1998 International Computer Symposium
Workshop on Computer Networks, Internet, and Multimedia
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

A JAVA-IMPLEMENTED MESSAGE-ROUTIN G FRAMEWORK
FOR WORLD WIDE MEET

Chien-Tsun Chen

Application Development Division
CanThink Co.
Taipei, Taiwan
Email : ctchen@can.com.tw

ABSTRACT

We have introduced an idea called World Wide
Meet (WWM) to support horizontal interaction ability for
the netizens who are surfing on the webs [4]. With WWM
support, users browsing the same web page can be notified
automatically when anyone joins or leaves the page. Each
page of a web is just like a virtual room and the netizens in
the same room can interact with each other. In this paper
we propose a generic message-routing framework to
support the functionality required by WWM. We further
implement the framework in Java technology. By using
this Java-implemented framework, WWM can be
seamlessly integrated with the webs without any additipnal
effort. This framework can be further applied to various
web applications including electronic commerce, and
distance learning, etc.

1. INTRODUCTION

After World Wide Web (WWW), or simply web, has
been introduced to the Internet world in 1989 [2], the
Internet users (or called netizens) are increased
exponentially year by year. Today, at least seventy-one
millions people are said to have access to the Internet [71.
Undoubtedly, its hypermedia structure and the ability to
support easy access of the multimedia information services
are the two key issues that make the webs so popular. It
becomes a kind of new media such that it can provide not
only the traditional information services, but also can be
treated as a platform for electronic commerce, and distance
learning, etc {1, 12].

Usually, a web site provides its own special services
and attracts the netizens to visit the site as frequently as
possible. It can be said that the netizens surfing on the
same site are belonging to the same virtual community.
They may not meet each other physically, however they do
interact with each other virtually through sharing the
services provided by the same site. The way the netizens
share the service in fact, as shown in Figure 1.1, is a

-185-

Jung-Sing Jwo

Department of Computer & Information
Sciences
Tunghai University
Taichung, Taiwan
Email : jwo@s867.thu.edu.tw

vertical relationship between netizens and the webs. In
other words, horizontal interaction among the netizens is
not directly supported by the WWW architecture. As an
example, considering a web site as a building and each
page in this site as a room, then a netizen who is browsing
in this site actually feels that he is completely alone no
matter how many other netizens are browsing the same
page at the same time with him. He can not know the
appearance and vanish of the netizens in the same room.
He can not interact with them, either. The lack of the
horizontal interaction support in WWW makes the virtual
communities not so realistic.

In order to overcome the drawback -of the web
mentioned above, we introduced an idea called World
Wide Meet (WWM) in [4]. It is a solution that can
integrate the horizontal interaction ability into WWW and
it lets netizens browse the web not alone. Moreover, in
order to keep the popularity of WWW, this solution should
not replace the way that the current web servers and
browsers work. Virtual place [13], sociable web [6], and
Palfreyman’s solution given in [10] are the early works
related to this goal. However, these systems require
specific browser technology. Since the architecture of
WWW has been considered as the de-facto architecture for
Internet services by most of the netizens, it is not
convincing and not wise to obtain new functionality by just
switching to other systems.

With the support of WWM, each page of a web site
is treated as a WWM room. A netizen surfing from one
page to another through hyperlink is considered as that he
leaves the first WWM room and enter into the second
WWM room. Inside each WWM room, the netizen can act
exactly same as in a real room, i.e. he can either say hello
to a new comer or chat with his old friends who are just
bumping into the room.

1998 International Computer Symposium
Workshop on Computer Networks, Internet, and Multimedia
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

WwWwW

/]

vertical relationship

/

homepages

netizen netizen | ¢ e o netizen
E.a <
horizontal
.relationship

Figure 1.1. Vertical and horizontal relationships among
netizens and WWW.

The major functionality that WWM should support
includes at least the following items.

(1) A WWM room is automatically integrated into
each web page when WWM is installed. As soon
as a netizen browsing the page, he also enters the
WWM room no matter what kind of browser is
used. That is, WWM can be seamlessly
integrated into WWW environment.

(2) A WWM room should not be related to the
design of a web page. In other words, WWM can
be installed or removed easily without affecting
the existing web site.

(3) A WWM room should provide mechanisms for
interaction. It can be either a VRML-based
virtual reality scene, or multimedia-enriched
communication tools. To netizens, WWM needs
to provide (a) identification service, (b) messages
of the appearance and vanish of the other
netizens, (c) chatting service, (d) privately
talking, and (e) message posting. WWM
management services are also required for web
masters.

(4) Tracking information of the netizens visiting the
WWM rooms needs to be collected and analyzed
to help web master construct a better virtual
community.

With WWM support, users browsing the same page
can be notified automatically when anyone joins or leaves
the page. Each page of the web is just like a virtual room
and the netizens in the same room can communicate with
each other.

In this paper, we propose an object-oriented
designed framework to fulfill the requirement of WWM. In
fact, this framework can be considered as a message-
routing middleware. Message-routing basically is a
network service such that it handles all the messages,
including those from users (or services) to other users (or
services), by having them processed and dispatched to the
corresponding destinations. Web applications, such as
Intranet systems, electronic commerce and distance
learning that require exchanging messages among clients
or services, can be benefited from this architecture.

The rest of this paper is organized as follows. In
Section 2 a generic framework for message-routing service
is presented. Section 3 introduces the components related
to the design of this framework. Section 4 discusses the
implementation issues of the WWM. Results and
conclusion remarks are given in Section 5.

2. A GENERIC FRAMEWORK FOR
MESSAGE ROUTING

Figure 2.1 is the framework we propose to support
message-routing in a web environment. This framework
utilizes the concept of component model and object-
oriented design patterns [3, 5, 8, 9, 11].

For the message routed in this framework, as shown in
Figure 2.2, in addition to the data body itself, each message
should contain the header information about its destination
and required service. Messages from the clients are first
accepted by the Acceptor [11]. Acceptor quickly transfers
each of the messages to a free Handler which is selected
from HandlerPool. We use HandlerPool to guarantee the
safety for the usage of the system resources. Each Handler
has two message boxes. One is /n-message box and the
other is Out-message box. Out-message boxes are further
divided into two categories, i.e. for service and for client.
Handler first adds its message into ExternalMessageQueue.
ExternalMessageDispatcher checks the messages with the
GroupTable and ServiceRegister. It then routes the
messages in the queue to either Out-message boxes for
service or Out-message boxes for client respectively. If a
message is routed to a service’s Out-message box, it will
be processed first by the corresponding service and then
new messages are added to the InfernalMessageQueue.
InternalMessageDispatcher is responsible for distributing
the messages inside InternalMessageQueue to their final
destinations.

-186-

(o) (o

1998 International Computer Symposium
Workshop on Computer Networks, Internet, and Multimedia
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

.+ (om)|

1

Out Message Boxes
(for client)

B
A
Acceptor 8

Internal

Client L
il

Out Message Boxes
(for service)

|
-

& (11

)

Message
Dispatch 2

Internal Message Queue

Exteral Message Queue

Services

Exteral

ERREERN

Handler

[
[]
[]
In Message
Boxes

Group Table

Figure 2.1. The generic framework for message-routing.

The message-routing framework described above
obviously can be applied to WWM directly. Furthermore,
by adding proper services, this architecture can do more
than just routing message among clients. For example, we
can add a broadcasting service to the middleware. Then,
this framework can help a client broadcast its message to
all the other clients. As another example, in electronic

commerce an EDI service can be added into the framework.

An E-form is processed and transferred into anothier format
before it is routed to the destination.

3. COMPONENTS OF THE
FRANMEWORK

In this section, we further discuss each of the major
components of the generic message-routing framework
introduced in the previous section.

(1) Acceptor:
The purpose of the Acceptor pattern is to listen

-187-

)

on a TCP/IP port and to accept connection
requested from a client. Acceptor then selects a
free Handier from the HandlerPool to represent
the client. If there is no available Handler, the
connection request will be queued for the next
free one. By inspecting the message header of
the client, Acceptor adds the Handler into its
corresponding GroupTable. A smart Acceptor
can provide better system performance by
asking HandlerPool to monitor and to limit the
number of the Handlers. When special
connection service is required, a filter can be
added into the Acceptor and it can increase the
flexibility of the system.

HandlerPool :

The responsibility of HandlerPool is to create
and manage the Handlers prepared for the
Acceptors. Usually, in a frequent service-
requesting environment, it is not efficient t0
create Handler for each request in realtime.

1998 International Computer Symposium
Workshop on Computer Networks, Internet, and Multimedia
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Therefore, HandlerPool automatically generates

various Handlers as soon as the system is started.

Since these Handlers are ready for use, the
connection requests accepted by the Acceptors
can be served without any delay. HandlerPool
will dynamically increase or decrease the
number of the Handlers by monitoring the
resource usage and the number of the
concurrent clients.

Header . Body

Service type

Service version

_ Source Protocol of
Destination the service
‘ senderiD
receiverlD

Message encoding

Time stamp

Figure 2.2. Structure of a message

(3) Handler and In(Out)-message box :

4

Each handler has one In-message box and one
Out-message box. All the messages issued by
the client are first stored in the In-message box.
Handler then transfers the messages to the
ExternalMessageQueue. All the messages that
need to be routed to the clients are first sent to
the Out-message box. Out-message box then
will distribute the messages to their
corresponding destinations. Basically, In-
message box and Out-message box are
implemented as two concurrent threads. In-
message box can filter out the abnormal
messages, i.e. those messages that framework
can not identify. On the other hand, by delaying
non-emergent messages or destroying out-of-
date messages, Out-message box has the ability
to control the flow of the messages.

External(Internal)MessageQueue :

ExternalMessageQueue is the bridge between
In-message box and
ExternalMessageDispatcher while

InternalMessageQueue is between Services and
InternalMessageDispatcher. The purpose of
these queues is to decouple the dependency
between the message boxes and the dispatchers
or the services. This design can reduce the

implementation complexity and increase the
reusability of the components.
External(Internal)MessageQueue can be
implemented as a priority queue so that the
framework can dynamically schedule each
message’s sending time. ’

(5) External(Internal)MessageDispatcher :

ExternalMessageDispatcher first interprets the
message’s header information. It then decides
the Service that the message should be served
by checking the ServiceRegister and routes the
message to the Service’s Out-message box. If no
one is available, a default service is selected or
the message is discarded. For
InternalMessageDispatcher, the implementation
is same as ~ ExternalMessageDispatcher.
However, after interpreting the header
information of the message,
InternalMessageDispatcher will distribute the
message into the corresponding client’s or
Service’s Out-message box.

(6) ServiceRegister :

ServiceRegister is responsible for the
management of available services. It can be
implemented as a prototype manager pattern [8].
Services can be added into or removed from the
ServiceRegister dynamically.

(7) Service :

Service is the component that really performs
the requesting service. Basically, each Service
implements its own service protocol. Service
first takes a message from its corresponding
Out-message box and then processes it. The
output result is encapsulated as a new message
and the message is sent to the
IntemalMessageQueue. In order to make a
Service plugable to the framework, a standard
interface for designing Service should be given.

4. IMPLEMENTATION ISSUES

By following the discussion of the previous section,
we implement a message-routing system WWM by using
Java technology. The reason for choosing Java is
considering the portability and intrinsic multi-thread
support. In this experimental version of WWM, we further
add some more services. These services include chatting
Service, concurrent netizens counting Service, and posting
Service, etc. The implementation of the system is quite
obvious. However, it is not so trivial for the client. Recall
the functionality of WWM introduced in Section 1. Since
we don’t want to increase the burden, such as plug-in
installation, of the netizens, it seems that Java applet is

-188-

1998 Internationai Computer Symposium
Workshop on Computer Networks, Internet, and Multimedia
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

¥ World Wide Meet - Netscape
Ea Edn }{w Go Commmam Help

think can.com. tw/prod uc ts/ v/

‘t Bookmarks l‘ Locatum]}mp #h

E & @ : 832850

1832860 from 210.61.134.131

B

o [FIREEE : BNEEH CarMeet 15 P50 =
AR | swexen | soewm | ez |

World Wide Meet (WWM) =
— 4B T oA X AR T B $400 2ok R0 24N

R T aldeat

R

» IS

® vt |

<]

World Wide Meet pvw) E] XS

® World Wide Fect (ANM)
2w 11141

P TR

I o

e s e o e

Figure 4.1. An example of WWM implemented by CanThink Co.

the only choice for the client implementation.

Usually, a homepage designer will tell you that the
total memory size for a good homepage design should not
be more than 50 to 80 Kilobytes. The major concern of this
design criteria is the bandwidth of the Internet service. If
the contents of a page are about 60 Kilobytes, then the size
of the applet client for WWM can not be more than 20
Kilobytes. This constraint is quite difficult to be satisfied if
there are many services supported in the WWM.
Fortunately, we can use network dynamic loading
technique to overcome this problem. By subdividing the
applet into several objects, these Java classes can be
dynamically loaded through Internet only when they are
needed. Size of each object in our WWM client is about 10
Kilobytes without compression. The size of the initial
loading applet is also about 10 Kilobytes. Thus, our WWM
solution will not consume the bandwidth too much.

Another issue about WWM client is from the design
view of the homepage. Since the current user interface of
the browser is based on window’s concept, how to add the
client applet into the page without affecting the original
homepage design is not a simple problem. We can not
answer this question here, however we do implement our
solution as shown in Figure 4.1. In this implementation, we
try to minimize the visual area of the WWM client. For
example, if a netizen wants to chat with the others, she or

he needs to enter the chat room inside an independent
window which is invoked by pushing the chat button. The

URL of our experimental WWM system is given in
http://canthink.can.com.tw/_

5. CONCLUSION REMARKS

In this paper, we have proposed a framework for
message routing. By applying this architecture, we further
implement WWM related services with Java technology.
With the support of WWM, each page of a web becomes a
virtual room. Netizens surfing on a WWM enhanced
WWW site can never feel alone. Currently, WWM is
commercially available and has been applied to the fields
of electronic commerce and distance learning. The success
of these applications shows the superiority of the
framework introduced in this paper.

REFERENCS

[1] Bently, R., T. Horstmann, K. Sikkel, and J. Trevor,
“Supporting Collaborative Information Sharing with
the World Wide Web : the BSChJW Shared Workspace
System,” Proceedings of the 4 International WWW

-189-

1998 International Computer Symposium
Workshop on Computer Networks, Internet, and Multimedia
December 17-19, 1998, N.C K.U., Tainan, Taiwan, R.0.C.

conference: Boston, MS, USA, 1995.

[2] Bemers-Lee, T., R. Cailliau, A. Luotonen, H.F.
Nielsen, and A. Secret, “The World Wide Web, ”
Communications of the ACM, 37(8), 1994, pp. 87-96.

[3] Brockschmidt, Kraig, “Inside OLE2”, Microsoft Press
Programming Serie, 1993.

[4] Chen, T. and J. Jwo, “World Wide Meet — Browsing
the Web Not Alone”, International Conference on
Multimedia & Telecommunications Management,
Hong Kong, 1998, Accepted.

[5] Davis, T. E., ”Build your own ObjectPool in Java,”
http://www.javaworld.com/javaworld/jw-06-1998/jw-
06-object-pool.html.

[6] Donath, J.S., and N. Robertson, “The Social Web,”
Proceedings of the_2nd WWW conference: Mosaic and
Web,
http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/
CSCW/donath/SocialWeb.html/, 1994.

[7] Fox, R., “News Track”, Communications of the ACM,
Vol. 40, No. 8, 1997, p. 9.

[8] Gamma, E., et al., “Design Patterns: Elements of
Reusable Object-Oriented Software”, Addison Wesley,
1994.

[9] Lavender, R. G. and D.C. Schmidt, “Active Object: An
Object Behavioral Pattern for Concurrent
Programming,” Pattern Language of Program Design 2,
Addison Wesley, 1996, pp. 483-499.

[10] Palfreyman, K., and T. Rodden, “A Protocol for
User Awareness on the World Wide Web,” ACM 1996
Conference on Computer Supported Cooperative
Work, pp 130-139.

[11] Schmidt, D. C., “Acceptor and Connector,” Pattern
Language of Program Design 3, Addison Wesley, 1998,
pp. 191-229.

[12] Slaone, A., “Learning With the Web: Experience of
Using the World Wide Web in a Learning
Environment,” Computers Education, Vol. 28, No .4,
1997, pp. 207-212.

[13] Virtual places,
http://www.vplaces.com/vpnet/index.html.

-190-

	
	185
	186
	187
	188
	189
	190

