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ABSTRACT

As the growth of Internet and web applications progresses
repaidly, the network management becomes more and
more important. Although most network management
systems are able to collect network traffic data and alarms,
they can not automatically analyze the collected data to
find the cause of network faults, if any. As part of an
ongoing project to develop an automated network faults
diagnosis system, this paper presents a MODEL-based
specification that can be integrated with NMS to provide
the ability of describing the network topology. With the
expanded MODEL class hierarchy, we can also show the
OSI layer 2 devices in the topology map. To implement
our work in the real world environment, we use the HP
OpenView to display the processed topology data. Since
relational databases are used in OpenView, we also derive
suitable mapping rules to transform topology description
objects to relational tables.

1. Introduction

In the recent years, a great deal of advancements and
improvements on the network technology make the
network applications more and more popular. When the
network becomes more complex, the network management
becomes more difficult. Among the challenges, the
difficulty of network fault management lies in the alarm
collection and the alarm analysis. A Network Management
System (NMS) can be used to collect the network alarms,
but one still needs experts to analyze the collected data and
resolve the network problems. This semi-automatic
process makes the network fault management ineffective
and non-real-time.

Most of the current NMS products support
visualized interfaces for network managers. They can
automatically recognize the network environment by using
the SNMP (Simple Network Management Protocol), and
draw network topology maps based on the acquired
information [1, 2, 3]. They also collect historical MIB
(Management Information Base) information of the
managed objects for trend analysis, and draw graphs for
collected data. Most of the NMS store topology data and
MIB data in flat files or relational databases. After
configuring the managed objects, NMS can monitor the
object’s status, define event thresholds for MIB objects,
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and collect MIB information by polling [4]. Although
petwork managers can manually add or delete topology
elements, many attributes associated with the network
elements still need to be acquired by SNMP. This makes it
difficult for a network manager to change topology
information.

By using the object-oriented technique, everything
in the real world can be treated as an object. It is natural
and convenient for us to model a system using the object
concept. Therefore, object-oriented development can be
used easily in network applications as well [5]. System
Management ARTS (SMARTS) develops an object-
oriented specification language, called MODEL (Managed
Object DEfinition Language) to describe the network fault
behavior and its propagation [6, 7, 8]. It is also very useful
in the alarm correlation operation to assist a diagnosis
system to automatically correlate the network alarms.
Howevr, a diagnosis system needs the underlying network
topology information to help identify the root causes.
Unfortunately, the MODEL lacks proper support for
network topology description. This may adversely impact
the performance of fault management.

In this paper, we develop an effective object-
oriented specification for describing the complete network
topology. By integrating this function with the capability
of alarm behavior description in [9], we can build an
Alarm Specification Environment as part of an ongoing
project that intends to develop an automated network fault
diagnosis system.

The remaining of the paper is organized as follows.
In Section 2, we introduce some related research including
object-oriented specifications and techniques of mapping
objects to relational tables. Section 3 specifies our object-
oriented specification for network topology description. In
Section 4, the transformation rules between objects and
relational tables are explained. Section 5 describes our
prototype implementation. Finally, in Section 6, we
present conclusions and propose some possible directions
of our future studies.

2. Related Research

The managed objects of a network environment can
be effectively modeled with object-oriented concepts. A lot



of object-oriented specification languages are available,
for instance, SMARTS MODEL, OMG IDL, and ITU-T
SDL-92 can be used for network modeling. Each of the
object-oriented specification languages mentioned above
has its own special features and respective application
domains.

The MODEL is an OMG IDL like specification
language. It provides a simple syntax to describe network
fault behavior [6]. It also provides instrumentation
capabilities to automatically relate object attributes in the
MODEL to SNMP MIB values. The MODEL can be
integrated with the HP OpenView to provide a useful event
correlation function. The OMG IDL is just a declarative
language, not a full-fledged programming language [10,
11]. As such, it does not provide features like control
constructs, nor is it directly used to implement distributed
applications. The ITU-T SDL is used to model the

structure and behavior of a communication system [12, 13].

The syntax of SDL is more complex than the other
specification languages.

In summary, the MODEL is more suitable for
cooperating with NMS to develop a network fault
diagnosis system. The OMG IDL is more suitable for
developing distributed systems. The SDL-92 is more
suitable for modeling a telecommunication system.

Regarding the mapping for OpenView tables, many
technologies have been developed to transform between
objects and relational models. [14] uses a gateway
mechanism to convert schemas between objects and
relational models. [15, 16] present a useful mapping
procedure to transform an object-oriented schema to a
relational schema. [17] shows the basic issues of mapping
objects into relational databases. [18] shows an
ObjectShadow method to reflex the object concepts in
relational tables. [19] uses the internal stub objects to be
the interface between objects and databases. [20] presents
an object-relational schema by adding type extension,
complex objects, and inheritance to a relational DBMS.
[21] uses three schemas architecture (external, conceptual,
and internal schemas) for mapping objects into relational
tables.

3. Object-Oriented Topology
Specification

The MODEL language provides the function of
describing network faults as part of the SMARTS’
InCharge event correlation system [8]. Event correlation is
the process of automatically grouping related events based
on their underlying common cause that is defined and
described by the MODEL language. It also automatically
reduces the number of related events and identifies
potentially hidden problems at the end.
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The MODEL language enables a diagnosis system to
automatically correlate the network faults and to provide
network managers possible solutions. SMARTS
emphasizes that their MODEL is independent to the
physical network, but we believe that a correlation system
needs the underlying network topology information to
speed up its problem solving. Knowing the network
topology, a network fault correlation process can easily
identify the root causes. When the network topology is
changed, we may observe different symptoms of the same
network problem. In this circumstance, the event
correlation system will be more difficult to find the root
cause. Since the MODEL lacks proper support for network
topology description, this may degrade the performance of
fault correlation. '

In order to provide effective network fault
management, we expand the MODEL class hierarchy to
have the ability of describing network topology.
Fortunately, it is very easy to extend MODEL’s object
class hierarchy by adding relationships, attributes and
events as needed [22].

In addition, because of the low cost and easy cabling,
the star style network topologies that use hubs or switches
to connect network nodes are more and more popular.
However, most of the network management systems
including the HP OpenView do not provide the detection
of OSI layer 2 devices, such as hubs, switches or bridges
in the network topology. They treat layer 2 devices as
general network nodes. This will give network managers a
network topology in a logical view rather than a physical
view, such that the managers can not easily understand the
real network configuration. If a network problem occurs,
managers are not easy to recognize what’s going on. The
HP OpenView needs to cooperate with the third party
products such as Onion Peel Solutions’ Amerigo/L2 to
provide the function of detecting layer 2 devices.

We devise two strategies for generating an OSI layer
2 topology map. One is to expand the MODEL
specification to describe the complete layer 2 information.
Here one needs to rewrite the MODEL specification and
redraw the map when the topology is changed. The other
strategy is to use additional procedures for the layer 2 map
description. Standalone procedures can be employed to
reorganize the topology map. In our research, we combine
the two strategies. Our extended class hierarchy described
in the next paragraph contains the classes to describe layer
2 topology and the rules like Amerigo/L2 to provide the
ability of reorganizing layer 2 devices in the network
topology [23]. The procedure to detect the layer 2 devices
is shown in Fig. 1.
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Fig. 1 Procedure to detect layer 2 devices

Our MODEL-based specification focuses on the
description of network topology by expanding the
MODEL’s class hierarchy. We modify two original classes
and add two new classes into the hierarchy. The expanded
class hierarchy is shown in Fig. 2.
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Fig. 2 Expanded MODEL class hierarchy

First of all, we modify the original Interface class to
provide interface descriptions that include the network and
segment descriptions. Second, we modify the original
Manager class to provide a suitable capability of network
management station description. Finally, we add two new
classes called HUB/Bridge and Host to represent the OSI
layer 2 devices and generic network nodes respectively.

attribute char[15] ip_network_address;
attribute char[15]

ip_network_subnet_mask;
attribute integer net_id;
attribute integer seg_id;
attribute char[256] seggment_name;
attribute integer node_id;

attribute long *Ref_Value_ifInOctets;
attribute long *Ref_Value_ifInUcastPkts;
attribute long *Ref_Value_ifInNUcastPkts;
attribute long *Ref_Value_ifOutOctets;
attribute long *Ref_Vallue_ifOutUcastPkts;
attribute long *DEV_ifInOctets;

attribute long *DEV _ifInUcastPkts;
attribute long *DEV_ifInNUcastPkts;
attribute long *DEV_ifOutOctets;

attribute long *DEV_ifOutUcastPkts;

instrument SNMP;

interface IF: Node {
instrumented attribute integer ifNumber;
instrumented attribute integer ifType;
instrumented attribute char{36]
ifPhysaddr;
instrumented attribute char{256] ifDescr;
instrumented attribute integer ifOperStatus;

attribute char{256] ifName;

attribute char[36] topo_id;

attribute char(15] ip_address;
attribute char[15] ip_subnet_mask;
attribute integer seg_type;

attribute char{256] ip_network_name;

Fig.3 Modified Interface class

The Interface class provides the information about
the network interfaces of managed objects. At the top of
the modified interface class in Fig. 3, we add
instrumented attribute commands to get the related
information from the SNMP MIB data directly. The other
added attribute commands are used in topology instances
to provide the interface information such as interface name,
IP address, network mask, network type, and so on. Each
instance has designated values for some attributes because
they are needed before using SNMP commands. For
example, we can retrieve the IP address of an interface
from ipAddrTable MIB, but first we must supply an IP
address in the SNMP command to get its MIB data. We
directly assign values of those attributes in the instances.
Some attributes listed in this class such as
Ref Value_ifInOctets and DEV_ifOutUcastPkts are used
for calculation purposes and are not related to network
topology description.

interface Manager: LogicalService {
attribute char *NMSName;
attribute char[36] topo_id;
attribute char[256] station_name;
attribute char[256] station_description;
attribute integer station_type;
attribute integer access_mode;
attribute char[256] snmp_community;

NMSName = "HP OpenView";
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Fig.4 Modified Manager class




The Manager class provides the network
management station’s information to be used in the
topology description. A management station is also a
network node, so we may treat it as a general host and
omit this class. The HP OpenView supports a delegation
architecture that can manage a large network environment
via cooperated management stations, and each
management station maintains a local domain. We keep
the Manager class as shown in Fig. 4 to record network
management stations. The attributes of the Manager class
are generic attributes used to describe a network
management station. The topo_id field is used as a primary
key, and the station_name is used to keep the hostname of
this network management system. Each instance has
designated attribute values because they are SNMP related
attributes whose values must be provided in the SNMP
commands. General speaking, SNMP MIB data only
contains information of a managed object which acts as a
management client. We can recognize if a managed object
is a management station or not via the Manager class.
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interface Host: IP {
instrumented attribute integer ColdStart;
instrumented attribute integer ifOperStatus;

attribute char[36] topo_id;

attribute char{256] ip_hostname;
attribute char{15] snmpaddr;

attribute integer vendor;

attribute integer topm_interface_count;

instrument SNMP;

interface HUB: IP {
instrumented attribute integer ifOperStatus;

attribute char[36] topo_id;
attribute char{256] hubname;
attribite char[15] snmpaddr;
attribute integer rootport;
attribute integer port_number;
attribute integer vendor;

instrument SNMP;

Fig. 5 HUB/Bridge class

In general, we can treat a hub as a multi-port
repeater and a switch as a multi-port bridge. The functions
of hubs, bridges, and switches are similar to each other.
The only difference between them is that switches and
bridges may ignore unused packets by their filtering or
forwarding algorithms. Because we focus on topology
operations, hubs and bridges can be treated in the same
manner. In order to reduce the complexity, we simply use
the HUB class in Fig. 5 to describe all the layer 2 devices
including hubs, bridges and switches in the topology. This
class isn’t provided in the original MODEL classes. The
HUB class inherits attributes from the IP class because it
needs to provide port information that is retrieved by
SNMP commands. We first use instrumented attribute
description to retrieve ifOperStatus MIB from the
managed object. This MIB data is used to record the
current operating status of the device. Other attribute
commands are used to assign the HUB information such as
name, port number, vendor, and so on.
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Fig. 6 Hostclass

The Host class provides the generic network node’s
information to be used in the topology. The Host class
inherits attributes from the IP class. In Fig. 6 the attributes
of the Host class include two instrumented and some
generic attributes. Instrumented attribute ColdStar is used
to check rebooting condition of a node, another attribute
ifOperStatus is used to store the operating status of a
network interface. These instrumented attributes are
retrieved by SNMP commands. The attribute topo_id is an
UUID identifier, and is the primary key used in the
OpenView database. The attribute ip_hostname indicates
the hostname of a node, and snmpaddr contains its IP
address that is used to get SNMP MIB data. The vendor
field stores an indexed integer used to indicate the
manipulator of the node. The topm_interface_count
indicates the number of interfaces the node has.

4. Objects to Relations Mapping

It is natural and easy for us to model a network
system with the object concept. This is the reason why we
choose the object-oriented specification language -
MODEL to describe the network topology. Although the
object concept is suitable for developing network
applications, most of the commercial NMS products
including the HP OpenView support relational databases
only. The network topology described by using the
MODEL-based specification needs to be converted to the
formats that OpenView can recognize. They are stored in
relational databases. We have to work not only on the
object-oriented specification language MODEL, but also
the corresponding relational database structure used to
store topology information.

There are four types of databases used by the
OpenView NNM. They include the OVW (OpenView
Windows) object database, map database, topology

*database, and trend data database. The OVW object

database manages all objects and field information for the
HP OpenView. The map database contains presentation
information specific to a topology map. Each map uses
one map database in an HP OpenView environment. The
topology database contains the topology schema used by
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IP discovery and layout processes. This topology schema
consists of tables for various types of IP objects or other
related information. The trend data database contains the
SNMP trend schema that consists of tables for NNM
SNMP data collector facility.

The OpenView topology database consists of seven
tables: nnm_objects, nnm_interfaces, nnm_network,
nnm_segments, nnm_nodes, nnm_stations, and
nnm_topology [24]. The nnm_objects is the most
important table in the schema, and the other tables are all
related to it. All the seven topology tables use the same
primary key “topo_id.” In addition to the seven tables,
there is an nnm_classes table which contains an entry for
each of the seven tables.

Mapping objects into relational model seems to be a
big problem because the relational model cannot
represent the object properties nicely in an object model.
This is frequently called an impedance-mismatch [17, 18].
In order to avoid the impedance-mismatch, we have to
derive rules for mapping objects to relational databases.

In our research, the strategy for mapping objects to
relational databases is based on [17] as well as some ideas
from [16, 21]. The transformation rules are divided into
the following types:

® Mapping attributes to zero or more columns. If an
attribute is used by instances for calculation purposes,
it is not required to be stored in a database. These
attributes are not mapped to any columns of tables.

® Mapping classes to one or more tables. There are
three basic methods in mapping classes to relational
tables.

— One table to store the entire class hierarchy. This
solution is very simple. It is also easy to maintain
the table because all of the data we need is in one
single table.

— One table to store each concrete class [17]. That
is, we can ignore unused data and store the data
we really need in one single table.

— One table to store each object class. This
approach conforms to object-oriented concepts
better than the other approach.

® Mapping for relationships.

— One-to-one relationship: By intuition, one-to-one
relationship is simple and easy to transform. To
implement one-to-one relationships in a relational
database, we just have to include the key of one
table in another table. In other words, we only
need to add a foreign key in one table.

— One-to-many relationship: To implement one-to-
many relationships, we have to include the key of
one table in another table. It is similar to one-to-
one relationship mapping. The only difference is
that the foreign key has to be added in the “many”
side of the relationship.
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— Many-to-many relationship: To implement many-
to-many relationships, we have to use the
associative table [17]. An associative table is a
table whose purpose is to maintain the
relationship between two or more tables in a
relational database. The attributes in an
associative table are traditionally the combination
of the keys in the tables involved in the
relationship. It is easy to implement associative
tables by treating them as just another type of
table. We assign associative tables their OID key
field, and then add the necessary foreign keys to
maintain the relationship.

® Mapping single inheritance instances to tables. Three
approaches can be used:

— Each of superclass and subclass is mapped to a
separate table.

— No superclass table: superclass attributes are
replicated for each subclass.

— No subclass table: bring all subclass attributes up
to the superclass level.

@ Mapping disjoint multiple inheritance instances to
tables.

— Each of superclass and subclass is mapped to a
separate table.

® Mapping overlapping multiple inheritance instances
to tables.

— Each of superclass, subclass, and generalization
relationship is mapped to a separate table.

5. Implementation

In our system, we begin by constructing a MODEL
script file that describes the network fault propagation
model and network topology of our testbed environment as
shown in Fig. 7. Then a Topology and Alarm COmpiler
(TACO) is developed to read the MODEL script file and to
generate a topology data file. The system flow is shown in
Fig. 8.
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Fig. 7 Network management testbed

The TACO compiler analyzes the MODEL script to
identify the propagation model and topology information.



The compiler generates an intermediate topology data file
that can be stored in any types of databases. In our
implementation we use a PERL program to read the
intermediate file and put the data into the relational
databases that an OpenView can access. Different PERL
programs can be developed for other types of databases.
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Fig. 8 System flow
Our MODEL-based specification is used to describe

a network topology with four classes: Host, HUB/Bridge,
Interface, and Manager. After constructing the MODEL
description file for our testbed topology, we convert it to
the relational tables. The HP OpenView stores topology
data in seven tables:
nnm_networks,
nnm_interfaces,
decompose the MODEL’s four classes to form the
OpenView’s seven tables. After being processed by the
lexical analyzer and parser, the MODEL script is
converted to table entries. Then the entries are inserted
into OpenView’s
OpenView displays an OSI layer 2 topology map as shown
in Fig. 9 based on our MODEL descriptions.
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Fig. 9 Testbed topology map from TACO

6. Conclusion and Future Work

In this paper, we expand the SMARTS MODEL
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class hierarchy to provide the ability of describing network
topology. With the network topology information, a
network fault correlation system can identify the root
causes much easier. We also develop a TACO compiler to
convert the MODEL file to have the format that OpenView
can recognize and display in its map windows. The TACO
compiler contains the rules for mapping objects to
relational tables that allow us to convert object-oriented
MODEL specification to standard relational tables.

Our system has the following advantages. First, it
provides an effective topology specification that can be
used to describe network topology. For a non-existent
network, it can be used to do network simulation. Second,
our system provides the ability to present OSI layer 2
network maps. The topology map becomes more precise
and easier to maintain. Third, we have shown an organized
way to modify class hierarchy as needed. Fourth, the
TACO compiler generates an intermediate file without
directly accessing the database. Thus, the compiler is
independent to the database used in the NMS. Finally, our
topology information can greatly improve the correlation
of netwrok faults when it is integrated with fault
propagation model.

One of our future work is to develop a visualized
GUI interface for constructing the MODEL script. The
GUI can provide a better way for users to configure their
network topology, and automatically generate a
corresponding MODEL description file. As new network
technologies continue to blossom, we would like to be able
to expand the MODEL to display these new technologies
more easily.
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