1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

DESIGN AND IMPLEMENTATION OF VERSION CONTROL
FOR THE QBOE MULTIMEDIA DATABASE SYSTEM

Ye-In Chang and Hong-Nian Chen

. Dept. of Applied Mathematics
National Sun Yat-Sen University, Kaohsiung, Taiwan, R.O.C.
E-mail: changyi@math.nsysu.edu.tw

ABSTRACT

In advanced applications, especially those in which a
database has to support the design of a manufactured
product, versions of objects have to be managed; that
is, to keep different status of the same data, which is
called historical versions. This requirement is inherent
in applications that are exploratory and evolutionary.
Version control in the multimedia document creation
environment is similar to that in any design environ-
ment. In this paper, based on the object-oriented data
model, we design and implement version control for
a Query-By-Object-Example multimedia database sys-
tem, in which we consider data of types text, drawings,
images, audio, animation and videos. The system and
the query language are both called Query-By-Object-
Example, since the user-interface is through an object
example.

1. INTRACTION

In traditional DBMS, once transaction updates have
been committed and permanently installed, the previ-
ous values of data usually are discarded. However, ad-
vanced multimedia applications, especially design ap-
plications, require facilities to maintain data versions;
that is, to keep different status of the same data, which
is called historical versions. This requirement is inher-
ent in applications that are exploratory and evolution-
ary. Version control in the multimedia document cre-
ation environment is similar to that in any design envi-
ronment. Moreover, versions can be used for different
purposes, including concurrency control, recovery, en-
hancing performance, and implementing ”update-free”
[5].

There are three implementation issues in version
control: when to create a new version, how to represent
the version, and which version in a database represents
a consistent configuration of objects [6]. (When the
concepts of a version history and component hierar-
chies are combined, the result is a configuration.) The

L rhis rescarch was supported by National Science Council of the Republic
of China, NSC-86-2213-E-110-004

-46-

third issue contains how to connect all versions of the
same data and how a version reference is executed. A
static version reference strategy is much simpler than
a dynamic version reference strategy; however, a static
reference strategy may refer an old version of data,
while a dynamic reference strategy always refers the
newest version of data. How to provide mechanisms
to manage historical versions is an important research
topic.

In this paper, based on the object-oriented data
model, we design and implement version control for
a Query-By-Object-Example multimedia database sys-
tem, in which we consider data of types text, drawings,
images, audio, animation and videos. The system and
the query language are both called Query-By-Object-
Example, which is denoted as QBOE, since the user-
interface is through an object example. Basically, in
order to maintain a consistent configuration of objects,
we have to consider the effect of different operations to
the versions, including deleting or updating a sharing
object, change notification, change propagation and in-
heritance. Figure 1 shows an example of a multimedia
resume, which is used throughout the paper.

2. DDL and DML

In this Section, we present our QBOE multimedia
database system. We first describe our design of DDL.
Next, DML is introduced. For convenience, we use the
example shown in Figure 1 to illustrate the processes
of DDL and DML.

2.1 DDL

When a user enters the system, there are two op-
tions: query and create. To define a Resume class, a
user first chooses the create option. Next, the system
asks the user to enter an object name. In this exam-
ple, it is Resume. For each object, the system asks
for more information: Class Type, Part Number, Data,
Attribute, Method and Versionable as shown in Figure
2.

Those fields must be filled with an integer, which

quit] previous next

Resume

Name: Hong-Nian Chen

Age: 24

#Scx: male

Graduation: Dept. of Applied Mathematics, NSYSU

Notes:

There are five persons in my family.

My father and mother are farmers.

I have one younger brother and one elder brother,
They are both in armys now.

The follouing figures are their painting:

Here is Hong-Nian Chen !!

1My college life recorded in the video and audio is as Follows:

Figure 1: An example of a multimedia Resume

means the number of parts of related information or
with a character ”Y” or "N” which means "Yes” or
"No”. For example, in Figure 2, the user enters 2 in
the Part Number field, which means that the Resume
object contains two parts. The user also specifies that
the Resume object is versionable at the the bottom
feld by entering a character ”Y”. The system then
asks the user to input two names of children one at a
time. For the Resume object, the user can also specify
some attributes. For example, the Resume object has
a Font-Size = 12 attribute.

Since in a standard Resume object, there are always
some keywords like Name, Age, Sez, and School, we also
enable users to input these keywords as built-in data
for each Resume object. First, the user specifies the
number of built-in data in the Data field. After that,
the user can input a file name as the input data. If the
file exists, the system loads the data stored in the file
and shows it in the screen. If the file does not exist,
the system asks the.user to choose the type of data,
Text, Drawing, Image, Audio, Video, Animation, and
it invokes a related editor.

For some object, there may be some related meth-
ods associated with it. For example, there is a Draw
method for the Drawing object. Therefore, after spec-
ifying the number of methods in the Method field, in
a similar way, the user can input a method name for

47

1998 Internationai Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0.C.

Class Tyve
| [Part N
Data
Attribute
Method
H{|[Versionable

> [—

Figure 2: Information about an object Resume

[Xue Yase [Me: | e I&x Jsex Jerat: fsehonl |
3@@7

Figure 3: Final structure of object Resume

the Drawing object. Moreover, an object can be ver-
sionable or nonversionable, which can be specified in
the Versionable field. If an object is nonversionable,
its children are also nonversionable. Note that an up-
date to a versionable object creates a new version of
this object, while an update to a nonversionable object
overwrites the old data. Finally, Figure 3 shows the fi-
nal structure of object Resume, where the circle nodes
mean the data that has been created by DDL. Every
instance of the Resume class shares these data objects.

2.2 DML

We have described the Create function in the pre-
vious section and have created a new Resume schema.
Next, we show how the other function — Query — works.
After we choose the Query function, the system pops
up a window which shows all of the functions that the
system provides: Insert, Delete, Select and Modify.

After we choose the Insert function, a pop-up win-
dow appears, which asks the user to enter an ob-

1998 International Computer Symposium
‘Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C K.U., Tainan, Taiwan, R.O.C.

ject class name. After Resume is entered, the sys-
tem returns the Resume class hierarchy. After the
addNewOne function is chosen, two windows pop up
at the same time. The upper one is called the control
table, and the lower one is called the output window.
The control table shows the objects that can be edited
in the output window at this time.

After we choose the Resume-Header, the objects
shown in the control table is replaced by the children
of the Resume-Header. At this time, a new rectangu-
lar box shows up in the output window, which repre-
sents the positions in which any of these five objects:
Topic, Nameline, Ageline, Sexline and Schooline, can
be placed. The rectangle can be moved to any place in
the output window.

After we move the rectangle to a certain position, we
can start to enter data. For example, after we choose
the Topic object, a pop-up window that inquires the
user to input data appears again. Then, another win-
dow appears that asks the user to input the file name.
After Topic is entered, the system asks for the data
type of the specified file name. In this case, Text is cho-
sen. Assume that the Topic file dose not exist; then,
a text editor, “vi,” is invoked. After we edit the file
and exit “vi,” the file is ready and is copied to the out-
put window. Next, the system asks the user to input
a keyword. (Note that if the Topic file already exists,
the contents of the file shows up in the output win-
dow without invoking the text editor “vi.”) Finally,
Figure 4 shows the output window after the insertion
is finished. This is the example that we have used
throughout the paper.

For the Modify function, there are four options:
modify, move, insert and delete. Those four options
operate on a single object at a time. When a user
modifies a versionable object, the system will create a
new version. Before data modification, the user must
first find out what the user wants to update.

Let us consider the case of data selection. First,
the system asks for an object name. Then, the object
hierarchy appears, and two selection options, contain-
based and keyword-based, are shown in the upper left
corner. After the user chooses the Name object, the
word Name appears on the bottom line of the screen.
In this example, the user types “Chen” in the box of
the upper left corner. After that, a sentence (Name
CONTAINS ”Chen”) appears on the bottom line of
the screen. Now, the user has entered the condition
that is equivalent to an SQL statement (select * from
Resume where Name CONTAINS ”Chen”). Since at
this point, such an object has only one version, the
only one version is shown up.

Next, let us see an example of a keyword-based

48

R e R N SV U S N AT X3S RG]
Resuse |
Nawe: {Hong-Nian Chen]
Age:
x: {malel
Graduation: N

Notes:

There are five persons in wy family.

My father and mother are farmers.

I have one younger brother and one elder brother.
They are both im areys now.

The following figures are their painting:

liere is Hong-Nisn Chen }

col £ e video and audi as fo,

orded

Figure 4: The output window after the insertion is
finished

Name: Hong-Nian Chen
{Age: 24

Sex: male

tiGraduation: Dept. of Applied Nathematics, NSYSU

otes:
i(There are five persons in my family.
My father and wother are farwers,
i1 have one younger brother and one elder brother.
They are botk in armys now.
The following figures are their paimting:

Here is Hong-Nian Chen !!

AP AT R S T FATE R RRE A e
1. Modify this version ?
2. Modify previous versions ?
3. Abort

[OEE

My college life recorded in the video and audio is as follows:

| B [

Figure 5: An example of modifying a versionable text
object (Version 1)

query. After the user chooses the Drawing object, the
word Drawing appears on the bottom line of the screen.
The user then chooses the keyword-based function. At
that time, an empty box appears on the upper left
corner. In this example, the user types "pain” in the
box. After that, a sentence (Drawing: KEYWORD
= "pain”) appears on the bottom line of the screen.
Now, the user has entered the condition that is equiva-
lent to an SQL statement {select * from Resume where
Drawing: KEYWORD = "pain”). The same result is
obtained.

After the data shows up, the user can move the cur-
sor to the part which he (she) wants to modify by
choosing the modify option. After the user clicks on
that part, the related window appears. Take the Text
window as an example. Since the text object is ver-
sionable that have been defined in class Resume, the
system pops up a window with three options to choose
the suitable version (either current one or previous one
if it is available) or abort it. In this example, since
there is no previous version, the current version is cho-
sen, as shown in Figure 5. Then the user can enter the
text editor “vi” environment to modify the text part.

After the user exits the text editor, the system
asks the user to confirm this change. If the answer
is ”Change”, then the updated file is copied to the
output window. At this time, a new version history
for this text object has been created. Similar to the
update to the text object, the update to a drawing ob-
ject is shown in Figure 6. Again, the system creates a
new version hierarchy. When the user confirms such a
modification, a new configuration for object Resume is
created.

Next, we enter the Modify option again and select
the second version. This time, we change the text part
again, and a new version history for this text object has
been created. Then, we change the text file one more
time, and a new version history for this text object
has been created again. Similarly, an update to the
drawing object occurs again. In the case, the user uses
version 1 of the drawing object to replace the original
version as shown in Figure 7. As described before, if the
user confirms such a modification, a new configuration
for object Resume is created again. Figure 8 shows
the relationship of the configuration and the version
history hierarchy after the above modifications. Note
that, in Figure 8, the system creates a mew version
1831.3 of object Resume and a new version 1846.3 of
object Resume-Body after the user exits the Modify
option.

After that, we select the second version of object
Resume and modify it again. When the delete op-
tion is chosen, the selected object is deleted one at

49

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

Resume

Name: Hong-Nian Chen
Age: 24

Sex: male

Graduation: Dept. of Applied Mathematics, NSYSU
Notes:

There are five persons in my family.

My father and mother are farmers.

1 have one younger brother and one elder brother.
The following figures are their painting:

© &

Here is Hong~Nian Chen !!

My college life recorded in the video and audio is as Follows:

Figure 6: An example of modifying a versionable draw-
ing object (Version 2)

a time. When the mowve option is chosen, the selected
object can be moved to any place in the output win-
dow. When the insert option is chosen, a new object
can be inserted. Then, the system asks the user to
choose the type of the data as following the steps of
the Insert function described before. The related ed-
itor is invoked if it is necessary. Figure 9 shows the
result of this update. When the user confirms such a
medificatien, a new configuration for object Resume is
created.

In the Select option as described before, an object
can be chosen by either contain-based or keyword-based.
After the user chooses the object Name by following
the contain-based Selection, the word Name appears on
the bottom line of the screen. In this example, the user
types "Chen” in the box. After that, a sentence (Name
CONTAINS ”Chen") appears on the bottom line of the
screen. Now, the user selects the run option. Then, the
system pops up a window with five options as shown in
Figure 10. One option is Default and the others are
Version 1, Version 2, Version 3, and Version 4 since
we have created 4 versions for object Resume, where
Default means that the object is accessed by dynamic
reference, while the other four options mean that the
object is accessed by static reference.

1998 International Computer Symposium
‘Workshop on Software Engineering and Database Systems
December 17-19, 19988, N.C.K.U., Tainan, Taiwan, R.O.C.

Ba)
elete

Nawe: Homg-Niam Chen

Age: 24

Sex: male Name: Hong-Nian Chea

Graduation: Dept, of Applicd Hathematics, NSYSU Age: 24

Notes: Sex: male

;I;e;:trr ::;e-g:::l:r:lfw f::”!- Gradustion:Dept. of Applied Mathemmtics, NSYSU
1 have one younger brother and one elder brother.

One iz 25 yearz old and the otber one is 23. Notes:

The following figures are their paiating: There are five persons in my family.

Hy Father and mother are farmers,
I have ome younger brother snd one elder brother.
The following figurex are their painting:

Sere iz Hong-Nian Chen !! . ‘

Mere is Homg-Nimn Chen !

My college life recorded in the video and audio is 2s follows: -

My college life recorded in the video and andio is axr follows:

Figure 7: An example of modifying a versionable draw-
ing object (Version 3)

Figure 9: An example of inserting a new object (Ver-
sion 4)

i Defualt

Yersion |

-
)
"'D A Object name B: Object iraificr

]
| | 5
C: Verson idenifier /\ Version 2 N
Tl (C) T 3] [e | () [
E} + The ewest drived version | U/ il _/ \/ \/

Nomversogaie [] ¢ Versiomble

fFame TRTITE "TSex

: Version amfiyuraion = ™ Version history hicranhy

_) _) Figure 10: A version selection menu
Figure 8: The details of the modification part (Version

3)

50

t{Name: Hong-Nian Cher

Age: 24

Sex: male

Graduation:Dept. of Applied Mathematics, NSYSU

Notes:

There are five persons in my Family.

My father and mother are farmers.

1 have one younger brother and one elder brother.
L1 They are both in arwys now.

The following [igures are their painting:

[[My college 1ife recorded in the video and andio is as follows:

|) i)

Figure 11: An example of selecting a video object

To implement the SQL statement (select Text from
Resume where Name CONTAINS ”Chen”), the user
can move the cursor to the Text part which the user is
interested in and click on the button one time, which
results in a new Text window. In the same way, the
user can move the cursor to the other part (Drawing,
Image, Video, Audio), and click on the button one time
to open a new window. Figure 11 shows the result of
the SQL statement (select Video from Resume where
Name CONTAINS ”Chen”).

For the Delete function, the user follows the method
for using the Select Function to find out what the user
wants to delete. After the data shows up, the system
asks the user to confirm the user’s choice.

Let us see one more example, a Biography object,
which is a composite object including object Resume.
To simplify our following presentation for the opera-
tions to the composite object, Biography, we make two
short versions of Resume object. When we first in-
sert data for object Biography, we choose Version 2 as
its member. The resulting Biography object is shown
in Figure 12. We treat object Resume like a normal
object. When Version 2 of the short Resume object
is changed to Version 3, we have a second version of
object Biography automatically.

Note that in this case, when a deletion operation
happens on any one of the versions of the short Re-
sume object that is referred in the Biography object,

51

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U_, Tainan, Taiwan, R.0.C.

Blography of Hong-Nian Chen

There are flve persons iz my family.

My father and mother are Farmers,

1 have one younger brother and ome elder brother.
They are both in arwys wow.

Thiz i a ECG of wy childhood. N
P BNV SN S .

This is a pictwre of ay teensge.
1 had a nickazme "BigHead” st that time. L

The following is m»y personal data now:

Resume

Mame: Noag-Nlan Chen

Age: 24

Sex: male

Grwdusation: Dept. of Applied Mathematics, NSTSU
Notes:

There are five persons in my family.

¥y father and mother are farwers.

1 have ome yousger brother mnd ome elder brother.
The following Figures are their painting:

B ©

Figure 12: An example of the Biography object which
contains version 2 of the short Resume object

the system will reject such a deletion operation. While
a deletion operation on a version of the short Resume
object through the Biography object is allowed. More-
over, when Version 1 of the short Resume object is
changed to Version 4, the system does not create a
new version for the Biography object. That is, only
updates on Version 2 of the Resume object, or on the
children of Version 2 in the version history hierarchy
will result in a new version for the Biography object
automatically. Furthermore, an update to Version 3 of
the short Resume object through the Biography object
also creates a Version 4 of the short Resume object
automatically.

3. IMPLEMENTATION

Our system is implemented using C** and X-lib
[7]. Figure 13 shows the logical implementation of
an object-oriented data model described in Section 2.
This structure defined in C** is shown in Figure 14.
Note that there are six additional elements, s TypeOf-
Count, partCount, dataObjCount, attrCount, method-
Count, and versionable. We use these first five elements
of the CLASS structure to record the variable parts of
the CLASS structure - isTypeList, partList, dataQb-
jList, attrList, and methodList, respectively. The last
element of the CLASS structure is to record whether

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

istypeof | can-haveparts hasdata
o | | mar | otpd o

ohid | clssame asatribues | hasmetiods | versonabe

Figure 13: Logical data structure of a class object

struct CLASS{

int objectID, isTypeOfCount, partCount, dataObjCount, attr-
Count, methodCount, versionable;
char *className;

int *isTypeList;

PART *partList;

char *dataObjList, **attrList;

int *methodList;

CLASS *next;};

struct PART{ int min, max;
CLASS *object;

char *objName;

int objID;};

Figure 14: The C** implementation of a logical class
object

this class object is versionable. All the class objects
that have been created are saved in the classFile. For
example, in one of class objects recorded as
761202000 1 Nameline 11300511 93

the 3rd column has a value of 2. This indicates that
the Nameline object has two children. Next, the 7th
column has a value of 1. It indicates that the Name-
line object is versionable. The values following Name-
line describe the children’s characteristics. The first
number and the second number indicate the minimum
number and the maximum number of the occurrence
of the first child of this class, respectively. The third
number is the ID of the first child.

Figure 15 shows the data structure of an instance
of a class object. All the instances of Resume class
are stored in the instFile file. For example, in one of
instances recorded as

183601501 193 Name Chen type=1 wx1=57
wyl=2 wx2=189 wy2=20
the third column has a value of 1, which indicates that
the object has a data file whose name follows the class
identifier 93, i.e., Name. The 6th column has a value of
1, which indicates that the object has a keyword whose
content follows the data file name, i.e., Chen. The 4th
column row has a value of 5, which indicates that the
object has 5 more attributes to be recorded, i.e., type,
upperleftX, upperleftY, lowerrightX, lowerrightY .
Following the keyword content, there is a string type
= X, which indicates that the data is of the type text,
drawing, image, audio, video, animation and none of
the above for X =1, 2, 3, 4, 5, 6, 0, respectively. The
next four strings record the coordinates of the upper

-52_

left corner and the bottom right corner of the data
shown in the output window.

Next, Figure 16 shows the data structure of a ver-
sion history hierarchy of an object: The first two ele-
ments, object] D and versionl D, are used to record ob-
ject identifier and version identifier, respectively. The
element, dataCount, is used to record whether this
version object contains a real data file. If dataCount
equals to 1, versionName contains a version file name.
That is, this object is a leaf object in the class hierar-
chy. If dataCount equals to 0, it means that this ob-
ject has parts. The rest of the following elements are
used to record the version history, configuration hier-
archy and location. A version history is recorded by
versionCount and versionList. A configuration hi-
erarchy is recorded by partCount and partList. El-
ements upperleftX, upperleftY, lowerrightX and
lowerrightY record the location of this version object
on the document.

For example, in one of the version objects recorded

as
1847211 0 intro.1 3 3 1 450 122
the first two columns has values of 1847 and 2, which
denote the second version of object 1847. The 3th col-
umn has a value of 1, which indicates that this version
object is a real data file. The 6th column is the corre-
sponding data file name, intro.1. The 4th column has a
value of 1, which indicates that this version object has
a child version, 3, which is recorded in the 7th column
in the version history. The rest of elements are the lo-
cation of this version object. Take another example, in
one of the version objects recorded as
183120223418321 184621 1651 836

it records the version information about the second ver-
sion of object 1831. The 3th column has a value of 0,
which indicates that this version object has an aggre-
gation relationship, i.e., it has parts. The 4th column
has a value of 2, which indicates that this version ob-
ject has two child versions. The 6th and 7th columns
record the child versions. The 5th column records the
number of parts and the related object identifiers and
version identifiers for those parts are recorded in those
columns following the Tth column, which are the first
version of object 1832 and the second version of object
1846.

Figure 17 shows the data structure of RefCount.
That data structure helps us to record the relationship
between a referencing class and a referenced class, and
make us to handle the deletion operation easily. The
first two elements are used to record root object iden-
tifier and version identifier. The third element, Count,
is used to record that how many times this root version
object is referenced. Figure 18 shows the relationship

struct ObjInst{
int objectID, partCount, dataCount, attrCount, methodCount,
keywordCount, versionCount, classID, *partList, *firstPartEn-

try;

Objlnst **partEntry;

char **datalist, **attrList;

int *methodList;

char **keywordList, *type, *upperleftX, *upperleftY, *lower-
rightX, *lowerrightY;

ObjInst *next;};

Figure 15: The data structure of an object instance

struct ObjVersion{

int objectID, versionID, dataCount, versionCount, partCount;
char *versionName;

int *versionList;

childVsn *partList;

int upperleftX, upperleftY, lowerrightX, lowerrightY’;
ObjVersion *next;};

struct childVsn{ int childID, versionID;};

Figure 16: The data structure of a version history hi-
erarchy of an object

between the class Resume, denoted as A, and the class
Biography, denoted as B. Whenever a class A is in-
cluded as a data part of a class B, the relationship
between A and B is established in this structure and
Count is increased by one. When the version or any
child version of class A that is referenced in class B is
updated to a new version, a new version for class B
will be created automatically by inserting a new entry
into the versionFile file and A.8->Count is increased
by one. When class B is updated to a new version in
which class A is updated, a new entry for classes A and
B will be inserted into the versionFile file, and A.4-
> Count is increased by one. As described before, when
a deletion operation happens on any one of the versions
of object A that is referenced in object B, the system
will reject such a deletion operation. While a deletion
operation on a version of object A through object B
is allowed. When a deletion operation on a version of
object A through object B occurs, A->Count is de-
creased by one. Only when A.X.Count = 0, version X
of object A is deletable.

struct RefCount{

int objectID, versionlD, Count;

VersionObj *refObj;

RefCount *next;};

struct VersionObj{ int objectID, versionID;};

Figure 17: The implementation of a class referenced
count

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Resume (A)

Biography (B)

A2
B includos AL Bl
A.2->Count ++

Verston 1

A2 in mondified
w0 A3

B.2 in creuted mptomaticaily
A 3->Count ++

Version 2

modify the part of A in B

A4 in created sutomatically
A.4->Count ++
Version 4

Figure 18: The relationship between the class Resume
and the class Biography

4. CONCLUSION

In this paper, we have designed and implemented the
query language for version control of the QBOE mul-
timedia database system. We have considered all the
implementation issues in version control: when to cre-
ate a new version, how to represent the version, which
versions in a database represent a consistent configu-
ration of objects, and how a version reference, either
static or dynamic, is executed.

References
(1] Y. I. Chang, S. H. Jair and H. N. Chen, “Design
and Implementation of the QBOE Query Language for
Multimedia Database Systems,” Proceedings of NSC,
Part A: Physical Science and Engineering, Vol. 21, No.
3, pp. 205-221, May 1997.

2] W. 1. Grosky, “Multimedia Information Systems,”
IEEE Multimedia, pp. 12-24, Spring 1994.

(3] D. Woelk, W. Kim, W. Luther, “An Object-Oriented
Approach to Multimedia Databases,” Proc. of the
ACM SIGMOD, pp. 311-325, 1986.

(4] D. Woelk, W. Kim, “Multimedia Information Manage-
ment in an Object-Oriented Databases System,” Proc.
of 13th VLDB Conf., pp. 319-329, 1987.

(5] K. R. Dittrich and R. A. Lorie, “Version Support for
Engineering Database Systems,” IEEE Trans. on Soft-
ware Eng., Vol. 14, No. 4, pp. 429-437, April 1988.

[6] R. H. Katz, “Toward a Unified Framework for Version
Modeling in Engineering Databases,” ACM Comp.
Survey, Vol. 22, No. 4, pp. 375-408, Dec., 1990.

[7] H. N. Chen, "Design and Implementation of Version
Control for Multimedia Database Systems,” Master
Thesis, Dept. of Applied Mathematics, National Sun
Yat-Sen Univ., Taiwan, R.O.C., June 1996.

53.

	
	46
	47
	48
	49
	50
	51
	52
	53

