1998 International Computer Symposium :
Workshop on Computer Networks, Internet, and Multimedia
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

PERFORMANCE OF FREQUENCY-HOPPED SPREAD-SPECTRUM
MULTIPLE ACCESS COMMUNICATION SYSTEMS
WITH READABLE ERASURES"

Jee-Wey Wang and Jyh-Horng Wen'

Institute of Electrical Engineering
National Chung Cheng University, Chiayi, Taiwan
e-mail: wen@ee.ccu.edu.tw

ABSTRACT

As a way to improve user capacity, we introduce and
evaluate in this paper the readable-erasure channel for
frequency-hopped spread-spectrum multiple access sys-
tems using MFSK modulation scheme (FH/MFSK). For an
MFSK scheme, in contrast to the erasure-only channel
having M +1 outputs, the readable-erasure channel has
2M outputs, M of which correspond to the outputs when
no hits occur and M of which represent the outputs when
channel is hit. For comparison purposes, the performances
of readable-erasure and erasure-only channels both using
Reed-Solomon codes and using BCH codes are evaluated.
It is shown that the readable-erasure outputs can help to
improve user capacity. By taking the spectral efficiency
into consideration, we point out that directly applying RS
codes to the FH/MFSK systems is very inefficient in spec-
trum utilization. Instead, the channel with readable-erasure
outputs using BCH codes and 4-ary FSK is suggested for
FH/MFSK systems.

1. INTRODUCTION

The frequency-hopped (FH) spread-spectrum multiple
access communication systems, one kind of code division
multiple access systems, have received intensely attention
during the recent two decades. Several different kinds of
FH spread-spectrum systems were proposed utilizing M-
ary frequency shift keying (MFSK) modulation scheme,
collectively named FH/MFSK systems. Among those
systems, the one with which we are concerned in this paper
was described in [3]-[7]. For this kind of FH/MFSK
spread-spectrum communication systems, the entire avail-
able bandwidth is divided into g frequency slots, shared by
K sender-receiver pairs simultaneously operating in the
system. The signal from a given user is hopped from slot
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to slot by changing the carrier frequency at certain points
in time called hop epochs [4]. The sequence of carrier
frequencies of a signal is known as its frequency-hopping
pattern. Two kinds of frequency-hopping patterns can be
used: random patterns or a set of deterministic patterns.
One model for a random pattern is a sequence of indepen-
dent random variables, each of which is uniformly distrib-
uted over the set of ¢ frequencies; this kind of pattern is
called memoryless pattern in [3]. Several kinds of sets of
well-constructed deterministic patterns are known; a de-
tailed description of coded sequences for frequency-
hopping patterns can be found in [12]. For performance
analysis, the memoryless hopping pattern is usually as-
sumed due to its simplicity [1]-[7]. Whenever two differ-
ent users hop to a same frequency slot, a hit is said to occur,
The probability of the occurrence of hits primarily domi-
nates the performance of the frequency-hopped systems.
For digital communication systems, the error control
codes are used to protect the signals against the errors
caused by the channels, and among those codes, the Reed-
Solomon (RS) code is one of the most preferable codes
due to its maximum-distance property. The performance of
the FH/MFSK system in conjunction with RS codes was
studied in [3]-[6]. In those papers, the RS codes are used
as erasure-correcting codes. To do so, the demodulator
declares an erasure when a hit occurs. However, under a
hit some channel capacity still exists. It is believed that if
the decoder can output a decision as well as an erasure,
referred to as a readable erasure in [10], then performance
improvement is possible. In this paper we refer to the
channel with readable erasures as a readable-erasure chan-
nel, while the channel with traditional erasures as an era-
sure-only channel [5]. In addition, for an RS code over
Galois field GF(M), the code length » is equal to M —1.
Hence, to employ an RS code, the channel requires a large
value of symbol alphabet M. This in turn results in an
inefficient utilization of the channel bandwidth because for
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Fig. 1 Model of transmitter with channel code of length n and dimension £.

the MFSK modulation scheme, the bandwidth efficient
decreases as M increases. Therefore, in this paper we also
consider the BCH codes [11], for which the code length
can be arbitrary large while keeping a moderate value of M.
Performance evaluation of the readable-erasure channel
associated with RS codes and with BCH codes is the pri-
mary subject of this paper, and the performance of era-
sure-only channel is also carried out for comparison pur-
pose.

The rest of this paper is organized as follows. Section
2 describes the channel models. Section 3 deals with the
channel-symbol error probability of the readable-erasure
channel. The decoding error probabilities of the cedewords
for RS codes and for BCH codes are derived in Section 4.
Finally, conclusions are drawn in Section 5.

2. DESCRIPTION OF CHANNEL MODELS

The transmitter model of each user with a channel
code of length » and dimension k is shown in Fig. 1. Every
block of log, M bits constitutes an M-ary symbol, and &
symbols are encoded to obtain an n-symbol codeword.
Then, every codeword is transmitted over the frequency-
hopped channel by using MFSK modulation. At the re-
ceiver, the demodulator attempts to determine the trans-
mitted symbols, and then, » received symbols are decoded
to obtain k(log, M) bits, which are passed to the data
sink.

It is assumed that one symbol is transmitted during
one hop interval. By this we mean the system under con-
sideration is a slow frequency-hopped system [3]. Also, we
assume a synchronous system; that is, the hop epochs of all
the users are the same. Hence, there are no partial hits, and
the number of users occupied in any frequency slot is
independent from hop to hop.

Under a hit, an erasure is output from the erasure-only
channel, while the readable-erasure channel always at-
tempts to determine the transmitted symbol and gives a
‘weak’ output. If the weak symbol is different from the
transmitted one, a channel-symbol error is said to occur.
Obviously, the error probability is strongly dependent on
the number of users involved in the hit. So, we denote the
probability of channel symbols with z users involved in a

hit being correctly decoded by p,g.. We assume that the
signal strengths from different users are the same. Also, it
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is assumed that a perfect side information about the total
signal strengths of each of the M tones is available for the
demodulator [2], so that the demodulator always knows
how many signals occupied each of the M tones. By this
information the demodulator can choose the tone being
occupied by the most number of users as its output. If there
are two or more such tones, one of them is randomly cho-
sen. Clearly, this decision rule will result in a Pesj- defi-

nitely larger than 1/M. Notice that under hits, if the de-
modulator chooses one symbol as its output from among
the M symbols-at random with no attempts being made to
‘pick up’ the strongest symbol, then the Pcs- s equal to

1/M ; this is the case of without side information and has
been widely studied [3, 5, 6]. Fig. 2 shows the state-
transition diagram of the readable-erasure channel, where
Py denotes the probability of a hit and the states with a “-”
subscription denote a weak symbol due to a hit. Note that
by integrating all the weak states into an erasure state, one
can obtain a model of erasure-only channel.

Suppose there are K users operating in the system and
there are g frequency slots available. Given a specific user
hopping to a specific frequency slot, the probability that

PhPes
M-1
(each)

Fig. 2 State-transition diagram of readable-erasure
channel.



u of the other K —1 users hop to the same slot has the
following binomial distribution:

K -1
PU(u;K-—l)=( y )pq“{_pq)(—l—u’ (1)

where p, =1/q. 1t is clear that ¥ =0 means that the
transmission of the given user is not hit. So, the probability
of ahitis

pr=1-(-p)*7, @)

and the probability of j of the n symbols of a transmitted
codeword being hit is

Py()) =[Z.]Phj(l - ). 3)

3. SYMBOL ERROR PROBABILITY FOR
READABLE-ERASURE CHANNEL UNDER HITS

In this paper we focus our attention on the multiple-
access capacity of the system, so the background noise, the
channel fading, and the other factors that might corrupt the
transmissions are ignored for simplicity. By this we mean
the only factor that affects the transmissions is the interfer-
ence arising from the other users [1]-[7]. Hence the trans-
missions are considered to be error free for both readable-
erasure and erasure-only channels when no hits. In this

section, we derive the py. for readable-erasure channel
under hits.

First, we define the two-variable probability mass
function (pmf) P(j,i;z,M) as the probability that there
are j tones each being occupied by i users’ signals and
the remaining M —j tones each are occupied by less than
J signals, resulting from z users hopping over a same M-
ary frequency band. To specify the pmf, we further define
variables 1,t5,....tps as the numbers of users transmitting
signal over tones  f}, f3,....f3s, respectively. Given z users
hopping over a same frequency band, we have
|+t + ...+ ty; = z. By the definition of the pmf, j corre-
sponds to max(#,t3,.,t3), and iis the number of vari-
ables f; ~¢t); which have value j. It is clear that,
15i<M, and [z/M]|<j<z, where [x] denotes the
smallest integer equal to or larger than x. To express
P(j,i;z,M) as a closed-form for general values of M and
z seems very difficult, but through a series of combinatori-
al exercises, we can get a recursive form for the expres-
sion.

Consider a grid containing M rows and z columns.
One O is placed in each column with randomly choosing
the row location. This results in M~ distinct patterns of

O’s. Obviously the number of O’s in the xth row means
that the total number of users transmitting signal over tone

fx. Here we define N(j,i;z, M) as the number of pat-
terns in the grid with the same definitions for its argu-
ments as those for P(J,i;z, M). Therefore, both functions
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are related by

P(jiz, M) = (/M")’(j,i;z, M). C))
This implies that we can compute P(j,i;z,M) by first
determining N(j,;z,M). For given M and z, j should
satisfy that [_z/M_]s Jj<z, where |—x~| denotes the
smallest integer larger than or equal to x. Moreover, the
variable i associated with a particular j should satisfy
that z-ij <(M-i)(j~-1) and is[_z/jj where Lx_] de-

" notes the integer part of x. These constraint are required

because that i/ cannot exceed z and, by definition, any
one of the remaining (M —i) rows cannot have O’s more

.than or equal to j. For values i and j that cannot satisfy

these constraints, P(j,i;z,M)=0. To simplify the nota-
tion, we denote the set of possible integers for i given j, M,
andzby [I{i]j;,z,M}.

With above ranges for j and i, we have

oL ) (o
= e
NGz, M)= (V ]U(;j)('(j‘ m‘)x

I
M-y -3 > N,xM-iz-ij)),

y=jxel{xly;z—ij, M-i}

i<FJ. (6)

J

Equation (5) represents that there are (M ] ways to
H

choose those i rows, and for the first row there are

z
(_]ways to distribute the i O’s, the second row
J

(Z —J) ways, and so on. The last term in (6) denotes that
J

there are (M —i):”'7 ways to place the remaining O’s
(the number of which is definitely less than j) in the rest
(M -1i) rows, For the case i< I_z/ j_l since the number of
the remaining O’s is larger than j, we must eliminate those
patterns appearing in the other (M —i) rows having j or
more O’s. The recursive term in (6) accounts for this
situation.

By using (4), (5), and (6), P(j,i;z, M)can be com-
pletely determined. Note that for the special case M =2,

i.e., BFSK scheme, no recursive call is required and the
expression can be reduced to

P(jJaD{?IjX%J', | ™

given that I—Z/Z_]Sjﬁz, and i=2 if j=2z/2,
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Fig. 3 Probability of channel symbol being correctly
decoded under hits.

i=1if j>z/2; otherwise, P(ji:z,M)=0.
Having specified the pmf, we now can determine the
Pes); and the channel symbol error probability, denoted

by Pesfz- Since only j out of z signals will be correctly

decoded, the Deslz is given by

Pesi: =1_pcs|:’
1 iz M j
1 ;;P(;,x,z, ); ®

Fig.3 shows the values of Pcsfy for M =4 and M =64

with z ranging from 2 to 100. Two basic lines of the inver-
se of 4 and 64 are also shown, corresponding to the case
without side information. This figure shows that when z is

small, the values of Pesz are quite better than 1/M, but

the gain approaches zero as z becomes large.
By averaging (8) over z, we can evaluate Des; that
is,
K-l
Z pes|:+lPU (zK-1)

Des == : ©)
Ph

4. DECODING ERROR PROBABILITIES
AND CHANNEL THROUGHPUTS

4.1. Decoding error probabilities

For an RS code of length 1 and dimension #, denoted
by (n,k), the minimum distance 4° is equal to
(n—k+1), and the code is capable of correcting up to

t=|_(n—k+1)/2j errors or d" -1 erasures. The state-
ment is due to the fact that RS codes are maximum dis-
tance separable (MDS) codes [11]. Because BCH codes
are not MDS codes, the above statement does not hold for
BCH codes. For a BCH code to be capable of correcting ¢
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errors, k is determined by (n-~s), where s is the degree of

the generating polynomial of the code. So, for a given
code length n, s needs to be determined before & can be

determined. The d° of the BCH code is, therefore,
(2t +1). Several possible pairs of k and ¢ for BCH codes of
length 63 over GF@) are given in Table 2.

Depending on the requirements of the application, a
received word can be treated using one of the following
two algorithms: one is referred to as incomplete
(bounded-distance) decoding algorithm and the other is
complete decoding algorithm [11]. The incomplete de-
coding algorithm assigns every received word to a code-
word within distance ¢, if there is one, and otherwise de-
clares the received word to be unrecognizable. The com-
plete decoding algorithm always decodes every received
word as a closet codeword. When high reliability perfor-
mance is required, one may prefer to use incomplete de-
coder in conjunction with automatic-repeat-request proto-
col (see [8,9], for example), whereas when retransmissions
are not feasible due to delay constraints, such as in most
voice-communication systems, a complete decoder is
adopted. In the following we derive the decoding error
probabilities for readable-erasure and erasure-only chan-
nels. For channel coding, we consider both RS codes and
BCH codes, and we assume complete decoders. Since the
codes to be considered are linear, any codeword is equally
likely to be decoded erroneously. With no loss of general-
ity, we can choose the all-zero codeword as the transmit-
ted one and calculate the word error probability Pg

caused by all error patterns.

Case I: Reed-Solomon codes
* P for erasure-only channel

Suppose that a word with a specific pattern containing
V erasures is received. Then the codeword which differs
in the least components from the unerased portion of the
received word is decoded as the transmitted word. If there
are several codewords which differ in the same compo-
nents from the unerased portion of the received word, then
the decoder chooses as it output from among those code-

words at random. It is clear that for v <d ‘, since the all-

zero codeword is always chosen, P =0. If v>d', a
decoding error might occur.

Usually Pg of an erasure-only channel is approxi-
mately estimated as the probability that the number of
erased symbols of a received word exceeds or equals d*
[3]-[6]. However, the MDS property of RS codes can help
us calculate Pg accurately. To determine Pg, we need
the following corollary:

Corollary: Consider an (n,k) MDS code over GF(q).
The number of codewords which contain a specific set of v
erasures, where dpiy <v<n, and the rest n—v compo-

nents are all zeros is equal to q"'(”"’) .
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Fig. 4 Decoding error probabilities for (63,30) RS code

and (63,11) BCH code with readable-erasure and erasure-
only channels.

Proof: For an (n,k) MDS code, any set of k compo-

nents uniquely specifies all the qk codewords [11]. Since
there are v erasures, the unerased components are n—v.
Choose these n-v components plus additional
k —(n—v) components as information symbols. If all the
h—V components are set to zero, then we can specify

k—~(n-v)

exactly ¢ codewords. This completes the proof.

By this Corollary, it is known that there are g*~*")

codewords of which the unerased components are all zeros.

Since the decoder is equally likely to decode the received
word as any of these codewords, Pg, as a function of v,
is given by

1
PE(V)—I—W. (10)
By averaging over v, we can obtain Pg, given that
n
Pg = Y PEMPy (), an
v=d"'

where Py (v) is given in (3).
+ P¢ for readable-erasure channel

With a specific erasure pattern, the possible error
symbols of a received word are constrained in those erased
words, and the unerased components are known to be
error free. Since a code-symbol error can occur only when
there are at least d” erased symbols and at least ¢#+1 of
them are in error. To exactly compute Pz using a com-
plete decoder seems somewhat complicated. Instead, we
upper bound Pg, as a function of v, by

v v . N *
PEW)< Y (i)(pes)'(l—pes)v_', vad, (12)

i=t+1
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where p,; is given in (9). Similar to (11), we have

n
Pg < D PE(W)Py (). (13)
v=d’
Fig. 4 shows the Pg s as a function of K for (63,30)
RS code with both channels considered. The curves for
(63,11) BCH code shown in this figure will be discussed
later. The number of frequency slots ¢ is assumed to be
100 throughout this paper. We observe from this figure

that for given a constraint that Pg < 10’2, the maximum

values for readable-erasure and erasure-only channels are
51 and 49, respectively. At this point, it is realized that the
readable-erasure channel indeed has larger user capability
than its erasure-only counterpart. This argument still holds
for other values of k of interest, as will be shown below.

Notice that the Pz for readable-erasure channel is an

upper bound, whereas that for erasure-only channel is an
exact value.

Case 2: BCH codes

For a noncoherent MFSK modulation communication
system and a given source data rate R),, the channel sym-
bol rate is R, = R,/log, M.In order to guarantee the

outputs of these M tones are orthogonal when noncoherent
demodulation applies, the bandwidth required for each M-
ary frequency slot is at least [1]

W=M i—-. ' (14)

log, M

For a given Ry, M =2 and M =4 require the same
amount of bandwidths, and the cases M >4, W is a
monotonically increasing function of the channel alphabet
M. The length nof an (n,k) RS code over GF(M) is equal
to M —1. Thus, when n requires large so does M. This, in
turn, leads to inefficiency in spectrum utilization. By using

(14) and assuming Q= M7, the ratio of bandwidth re-
quired for a Q-ary system to an M-ary system is deter-
mined by

u= Ly, (15)

b4

For example, the bandwidth required for a Q=64
system is 16/3 times as large as that required for an
M =4 system. So, using a modulation scheme of large
value of M to accommodate the symbol size required for
RS codes seems very inefficient in spectrum utilization.
Although, as shown in [8]-[9], we can use consecutive y
M-ary symbols to obtain a code symbol alphabet

Q =M, this approach leads to a poor channel-symbol
error probability because a correct symbol is possible only
when all the y M-ary symbols are correctly decoded.
Another approach is to use a reasonable value of M associ-
ated with BCH codes over GF(M). Since BCH codes are
no longer maximum distance codes, the weight distribu-
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tions are not known for most codes, and the exact analysis
of decoding error probability for erasure-only channel
seems very troublesome. So, it is better to resort to an
upper bound; that s,

Pe< ). Py(v). (16)
v=d"

4e-2

w
4]
U

2

2e-2

Throughput
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U
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Fig 5 Maximum throughputs obtained directly using (17)
for several (63,k) RS codes with readable-erasure chan-
nel.

By this expression we mean that as long as d* or more
code symbols are erased, a decoding error occurs. As for
RS codes, the Pp for readable-erasure channel can be
evaluated by using (13). The Pg's for (63,11) BCH
code are shown previously in Fig. 4. These curves shows
that the maximum numbers of users for readable-erasure
and erasure-only channels are 50 and 42, respectively.
Clearly, there is a significant improvement in user capac-
ity by using readable-erasure channel.

4.2 Channel throughputs

To account for the effect of the code rate in perfor-
mance and the bandwidth required for different modula-
tion schemes, we define the normalized channel through-
put as

77=K[1"PE(K’”,/‘,‘])]WL(], (17)

where r =k/n is the code rate, and w is obtained by nor-
malizing (14) with respect to Ry, that is
w=M/(log; M), meaning that the bandwidth require for
transmitting one bit per unit time. For a given ¢,77 is a

function of K and r. So, for a given code rate, it is believed
that there exists an optimum value of K which maximizes
n. Fig. 5 shows the normalized channel throughputs as a
function of K for (63,k) RS codes with readable-erasure
channel obtained using (17). As shown, the optimum val-
ues of K for k =46, 34, 22 are 29, 53 and 88, respec-
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Table 1 Maximum numbers of users and the corresponding
throughputs for several (63,%) RS codes over GF(64).

Readable-erasure ~ Erasure-only

k Kt 77‘ Kt 77.

18 88 2.33e-2 87 2.3e-2
22 74 2.4e-2 72 2.33e-2
26 61 2.34e-2 60 2.3e-2
30 51 2.25e-2 49 2.17e-2
34 42 2.1e-2 40 2e-2

38 33 1.85e-2 32 1.79e-2
42 26 1.6le-2 25 1.54e-2
46 20 1352 18

1.22e-2

Table. 2 Maximum numbers of users and the correspond-
ing throughputs for several (63,k) BCH codes over

GF(4).

Readable-erasure

Erasure-only

k ( t ) Ki 77‘ Kxu 77‘
8(20) 81 5092 69 4.34e-2
11(15) 50 4322 42 3.63e-2
20(12) 36 5.38¢-2 30 4.72e-2
27(10) 27 5.41e-2 23 4.88e-2
30(7) 17 40le2 14 3.3e-2
36(6) 14 396e2 11 3.12e-2
39(5) 11 337e-2 9 2.76e-2
45(4) 8 2832 6 2.13e-2

tively. The values of Pg for & =46, 34, 22 at the opti-

mum throughputs are 1.6e-1, 1.08¢-1, and 8.74e-2, re-
spectively. Obviously, these values are too large relative

to a suitable value, say 1072, for an applicable system.
So, the system cannot operate at such conditions. For this
reason, we impose an extra constraint of Pg < 1072 on
(17). The optimum values of K and the corresponding
throughputs obtained thereby are denoted by K * and
77‘, respectively. Table 1 depicts these values for several
(63,k) RS codes. We observe from this table that for all
values of &, the values of K * for readable-erasure chan-

nel is at least greater than that for erasure-only channel by
one. It can also be seen that the optimum throughputs for

readable-erasure is 2.4e-2 achieved when & =22,

Similar to Table 1, the values of XK' and 77‘ for
several (63,k) BCH codes over GF(4) are depicted in
Table 2. By carefully examining these results, we can see



that the improvement of readable-erasure channel over
erasure-only channel is quite prominent. On the other
hand, the maximum throughput for readable-erasure
channel is 5.41e-2 achieved when & =27. This value is
2.14 times that of RS coding case. This finding shows that,
normalized to a unit of bandwidth, the amount of infor-
mation the channel can accommodate by using BCH cod-
ing is at least 2.14 times that the channel can accommo-
date by using RS coding. As shown above, the ratio of w
for BCH coding case to that for RS coding case is 3/16.
The reduction of the ratio from 16/3 to 2.14 shows that
the correcting capability of RS codes themselves is essen-
tially better than that of BCH codes. Since the value
M =2 is as spectrally efficient as M =4, we also evalu-
ate the performances for several values of (63,k) BCH
codes over GF(2). The results show that the maximum

value of 77* is slightly smaller than A =4 case, so those
results are not shown. Consequently, we recommend read-

able-erasure channel utilizing BCH over GF(4) for
FH/MFSK systems.

5. CONCLUSIONS

We have introduced and evaluated the user capacity
of readable-erasure and erasure-only channels for
FH/MFSK multiple access systems both using RS codes
and using BCH codes. It has been shown that the read-
able-erasure channel can improve user capacity over era-
sure-only channel, especially for BCH coding case. In
terms of maximum throughput, we have shown that the
readable-erasure channel utilizing BCH over GF(4) is 2.14
times that of the same channel utilizing RS code over
GF(64).

Although only synchronous systems were considered
in this paper, it is believed that the trend of improvement
of readable-erasure channel over erasure-only channel can
hold for systems in which the hop epochs are not perfectly
synchronous. We have not yet considered the asynchro-
nous case because the exact analysis for channel-symbol
error probability under hits seems very troublesome.
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