1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

A HYPER-CONTROLLABLE AND HYPER-RECORDABLE MEDICAL
IMAGE APPLICATION BASED ON PATTERN TECHNOLOGY

Ku-Yaw Chang’, and Lih-Shyang Chen’

Department of Electrical Engineering,
National Cheng Kung University, Tainan, Taiwan, R.O.C.
Email : canseco@mirac.ee.ncku.edu.tw’, chens@mail.ncku.edu.tw”

ABSTRACT

The basic idea of hyper-control is to use a multimedia
document, called a hyper-control document, to control
other application systems. In this paper, we propose a new
concept, called hyper-record, to facilitate the creation of
hyper-control documents. Based on an extension of the
Command Processor pattern and other related patterns, we
have developed a medical image system, called Discover,
which can support both the hyper-control and the hyper-
record mechanisms. Examples are given to illustrate the
mutual relationship between Discover and its hyper-control
documents. Qur experience in using patterns is also ad-
dressed.

1. INTRODUCTION

When an application system is getting complicated, it is
difficult for an end user to use the application. One way to
overcome the system's complexity is to use a multimedia
document, called a hyper-control document, to guide users
to operate the system. This concept was called hyper-
control[1]. However, the creation of such hyper-control
documents usually needs much effort. In this paper, we
propose a new concept, called hyper-record, to solve this
problem. Its main idea is to allow an application to log ac-
tivity automatically and save the associated information as
a hyper-control document.

One important issue for an application to support the hy-
per-control mechanism is to provide an external control
channel in addition to the internal control built in the origi-
nal application. The Command Processor pattern [2],
which allows an application to support different modes of
user interaction, is a good approach to support not only the
hyper-control mechanism, but also the hyper-record
mechanism. But it causes problems because of the fixed
execution sequence of computation codes and dialog codes
inside the body of a command object.

This paper describes the design of a medical image appli-
cation system, called Discover, that supports both the hy-
per-control and hyper-record mechanisms, and how it re-
quired that we extend the Command Processor pattern. In
addition, our design also uses the Document-View pattern,
the Memento pattern, the Visitor pattern, and the Singleton
pattern.

77

The remainder of this paper is organized as follows: Sec-
tion 2 describes the hyper-control and hyper-record mecha-
nisms and gives an overview of the Command Processor
pattern. In section 3, we illustrate the system architecture of
Discover, which supports both the hyper-control and the
hyper-record mechanisms. Section 4 gives examples to il-
lustrate the cooperation between Discover and its hyper-
control documents. In section 5, we summarize our experi-
ences in applying pattern-based strategy to our system.

2. BACKGROUND

Discover is a distributed interactive visualization sys-
tem[3]{4], which has been running in National Cheng-
Kung University hospital since 1993. Shortly after Dis-
cover was implemented, we observed that physicians were
having trouble understanding and navigating through Dis-
cover processes for image analysis and- generation. Even
with the aid of help documents, physicians still have to go
back and forth between working with Discover and reading
through its help documents while learning how to use the
Discover. During such a process of leaming, some misun-
derstandings and mismatches may occur. These problems
go far beyond the ability of general help systems. In other
words, there still exists some physical as well as conceptual
gaps from the documents to its associated application sys-
tem, especially when the application is very complicated.

2.1 Hyper-control

The concept of hyper-control was first proposed in [1] to
fill the gaps mentioned above. Its basic idea is to use a
multimedia document (written by non-programmers
working with engineers) to control other hardware or soft-
ware systems. The control commands are installed in an-
chors, which is similar to that of "hyperlink”. The major
difference is that when such an anchor is clicked, a com-
mand is issued to activate an operation of its associated ap-
plication system, which is originally a stand-alone applica-
tion system with its own user input, i.e. internal control,
and is currently running simultaneously on the same ma-
chine. Such a multimedia document with the ability to
control an application is called a hyper-control document.
A hyper-controllable application System is the one that
supports the hyper-control mechanism.

In order to clarify the ideas of hyper-control and to explain
how it works, we first give a simple example here. A hy-
per-controllable medical image application is shown in

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1898, N.C.K.U., Tainan, Taiwan, R.O.C.

Fig.1. It can process two different medical image data types:
gray-level images(12 bits/pixel) and true-color images.

- X TR

medical image application.

Suppose a physician wants to segment out the spine of the

left gray-level image, he/she may need to do the following

steps after loading the image data: (without the aid of a hy-

per-control document)

1. On the DIP menu, choose Histogram Equalization to
obtain a better image quality.

2. On the DIP menu, choose Threshold. The Threshold
dialog box will show up on the screen.

3. Move two scroll bars on the dialog box to adjust two
threshold values according to the result he/she sees.

4. Click OK to comiplete this value setting. As a result, the
spine will be segmented from the image.

A physician has to remember each step in the above proc-
essing procedure and choose a comesponding command
under a correct menu. Different clinical cases have differ-
ent processing procedures. As the number of these proce-
dures increases, it is virtually impossible for a physician to
remember all the detailed steps correctly.

With the aid of the hyper-control mechanism, a physician
needs to record each function he/she uses to process the
image as a hyper-control document, as shown in Fig.2, and
tries to come up with a procedure that would apply to a
similar data set. If necessary, a physician can work with
engineers. A physician can apply the same procedure to
many data sets to make sure the procedure consistently
produces reason-
able results. If so,
the procedure be-
comes a diagnos-
tic protocol for the
particular case.
After the estab-
lishment of a hy-
per-control docu-
ment, physicians
can browse it and
apply the same
procedure to other
similar data sets
by clicking on
each anchor in the
document.

Equalization To do the histogram equalization.
Threshoid To threshold the image with low value=

Figure 2. Using a web browser to
browse (Internet Explorer) a hyper-
control document.

78

In other words, the hyper-control mechanism can help us
standardize the processing procedure. Other users simply
follow through each instruction in the procedure, click on
each anchor, and interact with the associated application as
prompted. The hyper-control can also shorten training time,
ensure that users operate the system in a consistent way
and at a uniform quality level. In some sense, it also
provides users with a more friendly user interface(instead
of remembering each step in the processing procedure and
clicking on the pull-down menus for each operation).

When applied to the on-line documentation, the hyper-
control mechanism can also fill up the physical as well as
conceptual gaps from the documents to its associated ap-
plication system and increases the effectiveness of the on-
line documentation. More generally, the hyper-control
mechanism enables us to tailor a general-purpose applica-
tion system(that is a hyper-controllable application system)
into a turn-key system. That is, users can completely ignore
the original general-purpose user menus and work with the
hyper-control document that has been tailored to solve a
particular problem.

However, a hyper-controllable application does not come
for free. If we partition an application according to Docu-
ment/View pattern as shown in Fig.3, the key to support
the hyper-control mechanism is to provide an alternative
user input channel to

accept external control A hyper-controllable application

from other applications, View Document
in addition to the origi-

nal user input channel, ouput K 4,
i.e. the internal control. iy

In fact, a hyper-
controllable application

+
Core function
Input Z
/ =

is a stand-alone one Extemal control
with its own inpm: Hyper-control Documents
(WWW Browser)

/output and can still
work well even without
any hyper-control
documents.

Figure 3. The key to support the

In our implementation, hyper-control documents are in the
HTML format. By doing so, we can avoid "re-inventing the
wheel" and use existent web browsing/authoring tools to
browse/edit these documents. Besides, it also becomes very
easy and natural to integrate hyper-control documents with
some other HTML-based help systems, which are the de
facto standard format for the majority of on-line docu-
mentation. Therefore, a web browser is just a tool to issue
commands to control a hyper-controllable application
through the external input channel. Theoretically, any other
application can control a hyper-controllable application if it
knows how to send commands to the external input chan-
nel.

2.2 Interception Points for Hyper-Control

In fact, the basic operations of an interactive application
can be divided into those that take arguments and those do
not. A more complicated operation can be composed by
these basic operations. In the above example, the histogram
equalization command does not take any arguments, while

the threshold command does. There is only one way to is-
sue commands that take no arguments from a hyper-control
document to its associated application. That is to invoke
the algorithm of the command directly. However, there are
three different ways to issue commands that take arguments
(take the above threshold command as an example):

1. Without parameters / dialog displayed: a threshold
command message without parameters is sent to the ap-
plication. The Threshold dialog box is displayed and
contains two scroll bars initialized at 2000 and 2048 re-
spectively. The initial values are provided by the appli-
cation itself.

2. With parameters / dialog displayed: a threshold
command message with parameters 4000 and 4095,
which is kept on the hyper-control document as shown
in Fig.2, is sent to the application. The Threshold dia-
log box is still displayed, but its two scroll bars are ini-
tialized at 4000 and 4095 respectively according to the
parameter values coming along with the command mes-
sage. Note that in case 1 and 2, a user still has a chance
to adjust the parameters through the dialog interaction
before applying it.

3. With parameters / no dialog displayed: a threshold
command message with parameters 4000 and 4095,
which are kept on the hyper-control document, is sent
to the application. The threshold operation (with pa-
rameters 4000 and 4095) is carried out directly without
displaying the Threshold dialog box.

In other words, a hyper-controllable application should be
able to accept not only commands from itself{internal con-
trol), but also those issued in different ways from hyper-
control documents(external control). Generally speaking,
an interactive application system is composed of a dialog
component and a computation component[5], as illustrated
in Fig.4. In order to achieve the goal mentioned above, we
divide the dialog component into three constituents as fol-
lows:

hla h1b
N ai
: 2a
Tdgger Parameter {30
Genezator Storage DuiogBox 0 - Interception Pomt
Trigger Reques ——— : Intamal Contro}
Dialog Component ——*> - Extemal Centrol
{2 2
hla t:=(>€> Trigger ’ Reply €5<)= L b2
Computation
Component
An interactive application

Figure 4. Four interception points for hyper-control.

1. Trigger Generator: interfaces through which users can
trigger commands of the application, such as menus,
buttons and even a keyboard.

2. Parameter Storage: a place to store parameters of each
operation that takes arguments. When an operation is
complete, the final parameters should be stored back
here. Next time when the same operation is applied
again, the parameters on the dialog box are initialized

79

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

according to the pre-stored parameters on this storage.
Thus, users can see exactly what they set last time the
same operation was applied.

3. Dialog Box: to create and display dialog boxes.

When a user clicks a menu item or strikes a keyboard
shortcut through Trigger Generator, the flow of the control
is the following: (refer to Fig.4)

(1) an operation that requires no parameters invokes a
- Trigger on the Computation Component to carry out
the associated computation directly (1-a).

(2) an operation that requires parameters first invokes a
Trigger(2-a) to fetch pre-stored parameters from the
Parameter Storage. After the parameters are obtained,
the Request(2-b) is invoked. As a result, the corre-
sponding dialog box will be displayed with the
parameters as the initial values. At this moment, a user
can adjust the parameters according to his/her own
needs. After the confirmation of parameter setting, a
Reply(2-c) with final parameters will be invoked on
the Computation Component to complete the whole
operation. Of course, the final parameters should be
stored back to the Parameter Storage after the compu-
tation is done, as stated previously.

According to the above analysis, we found that there are
four interception points available in the course of each op-
eration for a hyper-control document to activate an invoca-
tion to control the application directly:

(1) Trigger: to simulate the effects of choosing menus or
keyboard shortcuts by invoking a corresponding Trig-
ger on Computation Component(hl-a) or Dialog Com-
ponent(h2-a).

(2) Request: to invoke a Request with parameters on Dia-
log Component(h2-b). A corresponding dialog box of
the application system will be displayed. And its
parameters are initialized according to the parameter
values coming along with the Request invocation.

(3) Reply: to invoke a Reply with parameters on Compu-
tation Component(h2-c). The major difference from a
Request invocation is that the computation is carried
out immediately without showing any dialog box.

Any invocation coming from one of the above interception
points will also activate its ensuing invocations or actions.
Therefore, an invocation from a hyper-control document
has exactly the same effects as if the invocation were acti-
vated by the application itself. More importantly, such an
arrangement can meet all the requirements that a hyper-
controllable application can accept commands issued in
different ways from hyper-control documents.

2.3 Hyper-record

Although physicians report that hyper-control documents
make Discover easier to use, they still need to write hyper-
control documents with much effort and, sometimes, even
need to work with engineers. Therefore, physicians hope
that the Discover can record whatever they are experi-
menting automatically, so that the same procedure, which

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
‘December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

turns out to be a good solution, can become a standard one
to solve the particular problem at hand and be reused in the
future. Even though a procedure may fail to work well,
physicians still can make reference to the procedure for
further research.

In the current working environment, there is no way to ful-
fill the function described above and to automate such a
working flow. In other words, there seems to be a gap from
an application system to its on-line documentation. What
has been missing is there is no way to transform the infor-
mation from the operations to a document that can be used
as part of the on-line manuals, references, or standard pro-
cedures for further training and research purpose in the fu-
ture. -

In order to overcome the above problem, we propose a new
concept, hyper-record, to fill-up the gap mentioned above.
The main idea of hyper-record is to allow an application to
log a user's operations automatically and save the associat-
ed information as hyper-control documents which can be
edited later if necessary. After that, users can control the
application through hyper-control documents. With the aid
of the hyper-record mechanism, the creation of a hyper-
control document, i.e. a standard processing procedure, be-
comes an easy job. A physician now can create such a
document simply by performing all operations once,
without knowing how to create it in detail. A hyper-
recordable application system is the one that supports the
hyper-record mechanism.

In fact, there are many other complex or general-purpose
applications, such as word processing, spreadsheets, and
database management, suffering these same problems.
Usually these systems have a lot of generic functions and
allow users to solve many different problems through di-
verse combinations of these generic functions. What on-
line documents can provide is the explanation of these gen-
eric functions and an easy way to navigate through the
contents. In such a situation, it is not sufficient for users to
learn only the basic functionality of each cormmmand to cope
with various problems. For many users, what they still lack
is a convenient way to dynamically create a hyper-control
document, which can guide them to complete a whole
processing procedure and even can be stored back to be-
come part of their on-line documents. This will be very
helpful not only in the standardization of an operation, but
also in the conveyance of experiences.

2.4 Command Processor Pattern

The basic idea of Command Processor pattern, which
builds on the Command pattern in [6], is to encapsulate
service requests into command objects and to separate the
request for a service from its execution. The Command
Processor Pattern illustrates more specifically how com-
mand objects are managed. The structure of Command
Processor pattern is shown in Fig.5.

The Abstract Command component defines the interface of
all command objects. An indispensable procedure of this
interface is the one to execute a command object. For each
function, a concrete command component is derived from

80

the Abstract Command. A Command component imple-
ments the interface of the Abstract Command by using zero
or more Supplier components. The Controller represents
the interface of the application. It accepts requests and cre-
ates the cormresponding command objects. The command
objects are then transferred to the Command Processor for
execution. The Command Processor receives command
objects from the Controller and takes responsibility of
managing them, including starting their execution. It is also
the key component that implements additional services
such as the storing of request objects for later undo. The
Supplier components provide most of the functionality re-
quired to execute concrete commands. When an undo
mechanism is required, a supplier usually provides a means
to save and store its internal state.

Command | performs Abstrart
Processor | stores Comrmand
do
undo
T et_descripti
transfer get_description
- creates uses -
Controller Command 3 Suppler
State_for. undo |
do | |
undo
get_description
| IR

Figure 5. The structure of Command Processor pattern.

2.5 Other Related Patterns

Other related patterns used in our system include the
Document-View, the Memento, the Visitor, and the Sin-
gleton patterns. Please refer to {2} and [6] if necessary.

3. SYSTEM ARCHITECTURE

3.1 Separation of computation and dialog
command objects

Since one of the basic ideas of the Command Processor
pattern is to separate the request for a service from its ex-
ecution to support different modes of user interaction like
external control of the application, it seems to be suitable
for supporting the hyper-control mechanism. However, the
invocations of the elements in the computation component
and dialog component are usually interwoven inside the
body of a command object. In other words, the execution
sequence of the invoked elements in the computation com-
ponents and dialog components is fixed in a command ob-
ject. A piece of computation codes is tightly bound with its
preceding menu selection or dialog activity. Only after a
menu selection or a dialog activity, will the corresponding
computation codes be executed. Thus it is virtual impossi-
ble for the application to be fully controlled by hyper-
control documents through all the interception points
shown in Fig.4.

In order to overcome above limitations, we separate the
computation codes and dialog codes completely by dupli-
cating the whole Command Processor constituent compo-
nents into two different parts: one is the computation com-
ponent for core computation, the other is the dialog com-
ponent for dialog activities. Each part functions as the
original Command Processor pattern and has its own
Command Processor, Controller, Supplier and Command.

Dialog performs b
Command stores Command
Processor
do
undo
get_description
X transfer
Trigger command 4
Dialbg | =@ [T Dhlog "ot
Request Controller Command
Parameter
Parameters Storage
dO -
” undo
get. description

Figure 6. Dialog Command Processor.

When the Dialog Controller receives a Trigger or a Request
invocation, it will create a corresponding command object,
called a Dialog Command Object, as shown in Fig.6. (The
Trigger and Request invocations stand for the Trigger and
Request interception points provided by the dialog compo-
nent in Fig.4.) The controller then transfers this new com-
mand object to the Dialog Command Processor for execu-
tion. The processor activates the execution of the dialog
command object, whose main job is to prepare a set of
parameters for the ensuing computation. Usually, there are
three major steps during the execution process of a dialog
command object:

(1) To retrieve pre-stored parameters from its supplier, i.e.
Parameter Storage. This step is skipped if what the
Dialog Controller receives is a Request invocation,
which comes with parameters.

(2) To display the corresponding dialog box with parame-
ters. The final parameters will be kept inside the body
of the dialog command object.

(3) To invoke a Reply with final parameters to the Com-
putation Controller to carry out the computation. This
invocation is also the only connection between the
Dialog and the Computation Command Processor.

When the Computation Controller receives a Trigger or a
Reply invocation, it will create a corresponding command
object, called a Computation Command Object, as shown
in Fig.7. The computation command object will be trans-
ferred to the Computation Command Processor for actual
execution. (The Trigger and Reply invocations stand for

the Trigger and Reply interception points provided by the -

computation component in Fig.4.) Of course, the parame-
ters coming along with Reply invocation will be delivered
to the computation command object.

8]

1988 international Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Computation perfomns Abstract
Command stores Command
Processor
do
undo
get_description
. transfer
Tagger command
uses
Computation | 25 [Computation |
Reply Controller Command Suppler
State_for_undo i
do -
undo
get_description

Figure 7. Computation Command Processor.

By providing two sets of command processors, we can
separate the computation codes and dialog codes com-
pletely. Their execution sequence is no longer fixed in a
command object, but separated into two command objects.
With this arrangement, it becomes more flexible for hyper-
control documents to control a hyper-controllable applica-
tion. We will give an example to explain the scenarios in
the next section.

3.2 Reuse a Command Object

Our application domain has at least two types of medical
image data: gray-level images and true-color images. In
terms of the Document-View architecture, they represent
two image documents. In other words, a command object
has to face different supplier types. When the same opera-
tion is applied to different documents(suppliers), it may
take different arguments. That is, the interfaces to imple-
ment the same function on different suppliers may be dif-
ferent. Therefore, we may need to provide different com-
mand objects for the same operation. For example, when a
Threshold command is applied to a gray-level image, part
of the execution codes may look like this:

// pSupplier: a pointer to a ;gupplier
// nLow, nHigh: two threshold parameters
pSupplier->Threshold(nLow. nHigh);

or like this when applied to a true-color image:

// nRLow, nRHigh: threshold values for Red color

/# nGLow,nGHigh: threshold values for Green color

// nBLow, nBHigh: threshold values for Blue color

pSupplier->ThresholdmRLow, nRHigh, nGLow,
nGHigh, nBLow. nBHigh):

A better solution to this problem is that the same command
object can be applied to different supplier types without
any change. In order to achieve this goal, we use Visitor
pattern to package related operations from each document
in a separate visitor and organize the documents as ele-
ments, as illustrated in Fig.8.

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

> CVisttor

VisitElementG ay(CElenentGray - %)
VistElernenR GB(CElemeatRGB %)

A
f 1
CVisttorThreshold CVisitorHistogram

VigiElementGRYCElementGray %) | | VisilElementGRKCElemeniGray *)
VisiflenenR GB(CEemenRGB *) VisitElermenR GB(CEH emesRGB *)

Client o CEiement
{Command Object)

CElementGray CElementRGB
Aczept(CVisitor V) @ AcceptCVisitar *3V) ©
[,,v Vis is {,." itEleme: ;a(m"xﬂ

Figure 8. Visitor Pattern

When an operation is executed, a computation command
object simply passes a visitor to its associated element -
supplier. When an element "accepts” the visitor, it sends a
request to the visitor, which will then execute the operation
for that element. The execution function of the Threshold
command object may look like this(no matter what types
its supplier is):

void CCmpCmdThreshold: :Do()

{ /1 get and store the memento
m_pMemento = m_pSupplier->CreateMemento();
// 2. apply the algorithm
m_pSupplier->Accept(&m_VisitorThreshold);

}

In this example, the visitor m_VisitorThreshold is created
in the constructor. The class CCmpCmdThreshold provides
two different constructors: one for gray-level images and
the other for true-color images. The Computation Control-
ler will choose one of them to create this command object
according to the arguments it receives.

3.3 Undo — Memento Pattern

In fact, a computation command object also plays the role
of caretaker in Memento pattern[6]. In other words, before
the computation is carried out, the command object will
ask the supplier to create a memento to save its current in-
ternal state (See step 1 in the Do function of
CCmpCmdThreshold). Later, when the undo procedure is
invoked, this memento will be delivered to the supplier for
restoring its internal state, as illustrated as follows:

void CCmpCmdThreshold:: Undo()

{
// to restore the memento
m_pSupplier->SetMemento(m_pMemento);
m_pMemento = NULL,;

}

3.4 Cofnbine with Document-View

Fig.9 shows the structure after combining the Document-
View pattern and the Command Processor pattemn. In order
to support the undo/redo mechanism, each image document
has its own command history, which is maintained by the
command processor. As a result, every image document
has an instance of the Dialog Command Processor and an
instance of the Computation Command Processor. How-
ever, because a command object can be applied to different
supplier types by using Visitor pattem, its creator, the Dia-
log Controller or the Computation Controller, is designed
to be a global and unique component by using Singleton
pattern. Therefore, a command object is created by the
controller and is first transferred to the active document,
instead of delivering to the processor directly. The active
document will then just forward the command object to its
Processor.

nputati Diniog
Controller | Cantroller

Transfer I] Transfer
Coemen | | oo
Forward Forward
putatio Dialog putati Dialog
Processar | Processor Processor | Processor

Document/View A Documernt/View B
Figure 9. The structure after combing Document-View
pattern and Command Processor pattern.

3.5 Proxy Controller

In Fig.9, although both the Dialog Controller and the Com--
putation Controller can be accessed globally, only those
objects belonging to the same application, i.e. the same ad-
dress space, can access them. In order to accept external
control from hyper-control documents, two proxy control-
lers are provided, as shown in Fig.10. These proxy con-
trollers are automation objects, which allows other appli-
cations to launch and operate on it directly[7]. Each proxy
controller provides exactly the same interfaces as what its
corresponding original controller has. When receiving a
request, the proxy controller will simply forward the re-
quest message to the original controller. In fact, two origi-
nal controllers cannot tell where the Trigger/Request/Reply
invocation comes from: an external control from the proxy
controller or an internal control from the application itself.

Hyper-control
Document
Extemal control
interface interface
|]
Proxy Proxy
Dialog Computation
Ceontroller Controlier
Internal Internal
control control
(Origimal) (Original)
Dialeg Computation
Controller Controller

A hyper-cérmuable app lication

Figure 10. Two proxy controllers.

-82-

3.6 Recorder

As shown in Fig.5, every command object has an addition-
al interface - get description, which is used to generate a
description to describe the command object itself. Such a
description is the self-description of a command object. In
order to fit in with hyper-control documents, the self-
description format is also in the HTML format. The con-
tents of such a description contain at least an anchor (to
send commands when clicked), some explanation and pa-
rameters (if any).

A Recorder is a component which cooperates with the
Computation Command Processor and is responsible for
recording every operation. When the hyper-recording proc-
ess begins, the processor delivers a computation command
to the Recorder after the command object is executed. The
Recorder retrieves the self-description of each command
object and stores them temporarily. When the hyper-
recording process ends, the Recorder will output and save
all the self-descriptions as a hyper-control document.

4. EXAMPLES

4.1 Hyper-record

When the hyper-recording process begins, an empty hyper-
control document is created and displayed in a dialog box.
Next, the user issue two commands: Histogram Equaliza-
tion(without arguments) and Threshold(with arguments).
Each command will be recorded automatically and dis-
played in the dialog box, through which the user can see
what has been recorded, as shown is Fig.11. When the user
click the OK button on the dialog box to end this process,
this hyper-control document will be saved.

Equalization To do the histogram
equalization. Level_L
Threshold, To threshold the image.

Level_L Low Value=R000 __High

Figure 11. A user can see what has been recorded during
the hyper-recording process.

4.2 Hyper-control

A hyper-control document example is shown in Fig.2. In
the hyper-control document, the initial low and high values
of the threshold parameters are 4000 and 4095.

(1) When a user clicks the Equalization anchor to apply a
histogram equalization operation that takes no argu-
ments, a Trigger is invoked on the Proxy Computation

-83_

1998 international Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Controller through the automation mechanism (hl-a in
Fig.4). This invocation is forwarded to the Original
Computation Controller, which will then create a com-

" putation command object for the histogram equaliza-
tion operation and execute it. The results are illustrated
in Fig.12

Equaization To do the histogram equalization.

Thrshold 'l'o threshold the image wxd\ low value=

Figure 12. The results after invoking a Trigger(without pa-
rameters) from a hyper-control document.

As mentioned in section 2, there are three different ways to
issue a command that takes parameters, including Trigger,
Request, and Reply. When users click the Display button
on the hyper-control document, three radio buttons are dis-
played. Users can choose one of them to issue a command.
When the user clicks the Threshold anchor that corre-
sponds to Trigger, Request and Reply selection respec-
tively, the results are shown in Fig.13, 14 and 15.

(2) With Trigger selection: a threshold command mes-
sage without parameters is sent to the application
through the Trigger interception point on Dialog Con-
troller(h2-a in Fig.4). The Threshold dialog box is
displayed. Its low and high values are initialized at
2000 and 2048 according to the values retrieved from
the Parameter Storage of the application. Users can
adjust the parameter values before applying it.

A Hyper-control Document Sample

Equatization To do the hisiogram ecualization.
Thrdwld Ta threshold the image Mrh low values

R

Execution Mode: # Trigger (‘Reque! < Reply

Figure 13. The results after mvokmg a Tngger(w1th pa-
rameters) from a hyper-control document.

(3) With Request selection: a threshold command mes-
sage with parameters 4000 and 4095 is sent to the ap-
plication through the Request interception point on
Dialog Controller(h2-b in Fig.4). The Threshold dia-
log box is also displayed. But its initial low and high
values are initialized at 4000 and 4095 respectively ac-
cording to the values on the hyper-control document.
Users can adjust the parameter setting before applying
it.

1998 International Computer Sympbsium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Equaiization To do the histogram equalzation.

Thrachald To threshold the image with kow value=
Lhigh e8|

Execation Mode: © Trigger #Request € Reply

Figure 14. The results after invoking a Request(with pa-
rameters) from a hyper-control document.

(4) With Reply selection: a threshold command message
with parameters 4000 and 4095 is sent to the applica-
tion through the Reply interception point on Computa-
tion Controller(h2-¢ in Fig.4). No dialog box is dis-
played. The threshold operation is carried out directly
with low value 4000 and high value 4095

A Hyper-control Document Sample

o Equatiation Todo the histogram eqalization.
o Threshokd To threshold the image with low value=
} bih vabe 85|
Execution Mode: © Trigeer GRaquest #Reply

rameters) from a hyper-control document.

5. CONCLUSIONS

Hyper-control is a powerful and flexible mechanism to
standardize the processing procedures. It can make a gen-
eral-purpose application easy to use in different domains.
Hyper-record is the counterpart of hyper-control. It allows
users to create a hyper-control document easily. The basic
requirement for an application to support the hyper-control
mechanism is to provide an additional input channel to re-
ceive external control from other applications. We extend
the Command Processor pattern by separating the compu-
tation codes and dialog codes into tow kinds of command
objects, i.e. the Dialog and Computation command objects,
to support the hyper-control mechanism. At the same time,
the hyper-record mechanism is also achieved based on this
pattern.

Besides, when combined with Document-View pattern, a
command object may have different supplier types (image
document types). In such a case, the reusability of a com-
mand object becomes an important issue. By adopting
Visitor pattern for execution and Memento pattern for the
undo function, a command object can be applied to differ-
ent supplier types without any change.

In order to receive requests from hyper-control documents

84

or other applications, two proxy controllers are also pro-
vided. This allows hyper-control documents to become part
of the application's user interface and to be integrated with
an HTML-based help system easily.

Based on above pattern technology, we have developed an
interactive medical image application system to support the
hyper-control and the hyper-record mechanisms success-
fully. During the development process, it was discovered
that patterns do provide a very good solution in the design
of system architecture to solve our practical problems. Alt-
hough several pattems work together, they still help us
have a clear roadmap of the complicated control flow.

6. REFERENCES

1] L.S. Cben, P.W. Liu, K.Y. Chang, J.P. Chen, S.C.
Chen, H.C. Hong, and 1. Lin, "Using Hypermedia in
Computer-Aided Instruction,” IEEE Computer
Graphics and Applications, Vol. 16, No. 3, pp. 52-57,
May 1996.

[2] F.Buschmann, R. Meunier, H. Rohnert, P. Sommerlad
and M. Stal, A System of Patterns - Pattern-Oriented
Software Architecture, John Wiley & Sons Inc., New
York, 1996.

[3] L.S. Chen, CP. Chen, J. Chen, P.W. Liu, and T. Shu,
"Distributed and Interactive Three Dimensional Image
System," Computerized Medical Image and Graphics,
Vol. 18, No. 5, pp.325-337, Sep. 1994.

[4] P.W. Liu, L.S. Chen, S.C. Chen, J.P. Chen, F.Y. Lin,
and S.S. Hwang, "Distributed Computing: New Power
for Scientific Visualization," IEEE Computer Graphics
and Applications, Vol. 16, No. 3, pp.42-51, May 1996.

[5] H. R. Hartson, D. Hix, "Human-Computer Interface
Development: Concepts and Systems for Its
Management", ACM Computing Surveys, Vol. 21, No.
1, pp- 5-92, March 1989.

[6] E. Gamma, E. Helm, R. Johnson and J. Vlissides,
Design Patterns - Elements of Reusable Object-
Oriented Software, Addison-Wesley Publishing
Company Inc., 1995.

[7] Adler, Richard M., "Emerging Standards for
Computing Software,” Computer, pp. 68-77, March
1995.

	
	77
	78
	79
	80
	81
	82
	83
	84

