1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

D-tree: A Bi-Level Technique for Indexing Rectangle Data.
in Spatial Database Systems

Kien A. Hua! Ying Cail Yu-Lung Lo?
2 Dept. of Information Management

ChaoYang University of Technology

1 School of Computer Science
University of Central Florida

Orlando, FL 32816, U.S.A
E-mail: {kienhua, cai}@cs.ucf.edu

Abstract

This paper shows how a domain-decomposition hierarchy
can be organized as a paginated tree with a balanced height,
which can be further extended to index the data subsets
(i.e., first-level indexing). The data in each subset can be
indexed using any existing access support structure. (i.e.,
second-level indexing). We call this bi-level indexing struc-
ture “D-tree”. D-tree has many desirable properties includ-
ing its good data clustering characteristics, its insusceptibil-
ity to the insertion order of the data set, and its immunity to
the skew in the access patterns and data distributions. We
provide experimental results to demonstrate these benefits.
They show that D-trees using R-trees as the second-level in-
dices provide savings averaging 90% over using R-tree alone.
In general, the proposed technique can be used to boost the
performance of any existing spatial indexing methods (e.g.,
R"-tree, R™-tree, etc.)

1 Introduction

Spatial data are expensive to retrieve due to the nature of
the problem, that is, spatial data cannot be sorted or hashed
like one-dimensional data. Numerous indexing techniques
have been developed for spatial data in the past decades.
Basically, they can be divided into two classes. The first
one deals with spatial data as points in a multidimensional
space. This class includes point quadtree, k-d tree, K-D-B
tree, hB-tree and so forth. These structures can be clas-
sified as point trees. Normally, the shape of point trees is
highly dependent on the order in which the data points are
inserted. On the other hand, the second class can be called
regional tree, in which spatial data are represented by inter-
vals in several dimensions. Such spatial data normally are
called regional data. For example, a rectangle is an object
identified by two points in a two dimensional space. This
class includes R-tree and its variants.

In this paper, we focus on rectangle data. Rectangles
are often used to approximate other objects in an image
for which they serve as the minirmum rectilinear enclosing
object. Of course, the exact boundaries of the object are
also stored, but they are only accessed if greater precision
is needed. The two most important types of operations
on such data sets are window operations (i.e., rectangular
range query) and spatial join operations. These operations
are very expensive to perform. To reduce their execution
time, the spatial data must be clustered. Unlike conven-
tional textual databases, clustering in this case must base
on the space occupied by the data. That is, we need to de-

61

Taiwan, R.0.C
E-mail: yllo@mail.cyut.edu.tw

sign spatial access methods that will cluster objects on disks
according to their spatial locations in the space from which
they are drawn. If two objects are close together in this
space, they should be stored close together on disk (prefer-
ably on the same page). Many such techniques have been
proposed. Among them, R-tree [1] is probably the most ref-
erenced technique in the literature. An R-tree is basically
a K-dimensional variation of the B-tree [2] which indexes
data consisting of intervals in K dimensions, K > 1. When
K = 2, each node in the R-tree corresponds to the small-
est rectangle that spatially encloses its child nodes. All leaf
nodes appear at the same level. They contain pointers to
the actual objects in the database instead of child nodes.
We note that in the leaf nodes each object is represented by
the smallest aligned rectangle containing it. Without loss
of generality, we will assume a 2-dimensional space for the
remaining of this paper.

A drawback of R-tree is that it does not result in a dis-
joint decomposition of space. The problem is that an object
may be spatially contained in several nodes, yet it is only
associated with one node. The overlap among the directory
nodes, which can seriously affect its query performance, can
be alleviated by “reinsertion” in R* tree [3]. However, a
spatial query may still require several paths to be visited
before ascertaining the presence or absence of a particular
object.

Rt-tree [4] is another technique trying to address the
overlaping problem of directory nodes. This scheme decom-
poses the space into disjoint bounding rectangles. Each ob-
ject is associated with all the bounding rectangles that it
intersects. As a result, all these bounding rectangles, repre-
sented by nodes in the R*-tree, each has a path to the ob-
ject. Allowing redundant paths is not performance panacea,
however. It leads to an increase in the height of the tree and
space overhead.

A more recent extension to the R-tree is called Seg-
ment R-tree (SR-tree) [5]. This scheme solves the redundant
search problem associated with R-tree by linking the large
objects to nodes at the higher levels of the tree. Thus, an
entry in a non-leaf node can either contain a pointer to a
child node, or a pointer to an actual object in the database.
Objects linked to a non-leaf node are called spenning objects
since they span at least one of the child nodes. A problem
with this approach is that many entries in a node can be
used up by the spanning objects. If there are many large
objects in the database, the increase in the number of span-
ning objects will necessarily increase the height of the tree
due to the reduction in the fanout of the nodes. To address
this problem, it was proposed in [5] to use larger nodes at

1998 Intemnational Computer Symposium ’
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

successively higher levels. However, it was not clear how
the optimal node sizes for each level could be determined.
Such decisions will have to rely on the characteristics of the
data set which are not usually known beforehand. Sampling
was used in [5] to address this problem. It was shown in [5]
that without sampling the performance of Segment R-tree
is similar to that of R-tree.

Since larger objects are more likely to be retrieved by
window operations, storing these objects at higher levels of
the index structure, as exploited in [5], is a good idea. This
property is also utilized in this paper, but without the need
for sampling which is sometimes unreliable due to the skew
in the distributions of the objects and/or object sizes [6].
Our technique, called D-tree, uses uniform node sizes, but
still can maintain a maximum fanout at each tree node. In
addition, we want to improve on another aspect of Segment
R-tree, namely, its sensitivity to the insertion order of the
data items. Depending on the insertion order, optimal data
clustering cannot be guaranteed for Segment R-tree. We
will show that D-tree is immune from this effect.

Unlike R-tree variants, D-tree takes a different approach
to index spatial databases. In fact, it can be viewed as a data
clustering technique which dynamically clusters data into
disjoint subsets based on the spatial relationships among the
data objects. The partitioning scheme ensures good data
clustering, and allows each subset to be efficiently indexed
by any existing spatial access-support structures. Without
loss of generality, we use R-tree in this study to provide
the second-level indexing. However, any good technique,
such as R¥-tree [4], R*-tree [3] or Hilbert R-tree [7], can
also be used. The rationale for using R-tree in our study
is that it facilitates some indirect comparisons with many
other techniques which were also compared to R-tree (e.g.,
(3], [5])- In general, the proposed technique can be used
to boost the performance of any existing spatial indexing
methods.

The remainder of this paper proceeds as follows. In Sec-
tion 2, we describe the concept of domain decomposition,
and examine existing techniques for indexing the set of sub-
domains. The proposed scheme, D-tree, is presented in Sec-
tion 3. Operations on D-tree are described in details in
Section 4. In Section 5, we introduce a bunch feature which
can further enhance the performance of D-tree. Qur perfor-
mance model and simulation results are discussed in Section
6. Finally, we give our concluding remarks in Section 7.

2 Domain Decomposition

Given a collection of rectangular objects S and their domain
D, the set S can be divided into several subsets by splitting
the domain D into a set of mutually disjoint subdomains. If
D is split into n subdomains, D1, Ds, ..., and Dy, then §
is divided into n subsets and one spanning set accordingly.
Data in each subset is fully contained in the corresponding
subdomain. Data in a spanning set, however, cross at least
one split line, and therefore cannot be contained in any sin-
gle subdomain. We note that the domain corresponding to
the spanning set is the same as the initial domain D, and
is referred to as split domain in this paper. The domain
decomposition is illustrated in Figure 1. We note that the
split domain (SplitD;) contains only the spanning objects
(C and F) which span one or more subdomains. The set of
spanning objects is called a spanning set. Objects enclosed
in each subdomain are called bounded objects. The set of
bounded objects associated with each subdomain is called a
bounded set.

62

SubD3 SubD2 SubD1

=

aplit domain (SpirDE)

L] [0
splitting line CE[ﬂE " =2
superdomain (D)
e

=

a bounded object A

= spanning object

/ = subdomain

°
SubD4 SubDS SubD6

Figure 1: Domain decomposition.

Each subdomain may be recursively decomposed when
its capacity exceeds a predetermined threshold, and the as-
sociated data set is divided accordingly. When a subdomain
requires no further decomposition, it is at the bottom of the
decomposition hierarchy and is called a leaf domain. As a
result of the decomposition, the original data set S is par-
titioned into many bounded sets and spanning sets. Each
bounded set is associated with a particular leaf domain while
each spanning set has its own split domain. We note that
any existing indexing technique can be used to index the
data in each subset. D-tree, introduced in this paper, is de-
signed to index on the subdomains. We will describe this
indexing structure in more detail in the next section.

The idea of domain decomposition has been extensively
used for multi-dimensional data and numerous data struc-
tures have been proposed for indexing the decomposition
hierarchy. Nevertheless, these schemes are not suitable for
regional data discussed here. Instead, they are designed for
point data, and hence do not have to deal with spanning ob-
jects. For example, quadtree and its variations can be used
for indexing the leaf domains, but they cannot deal with the
split domains discussed previously. Another. problem with
quadtree and its variants is that, they are neigher paginated
nor balanced. An advantage of a balanced index tree is the
consistency in good performance for all queries independent
of their access patterns.

Other index structures based on the idea of domain de-
composition include k-d tree [8}, K-D-B tree [9], hB-tree
[10], etc. Again, none of these techniques are designed for
regional data. Furthermore, all of these trees split a domain
according to the value of the inserting data. As a result,
the shape of their trees is highly dependent on the insertion
order of the data points. As a contrast, we will see that dif-
ferent insertion orders of the data into a D-tree only result
in different ordering of the entries inside the tree nodes. The
shape of the D-tree is not affected by this factor at all.

3 The Structure of D-tree

For clarity’s sake, we present a 2-dimensional D-tree in this
paper. However, the technique can be easily extended to
handle higher dimensions. A two dimensional D-tree is il-
lustrated in Figure 2. The tree nodes can be categorized
into three types according to their function:

Internal domain node: Its entries consists of a set of 2-
tuples of the form (d, P), where d is a superdomain
which spatially contains all the subdomains represented
by the entries in the child node pointed at by P. For
example, d1 is the superdomain of d11, d121, and d122,
as shown in Figure 2.

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C K.U., Tainan, Taiwan, R.0O.C.

domain D
T
1
a1l yd21 D s splitinio d] and d2
A S dl is spiit into 11 and d12
)
) . . s
d121 liz E 422 d2 isspiitinto d21 and &22
! t d12 is split into d121 and ¢122

D . bounded set, in which the objects
can be stored in one data node

A spanniog set, in which the objects
* are indexed by R-tree

internal domain node i
3 g node pointer
[- domain f—— split domain
5 spanning node
R-tree pointer

external domain node

Figure 2: D-tree structure.

External domain node: Its entries are 2-tuples of the form
{(d, P), where d is a leaf domain and P points to a
bounded set. All external domain nodes must appear
at the same level, i.e., the decomposition hierarchy
is always balanced. The term “domain node” will be
used when it is not necessary to differentiate between
internal domain nodes and external domain nodes.

Spanning node: Associated with each domain node is a
spanning node. Entries in a spanning node are also 2-
tuples of the form (S;, P;), where S; is the split domain
corresponding to the ith split of the superdomain rep-
resented by the domain node having a pointer to the
spanning node, and P; is a pointer to the spanning
set associated with S;. Thus, a spanning node con-
tains the complete history of how the corresponding
superdomain was decomposed.

We note that these three types of tree nodes actually share
the same data structure, which is an array of entry with the
form (Retangle, Pointer).

In our implementation, the objects in a spanning set are
indexed by an R-tree. Each entry in a spanning node in-
cludes a pointer to the root of the corresponding R-tree.
We call these trees “spanning R-tree” in this paper. On the
other hand, since our decomposition continues until the set
of objects enclosed by each leaf domain is small enough to be
stored in a single page, second-level index is not necessary
for a bounded set. In general, one can allow much larger
bounded sets, and appropriate indexing techniques can be
used to take advantage of the local characteristics of each
data region.

Obviously, spatial queries can be efficiently supported by
a D-tree as they involve descending the tree until the object
is found in a bounded set or a spanning set. We note that
the wasted search problems associated with R-tree due to
the overlap of sibling nodes discussed previously are now
limited to a small regional R-tree. This is one of the key
properties which contribute to the good performance of D-
tree. Another desirable property of D-tree is the regular-
ity of the decomposition and the disjointness of the subdo-
mains. This feature is particularly useful for performing set
operations, e.g., spatial join, as they form the basis of most
complicated queries.

4 Operations on D-tree

In this section, we describe the operations designed for D-
tree. They are Search, Insert, and Delete. The following
notations are used in our discussion:

e Given an entry (D, P) in an internal domain node,
D.P denotes the child domain node pointed at by P.

63

e Given an entry (D,P) in an external domain node,
D.P denotes the bounded set pointed at by P.

e Given a domain node D, D.spanning_node is used to
denote the spanning node corresponding to D.

e Given an entry (S, P) in a spanning node, §.P is used
to denote the spanning set pointed at by P.

The algorithms for the tree operations are given in the fol-
lowing subsections.

4.1 Search

We consider two kinds of query: Ezact Match Query and
Range Query. To do an exact-match search, one follows a
unique path from the root of the D-tree to either a bounded
set or a spanning set.

Algorithm: Search(D_tree_root, search_object)

1. Set current_node = D_tree_root.
2. If there is an entry, say (D, P), in current_node such
that D contains search_object, then do the following:

(a) W current_node is an external domain node, retrieve
search_object from D.P.

(b) If current_node is an internal domain node, recur-
sively call Search(D.P, search_object).

3. If none of the entries in current_node spatially encloses
search object, then do the following:

(2) Examine the entries in the current_node.spanning_node

from right to left until a split domain, say (S, P) is
found, that spatially encloses search.object.
(b) Retrieve search_object from S.P.

The search function for a range query begins the search
at the root of the D-tree, and descends the tree in depth-
first order to check all subdomains (including split domains)
which overlap with the search window.

Algorithm: Range_Search(D_tree_root, search.window)

1. Set current.node = D_tree_root.

2. Examine each entry, say (S, P), in current_node.spanning_node

If S overlaps with search_window, retrieve the objects,
in S.P, which overlap with the search window.

3. For each entry in current_node, say (D, P), if D overlaps
with search window, do the following:
(a) If current_node is an external domain node, retrieve
the objects, in D.P, which overlap with the search
- window.

(b) If current_node is an internal domain node, recur-
sively call Range_Search(D.P, search_window).

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

P

(a) Beforc data node D is full, all objects are inserted into the
data node D.

doma=in D

domain D

domain D

lede T {1 T T3
di a2
2] [#] A
®) When d.-t- node D is ful'l split D into subdomain d1 -nd d2.
node D i the node as split

domnln The objects ln data node D are redistributed armong
the data nodes d1 and d2, and the newly created spanning
R-tree D.

domain D

prtfez B2 e{ofa]]

Lot a2]arzlarzd—={ o] arfaid

dl1l

az

e AA

{c) Thec domain d1 is split into d11 and d12 when the data node
dl is full, and d1 is moved to the spanning nodc.

da12

] dig

a2

SETT YOOV

dl2lld 123

(d) Domain d12 is further split into d121 and d122. Now the
domain node is full. Call the function split_domain_node()
to split the domain node.

e ON

(e) After split the full domain node, dl and d2 point to their own subdomains

Figure 3: Split domain node.

4.2

A D-tree is initialized to have only one domain node with
a single entry (D, NULL), where D is the domain of the
entire data set. As more data are inserted into the data
set, additional domain nodes are allocated to grow the tree
accordingly. The algorithm for inserting a new object is
given below:

Algorithm: Insert(D_tree_root, new_object)

1. Set current_node = D_tree_root.

2. If there is an entry, say (D, P), in current_node such that
D spatially contains new_object, then do the following:
(a) If current_node is an external domain node, call In-
sert_bounded_object(current_node, new_object) to
insert new_object into the bounded set D.P.
(b) If current_node is an internal domain node, recur-
sively call Insert(D.P, new_object) to examine the
child node D.P.
. If none of the entries in current_node spatially encloses
new_object, then the new_object is a spanning object and
is inserted into a spanning set as follows:

Insert

(a) Examine the entries in the current_node.spanning_node

from right to left until the first split domain, say
(S, P) is found, that spatially encloses new_object.
(b) Insert new_object into the spanning set S.P.

The insertion of an object into a bounded set can cause
the corresponding data node to overflow. This condition
can be handled by splitting the corresponding domain into
two subdomains and creating a new split domain. The data
in the old bounded set are then redistributed to the newly
created bounded sets and spanning set according to their
spatial properties. These operations are illustrated in Fig-
ures 3(b) and 3(c). It shows that D is split into dy and d»
in Figure 3(b); and d, is further split into di; and di2 in
Figure 3(c). The details of this operation are described in
the following algorithm:

Algorithm: Insert_bounded_object(ezternal_domain_node, new_obj)

1. Look for the entry, say (D, P) in external_domain_node,
which spatially encloses new _obj.

2. If P is a null pointer, create a new data node D.P for D.
3. Insert new._obj into D.P.
4. If D.P is full, do the following:

(a) Split the domain D into Dy and D, and do the
following:

i. Create a new split domain entry (D,, P,) at the
left-most unused entry in |
ezternal_domain_node.spanning.node and set
D, =D.

ii. Replace the entry (D, P) in ezternal_.domain_node
b)’ (Dh 1)[)'

iii. Create a new entry (D, P.) at the left-most
unused entry in external_domain_node.

iv. Create two new data nodes D;.P; and D,.P;
for Dy and D,, respectively, and create a new
spanning set D,.P, for D,.

(b) For each object in D.P, do the following:

i. If the object is spatially contained in D,, then
move it to D,.P;

ii. If the object is spatially contained. in Dy, then
move it to D;.P

iii. Otherwise, insert the object into D,.P,.

If external_domain_node is full, call
Split_domain_node(external_domain_node)

Each domain split uses one entry in the domain node.
Eventually, all the available entries are used causing the do-
main node to overflow. Handling this condition requires
the domain node to split. In the Insert_bounded_object al-
gorithm, the split of a domain node is done by calling the
function Split_domain_node in Step 5. An example is shown
in Figures 3(d) and 3(e) to illustrate the split operation on a
domain node. A new root is created in this example because
the node being split is a root node.

Algorithm: Split_domain_node(domain_node)

1. If domain_node is the root of the D-tree, create a new
root parent with domain_node as its only child; other-
wise, let parent denote the parent node of domain_node.

2. Create two new domain nodes le ft and right, and their
empty spanning nodes.

5.

64

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

3. Look for the entry in parent, say (D, P), such that P
points to domain_node. Split the domain D into two
subdomains Dy and D,, and do the following:

Algorithm: Handling_domain_underflow(domein_node,domain)

1. Search for the entry (D,, P,) in domain_node.spanning_node

{(a) Replace the entry (D, P) in parent by (Dy, P,), and
direct P, to point to left.

(b) Create a new entry (D, P.) in parent, and direct
P, to point to right.

4. For each subdomain entry (D;, P;) in domain_node, if
D; is spatially contained in Dy, it is moved to left; it is
moved to right, otherwise.

5. Redistribute the entries in domain_node.spanning_node
as follows:

(a) Move the left-most entry in domain._node.spanning_node

to the first unused entry of
parent.spanning-node.

(b) Examine the remaining entries (S;, P;) in
domain_node.spanning_node from left to right, If
S; is spatially contained in Dy, it is moved to
le ft.spanning_node; otherwise, it is moved to
right.spanning_node.

6. Discard domain_node and its spanning_node.
7. If parent is full, recursively call Split_domain_node(parent).

4.3 Delete

The Delete operation is used to remove an object from the
data set. It first uses the D-tree to search for the bounded set
or spanning set which spatially contains the object. This ob-
ject is then removed from the set. A delete of an object from
the data set can cause a subdomain to underflow. In this
case, the relevant domain nodes must be merged to main-
tain good storage utilization. We note that a merge can also
involve a split domain. For instance, in Figure 3(b), deleting
the spanning objects from the spanning set corresponding to
D may cause an underflow. In this case, the two bounded
sets and the spanning set might have to be merged to form
a single bounded set as shown in Figure 3(a). The details
of the Delete algorithm are given in the following:
Algorithm: Delete(D_tree_root, object)

1. Set current_node = D_tree_root.

2. If there is an entry, say (D, P), in current_node which
spatially contains object, we do the following:

(3) if current_node is an external domain node, remove
the object from D.P.

(b) Examine the entries in current_node.spanning_node
from right to left to find an entry, say (S, P), such
that S spatially contains D. Then call
Handling_domain_underflow(current.node,S).

(c) If current.node is an internal domain node, recur-
sively call Delete(D.P, object) to examine the child
node.

3. If none of the entries in current_node spatially encloses
object, perform the following:

(3) Examine the entriesin current_node.spanning_node
from right to left to find an entry, say (S, P), such
that S bounds object. Delete object from the span-
ning set S.P.

(b) Call Handling_domain_underflow(current.node,S).

65

such that § = domain. If the spanning set is not under-
flow, return to the calling procedure.

2. Examine each entry in domain_node. Let (D, P;) and
(Dr, Pr) denote the two entries which were generated by
splitting domain. Let |Dy|, |D.|, and |D,| dencte the
number of objects in the data sets associated with Dy,
D;, and D,, respectively. If |Dy| + |D,| + |D,| objects
can be stored in one disk page, do the following:

(3) move objects from D,.P, and D,.P, to D,.P;.

(b) remove (D, P;) from domain_node, and (D,, P,)
from domain_node.spanning_node.

(c) if domain_node is not the root node, call
Handling domain_node_under flow(domain_node).

Algorithm: Handling.domain_node_underflow(domain_node)

1. Let parent denote the parent of domain.node. Examine
each entry in parent.spanning_node, starting from right
to left. Let (S, P,) denote the first entry found such that
S equals the left-most split domain in
domain_node.spanning_node.

2. Examine each entry in parent. Let (Dy, P) and (D, P;)
denote the two entries which were generated by splitting
the domain S.

3. f Dy.P; has enough space to accommodate the entries
in Dr.P;, do the following;:

(3) Create a new domain node D and its spanning node

D .spanning_node.

(b) Move the entry (S, P,) to D.spanning_node as its

left-most entry.

(c) Move all entries in D,.P, and Dy.P, to D.

{d) Move all entries in D,.P,.spanning_node and
D,.F,.spanning_node to D.spanning_node.

(¢} Discard D;.P,, D,.P;, and their corresponding span-
ning nodes.

(f) Remove the entries (D, P,) from parent and (S, P,)
from parent.spanning_node.

(g) Change the entry (D, P,) in parent to (S, P), where
P points at the domain node D.

(h) If parent is not the root, recursively call

Handling_domain_node_underflow(parent); other-

wise, if parent has only one entry, discard parent.

5 Performance Enchancement: Bunching Roots of R-trees

To further enhance the performance of D-tree, a bunching
concept is used in our implementation. This strategy is il-
lustrated in Figure 4. It shows that the roots of the three
R-trees are bunched into a single page. The rationale for
this feature is as follows. The root of a tree is accessed a
lot more frequently than the other tree nodes. Bunching the
roots of several trees, when possible, allows the access to one
tree to cache several roots in the memory buffer to facilitate
future accesses to the other trees. The saving in the memory
space due to bunching also helps to improve the hit ratio of
the memory buffer since more data can now be cached in
memory. In our design, we only allow bunching be applied
to tree roots associated with the same spanning node. This
constraint makes it easier to detérmine if a bunch of trees
has been examined before during the course of processing a
query.

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0.C.

Domain node Spanning node

I T—— 11 L1]

S mwmmmmem v e TR e — e ——

Three individual R-trees, which have their own root nodes

—Bunch

Unbunch

Domain node Spanning node

LI I TTTT]

A bunch of R-trees sharing the same root node

Figure 4: Bunch_node operation.

6 Performance Experiments

In order to assess the benefit of the proposed technique, we
implemented a simulator to compare its performance with
that of R-tree. The Quadratic split algorithm [1] was used
to implement the R-tree since it was shown in [3] to pro-
vide better performance than Linear algorithm. We note
that since the proposed technique can be used to boost the
performance of any existing indexing schemes, we only con-
sidered R-tree in our performance study.

6.1 Workload Parameters

Our workload consists of a number of synthetic databases
and queries. We decided to use synthetic databases since
they allow us control over the different parameters that char-
acterize the data sets. Four data sets were used in our ex-
periments:

Data set 1: The locations of the objects in the domain
: space follow a uniform distribution. Their sizes also
follow a uniform distribution.

Data set 2: The locations of the objects in the domain
space follow a uniform distribution. Their sizes fol-
low an exponential distribution.

Data set 3: The locations of the objects in the domain
space follow an exponential distribution. Their sizes
follow a uniform distribution.

Data set 4: The locations of the objects in the domain
space follow an exponential distribution. Their sizes
also follow an exponential distribution.

The dimensions of our domain space are (0..100K, 0..100K).
There are 200K objects in each data set. These objects are
inserted into a database in random order. However, the
same insertion order is used for both indexing schemes (i.e.,
R-tree and D-tree). To generate the size for each object, we
randomly generate its x-dimension and y-dimension using
the appropriate distribution function. In the case of a uni-
form distribution, the mean size is 50; and it ranges between

different groups of query sequences were considered in our

study:

Group 1: Each sequence consists of 100 query windows of
identical size and x-to-y aspect ratio. The query sizes
are fixed for all sequences; but each sequence has a
different aspect ratio. This group of queries is similar
to the workload used in [5].

Group 2: Each sequence consists of 100 query windows
of identical size and x-to-y aspect ratio. Both the
query size and the aspect ratio are different for each
sequence. This group of queries is similar to the work-
load used in [7].

6.2 Experimental Results

In order to facilitate the performance study, we implemented
the two indexing schemes: R-tree and D-tree. Since each one
of our index nodes uses one page (i.e., 1K Bytes) for storage,
our performance metric is the average I/O cost computed as
follows:

Avg IO _Cost =

pages accessed by all queries in a sequence

This metric was also used in [5, 7] to study the same is-
sue. We will also present the Saving%, due to the D-tree
technique, which is defined as follows:

the number of queries in the sequence

Avg 10 _Cost(R-tree) ~ Avg 10 _Cost(D-tree)

Saving% =
avingze AvgI0_Cost(D-tree)

The results of our experiments are given in the following

subsections.

6.2.1 Fixed-Size Queries on Uniformly Placed Uniform-
Sized Objects

In this experiment, we applied the query sequences of Group
1 to Data Set 1. The average I/O costs are shown in Table 1.
We note in this table that:

0 and 100. When an exponential distribution is used, the
mean size is 2,000; and it ranges between 0 and 100K. For
each object, we place it at a random location in the domain

Nodes accessed by D-tree = # domain nodes accessed +
data nodes accessed +

R-tree nodes accessed.

space according to the appropriate distribution. Thus, in
the case of a uniform distribution, the objects are spread
evenly across the domain space. On the other hand, the
density closer to the centroid of the domain space is denser
in an exponential distribution.

In this study, we want to gain insight on the effect of the
window sizes and the x-to-y aspect ratio on the indexing
schemes. In our model, a query is represented by a rectan-
gular window randomly located in the domain space. Two

66

This total may not equal the sum of its parts due to the
round-off errors. In our performance study, spanniag nodes
are counted as domain nodes to reflect the property that
they are not part of the R-trees. For all query sequences,
we observe that the D-tree offers tremendous improvement.
It provides savings of around 90% over the R-tree. Interest-
ingly, the data we collected for the R-tree essentially resem-
bled those given in [5].

6.2.2 Variable-Sized Queries on Uniformly Placed Uniform-
Sized Objects

In this experiment, we applied the query sequences of Group
2 to Data Set 1. The average I/O costs are shown in Table 2.
‘We observe in this table that as we increase the sizes of the
query window, the benefits of the D-tree approach decrease.
This phenomenon can be explained as follows. As the size
of the queries becomes large enough, a large number of ob-
jects fall into the query window causing a large number of
the index nodes to be visited. Since both the R-tree and the
D-tree use about the same number of nodes (6,220 nodes
and 5,721 nodes, respectively, were observed in this exper-
iment), visiting a large number of R-tree nodes or D-tree
nodes results in similar I/O costs. Nevertheless, The D-tree
outperforms the R-tree by a very wide margin (up to 76%
saving) for more typical size queries. Since both indexing
techniques use about the same number of nodes for a given
database, the superiority of D-tree is attributed mainly to
its better data clustering property.

6.2.3 Fixed-Size Queries on Uniformly Placed Exponential-
Sized Objects

In this experiment, we applied the query sequences of Group
1 to Data Set 2. The results are given in Table 3. We observe
the same behavior as seen in Table 1. However, the savings
are slightly less under this workload. This is due to the fact
that there are more larger objects in Data Set 2 (due to the
exponential distribution) causing an increase in the number
of spanning objects. As a result, the number of R-trees in
the D-tree structure decreases while the size of each R-tree
increases. Nevertheless, D-tree maintains savings as high
as 69%. This result illustrates the capability of D-tree in
adapting to the workload conditions. That is, the optimal
number of R-trees used is automatically determined by the
characteristics of the data set (i.e., object sizes, placement
conditions, etc.)

6.2.4 Variable-Sized Queries on Uniformly Placed Exponential-

Sized Objects

In this experiment, we applied the query sequences of Group
2 to Data Set 2. The results are given in Table 4. In this
case, the savings due to the D-tree range between 31% and
70%. The saving is generally more when the number of
nodes accessed is less. Again, this behavior reflects the ex-
cellent data clustering capability of the proposed indexing
technique. Obviously, when a query accesses a very large
portion of a database, the advantage of data clustering di-
minishes.

6.2.5 Other Experiments

More experimental results are given in Table 5, Table 6, Ta-
ble 7, and Table 8. They confirm the benefits we observed
for D-tree in the previous subsections (i.e., better data clus-
tering, insusceptible to skew placement). We include these
tables here for completeness. However, we will not discuss
them further in the interest of brevity.

7 Concluding Remarks

We present in this paper a new indexing technique for mul-
tidimensional data called D-tree. D-tree has the following
desirable properties:

67

1998 Intemmational Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C K.U., Tainan, Taiwan, R.0.C.

e D-tree is both an indexing scheme and a dynamic data
clustering technique. The adaptive data clustering
mechanism ensures excellent data clustering regard-
less of the insertion order of the data. This feature
also makes D-tree immune from the effect due to skew
in the data distribution.

o Since larger objects which are accessed more frequently
by window queries are stored higher in the D-tree and
therefore less expensive to retrieve, D-tree performs
very well even in the presence of skew in the object
sizes.

o Due to the regularity of the decomposition scheme and
the disjointness of the subdomains, D-tree is particu-
larly useful for performing set operations (e.g., spatial
join).

A unique characteristic of D-tree is that it allows one to
use different local access structures to take advantage of the
regional characteristics of the data space. Qur experimental
results show that D-trees using R-trees as the second-level
indices can provide savings averaging 90% compared to us-
ing R-tree alone.

References

[1] A. Guttman. R-tree: A dynamic index structure for spatial
search. In Proc. of the 1984 ACM SIGMOD Int’l Conf. on
Management of Data, pages 47-57, Boston, MA, June 1984.

[2] R. Baye and E. McCreight. Organization and maintenance
of large ordered indexes. Acta Informatice, 1(3):173-189,
1972.

[3] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger.
The R*-Tree: An efficient and robust access method for
points and rectangles. In Proc. of the 1990 ACM SIGMOD
Int’l Conf. on Management of Data, pages 322-331, Atlantic
City, New Jersey, May 1990.

T. Sellis, N. Roussopoulos, and C. Faloutsos. The RT-Tree:
A dynamic index for multi-dimensional objects. In Proc. of
the 13th Int’l Conf. on Very Large Data Bases, pages 507—
518, Brighton, Engiand, 1987.

[5] C.Kolovson and M. Stonebraker. Segment indexes: Dynamic
indexing techniques for multi-dimensional interval data. In
Proc. of 1991 ACM SIGMOD Int’l Conf. on Management
of Data, pages 138~-147, Denver, Colorado, June 1991.

Frank Olken and Doron Rotem. Random sampling from
databases: A survey. Statistics and Computing, 5:25-42,
1995.

[7] I. Kamel and C. Faloutsos. Hilbert R-tree: An improved
R-tree using fractals. Tn Proc. of 20th Int’l Conf. on Very
Large Data Bases, pages 500-509, Santiago, Chile, Septem-
ber 1994.

{8] J. L. Bentley. Multidimensional binary search trees used
for associative searching. Communications of the ACM,
18(9):509-517, September 1975.

[9] J. T. Robinson. The k-d-b tree: A search structure for large
multidimensional dynamic indexes. In Proc. of 1981 SIG-
MOD, April 1981.

{10} David B. Lomet and Betty Salzberg. The hb-tree: A mul-
tiattribute indexing method with good guaranteed perfor-
mance. ACM Trans. on Database Systems, 15(2):625-658,
June 1990.

4

—

6

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-18, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Query window | R-tree D-tree: number of nodes accessed Query window | R-tree _D-tree: number of nodes accessed
X size, Y size Total | Domain | Data | R-tree | Total | Saving X size, Y size Total | Domain ata | R-tree | Total | Seving
nodes nodes nodes | nodes | nodes nodes nodes nodes | nodes | nodes

10, 100000 374 38 80 . 54 172 117% 10, 100000 444 34 . 82 52 168 164 % |
31, 31622 143 16 26 25 87 113% 31, 31622 176 16 28 25 69 154%
100, 10000° 61 10 () 13 32 91% |{ 100, 10000 78 10 9 10 20 169
316, 3162 37 6 4] 11 21 76% 316, 3162 51 6 4 9 19 168% |
1000, 1000 30 6 3 8 17 76% 1000, 1000 40 6 3 7 16 150%;
1414, 707 32 6 3 9 18 78% 1414, 707 43 6 3 9 18 139%
2235, 447 32 6 3 9 18 8% 2235, 447 45 [3 9 18 150% |
10000, 100 49 8 8 12 28 5% 10000, 100 64 8 7 10 25 156%
31000, 31 104 12 21 17 50 108% 31000, 31 146 14 20 20 54 170%
100000, 10 274 22 63 33 118 132% 100000, 10 328 26 57 37 120 172%

Table 1: Performance of fixed-size queries on uniformly
placed uniform-sized objects.

Table 5: Performance of fixed-size queﬁw on exponentially
placed uniform-sized queries.

R-tree

Query window | R-tree D-tree: number of nodes accessed Query window D-tree: number of nodes accessed
X size, Y size | Total | Domain | Data | R-tree | Total | Saving X gize, Y size | Total | Domain | Data | R-tree | Total | Saving
nodes nodes nodes | nodes | nodes nodes nodes nodes | nodes | nodes
10, 10 24 [1 8 i6 0% | 10, 10 36 [1 [3 13 169% |
100, 10 24 6 1 8 15 60% 100, 10 35 [] 1 7 14 150%
10, 100 33 5 1 B is 7% | 10, 100 31 [1 [i3 138%
160, 100 34 3 1] i5 50% 100, 100 34 5 1 7 14 132% |
1000, 100 26 [2 8 17 53% 1000, 100 38 6 2 7 15 153%
100, 1000 28 [2 9 17 65% 100, 1000 39 [2 8 16 144%
1000, 1000 30 3 3 3 17 76% 1000, 1000 40 [3 7 16 150% |
10000, 1000 58 8 13 12 33 76% 10000, 1000 79 8 13 12 33 139%
1000, 10000 67 3 14 17 38 76% || 1000, 10000 85 10 14 12 36 136% |
10000, 10000 144 12 64 19 95 52% 10000, 10000 172 14 68 18 100 72% |

Table 2: Performance of variable-sized queries on uniformly
placed uniform-sized objects.

Table 6: Performance of variable-sized queries on exponen-
tially placed uniform-sized objects.

Query window | R-tree D-tree: number of nodes accessed Query window | R-tree D-tree: number of nodes accessed
X size, Y size | Total | Domain | Data [R-tree | Total | Saving X size, Y size | Total | Domain | Data | R-tree | Total | Saving
nodes nodes nodes | nodes | nodes nodes nodes nodes | nodes | nodes

10, 100000 502 18 33 335 386 30% 10, 100000 524 16 39 345 400 51% |
31, 31622 203 8 11 130 149 36% 31, 31622 233 8 13 145 166 407
100, 10000 97 8 4 57 87 45% 100, 10000 108 6 S . 57 68 59%
316, 3162 67 4 2 36 43 60% | 3186, 3162 73 4 3" 34 40 33% |
1000, 1000 59 4 2 29 35 69% | 1000, 1000 89 4 1 28 33 109% |
1414, 707 81 4 2 31 37 65% 1414, 707 73 4 2 33 39 87%
2235, 447 64 4 2 33 39 645 2235, 447 77 4 2 35 41 88%
10000, 100 84 4 4 52 60 57% 10000, 100 101 4 4 51 59 71%
31000, 31 189] 10 113 129 7% 31000, 31 231 8 10 131 149 55%
100000, 10 479 10 32 294 336 43% 100000, 10 474 12 28 286 326 i5%

Table 3: Performance of fixed-size queries on uniformly
placed exponential-sized objects.

Table 7: Performance of fixed-size queries on exponentially
placed exponential-sized objects.

Query window | R-tree D-tree: number of nodes accessed Query window | R-tree D-tree: number of nodes accessed
X size, Y size Total | Domain | Data | R-tree | Total | Saving X size, Y size Total | Domain | Data | R-tree | Total | Saving
nodes nodes nodes | nodes | nodes nodes nodes nodes | nodes | nodes
10, 10 48 4 1 24 29 69% 10, 10 59 4 1 24 29 103%
100, 10 49 4 1 25 30 63% 100, 10 81 4 1 25 30 103%
10, 100 49 4 1 24 29 69% 10, 100 51 4 1 21 26 96%
100, 100 51 4 1 25 30 70% 100, 100 57 4 1 24 29 97%
1000, 100 54 4 1 27 32 69% 1000, 100 82 4 1 27 32 94%
100, 1000 54 4 1 28 33 64% 100, 1000 83 4 1 28 33 91%
1000, 1000 59 4 2 29 35 69% 1000, 1000 69 4 1 28 33 109%
10000, 1000 104 4 5 61 70 i5% 10000, 1000 117 4 5 64 73 60%
1000, 10000 108 6 6 64 78 i2% 1000, 10000 116 4 6 67 77 51%
10000, 10000 200 6 17 130 153 31% 10000, 10000 215 6 19 139 164 31%

Table 4: Performance of variable-sized queries on uniformly
placed exponential-sized objects.

Table 8: Performance of variable-sized queries on exponen-
tially placed exponential-sized objects.

68

	
	61
	62
	63
	64
	65
	66
	67
	68

