer{(cid int, name varchar(i0), ...
income int, addr char(20),
loc shape check(loc..refsystem = 1));
create index customer_loc on customer(loc)
using grid_extension( 10 100 10007);

The store table has a column loc of the point type,
and a column zone of the shape type. Both specify the
check constraint that its refsystem must be 1. An index
is created on the zone column, using the index extension
named grid_extension, with levels “10 100 1000°. This
essentially creates a spatial index on the zone column with
three grid sizes (10, 100, and 1000).

Similarly, the customer table has a loc column of
shape type, and a spatial index is created over the column
with the same index extension.

5.5 Spatial Query, Index Exploitation

Finally, we issue a query that uses our spatial predi-
cates. We want to find out those customers that are
located close to the location (100,100), or close to the
location (300,300). The UDF circle creates a shape ob-
ject, where the center of the circle is specified by the first

and second argument, and the radius is by the third ar-
gument.

select * from customer
where within(loc, circle(100, 100, 10)) =
within(loc, circle(300, 300, 20)) 1;

ll
[

or

The query compiler takes several steps to generate the
access plan with spatial index exploited for the above spa-
tial query:

¢ The function invocation ¥ithin(...) = 1isindeed
a predicate (as defined in the predicate specification
part of the create function statement) and, hence,
needs to be treated differently.

e Based on the information provided in the predi-
cate specification, the query compiler understands
how to exploit the spatial index. For both pred-
icates, the first argument is the search target, as
it is a spatial column. The second argument is
the search argument, as it is not dependent on the
evaluation of the rest of the query. Therefore, the
search method searchFirstBySecond of the index
extension grid_extensionis picked up as the search
method.

e The searchFirstBySecond indicates that the user-
defined table function gridRange is to be used for
generating search ranges for the search target. Fur-
thermore, the UDF checkDuplicate will be invoked
right after the index keys are fetched.

e The query compiler will generate an access plan that
index-scans the customer table twice, one for each
within predicate, and results are or’ed together.
The object created by each circle call is used to
test whether a customer location is within that cir-
cle.

e For both within predicates, the mbr of the search
argument is computed and gridRange is called to
produce the start/stop key ranges for the B-tree in-
dex accesses.

e For each index entry within the range, the UDF
checkDuplicate, is invoked to make sure no dupli-
cate entry is returned; duplicates are possible due
to that a given spatial object can overlap with more
than one grid blocks.

o Once the index entries are collected by the index-
scan operation (actually, index ORing in this ex-
ample), the record IDs are used to fetch the table
records from the customer table into the buffer pool.
The filter function, mbrWithin, i1s then invoked to
further filter out un-qualified tuples.

e Finally, the resulting set of tuples is evaluated
against the (residual) predicates in the where
clause of the query to return the result.

Let’s conclude this section by considering a slightly dif-

ferent scenario:

select * from customer ¢, store s
where within{c.loc, s.zone) = 1;
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In the above example, both arguments of the pred-
icate are columns, but from two different tables. The
within predicate is obviously a join-predicate. The index
exploitation process is very similar to that of the previous
example. The only difference is that, to exploit the spa-
tial index defined over the loc column of the customer
table, the optimizer will likely pick up the store table
as the outer of a nest-loop join plan, so that the inner is
just a probe to the spatial index.

6 Conclusion

Geographical information has enabled many applications
to assist business decisions. However, existing geograph-
ical information systems, for the lack of tight integration
of spatial data into relational databases, are getting very
complicated, ineffective, hard to manage, and slow to re-
act to the market needs. Today, several RDBMS ven-
dors try to provide tight data integration of spatial data
into relational databases by adding new functions for GIS
applications. In this paper, we describe the work imple-
mented in DB2 Spatial Extender for such an effort. It
relies on two extensions to the traditional RDBMSs: ab-
stract data types and user-defined index extensions to the
existing B-tree indexes.

We described the specifications of index extensions that
allow user-defined functions to be invoked by the index
manager at several stages of an index update and search.
We also described new specifications to user-defined func-
tions that help index exploitations. We then gave a com-
plete example to explain how these extensions work to-
gether to provide an efficient, integrated database inter-
face for GIS applications. Preliminary performance gains
by the integrated approach have achieved up to 3X im-
provements over the existing non-integrated one.

The presented index extensions are very extensible, and
we are currently investigating how other DB2 extenders
can be simplified by using such extensions. We would
also like to investigate the possibilities of opening up
more places, in addition to those presented, in the index
manager for plugging in user-defined functions. Another
area for future work is to enhance the cost model of the
database optimizer, so that more accurate cardinality es-
timates can be made for spatial predicates.
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