1998 International Computer Symposium
Workshop on Artificial Intelligence .
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0.C.

A MEMORY-BASED SIGMA-PI-SIGMA NEURAL NETWORK (SPSNN)

Chien-Kuo Li,, and Jung-Hung Hung
Department of Information Management
Shih Chien University, Taipei, Taiwan, R.O.C.
Email: ckli@sccl.scc.edu.tw

Abstract

This paper presents a class of self-organized basis
function networks called sigma-pi-sigma peural networks
(SPSNNs). A neural network structure that uses small
memory blocks plus additional operators as basic building
blocks has been investigated. The output of the new

structure is the sum of the outputs from several submodules.

Each submodule consists of memory-based product-of-sum
form neural networks. The memory contents in these
submodules are adjusted during the leaming process. The
new structure can learn to implement static mapping that
multilayer neural networks and radial basis function
networks usually do. The new neural network structure
demonstrates excellent learning convergence
characteristics and requires small memory space.

I. Introduction

This study investigated a neural network structure
that uses small memory blocks plus additional operators as
basic building blocks. ~While typical basis function
networks select a specific type of basis function such as the
Gaussian function [1] for function approximation and
modeling, the new structure intends to use “self-organized”
basis functions. These basis functions are generated
during the leamning process. Memory blocks together
with additional operators are especially suitable for
implementing such basis functions. Each memory block
can implement a function for a subset of inputs.
Operators, usually arithmetic ones, are applied to these
functions in order to approximate high-dimensional
complicated functions or to model systems.

The new structure overcomes major problems
encountered in multilayer neural networks (MNNs) [2, 3, 4]
and radial basis function networks (RBFNs) [1, S, 6, 7, 8],
which are widely used for static mapping. It is known
that MNNs often encounter difficulty in learning. For a
slightly complicated mapping, it is hard to predict how
long the learning will take and whether the learning will
converge to an acceptable result. Another type of neural
networks, RBFNs, often uses the Gaussian function as the
basis function. Since a Gaussian function provides fitting
in a local area, the learning convergence is a less difficult
problem compared to that in MNNs. In addition, learning
is likely to only alter local information and thus, will be
less likely to destroy the previously leaned information.
However, the number of basis functions may become
enormous for problems with more input variables. To

14

increase the fitting power of each basis function in order to
reduce the needed basis functions, many researchers
suggested to make the Gaussian function scaleable in each
dimension and rotatable in the input space [1, 7, 8]. The
trade-off is the increased learning difficulty.

The new structure is a sigma-pi-sigma neural
network (SPSNN), which consists of product-of-sum
networks. The SPSNN is similar to ridge polynomial
networks (RPNs) [9], which use a special form of ridge
polynomials. While, in RPN, the pi-sigma networks use
polynomial terms, the SPSNN uses linear memory arrays
that self-generated suitable basis function terms. Due to
the flexibility, it is expected that the memory-based sigma-
pi-sigma neural network should have more powerful
modeling capability.

I1. The New Neural Network Structure

A.The Structure

Figure 1 shows the memory-based pi-sigma
network having a K-th order pi-sigma network
structure. Its output is the product of the outputs
from K submodules. The network output Py has

the “product-of-sum” form ﬁ%}fw(xj) , where x;’s
i=lj=

are inputs, N, is the number of inputs, f;() is a

function generated through network training, and K is

the order of the submodules. Figure 2 shows a

SPSNN whose output is the sum of outputs from K

different orders of pi-sigma networks. The output

SPSNN() equals STI 3 fi(x;)-

n=li=l j=1

The output of a (linear) memory array, denoted by
Ny+N -1
fi(x), is calculated as El Wi By (x;) , where x’s are

q

inputs, By()is a single-variable basis function, wy’s are
weight values stored in the memory, N, and N, are two
selected constants. Further discussion on N, and N, will
be given later. Although By() can be any adequate basis
function, in this section, focus will be on the use of
overlapped rectangular pulses. With such basis functions,

Wy By (x;) will equal either zero or wy, and the
computation of fi(x;) becomes the simple addition of

retrieved wy’s. Since only wy’s need to be memorized, a
linear memory array is enough for this purpose

Jen

Linear Memory
X1 Amay

Linear Memory Jriz
X3 = Armay

X Linear Memory S, /
. Array

&

fxiy

Linear Memory
Arrey

1998 International Computer Symposium
Workshop on Artificial Intelligence
Decernber 17-19, 1998, N.C.K.UJ., Tainan, Taiwan, R.O.C.

Linenr Momory
Amay

Linear Memary

XN, Array

fKKI

Linear Memory
Xy ———I ‘Armay
Linear Memory
Amay

I Linear Memory

N [Amay

/KKZ

Jrxw,

Figure 1. A basic building block (K-th order PSN) for the SPSNN.

A

T SPSNN(xy, x5, ...y Xny)
2

Xy, Xg5 -en

» XNy

Figure 2. A K-th order SPSNN is composed of K different orders of PSNs; P, represents an i-th order PSN as shown in

Figure 1.

Figure 3 illustrates the arrangement of the
overlapped rectangular pulse functions, and the
computation of f; with an given input x;. The range of
each input variable (e.g., x;) is divided into N, elements and
every N, neighboring elements are grouped into a block.
Each block is assigned a basis function, which may be a
bell-shape function, a cubic spline function, a triangular or
a rectangular pulse function. In this study, we select to
focus on the rectangular pulse function. With such a basis
function, each element is covered by N, blocks, the
computation of fi(x;) is simply the addition of weights
associated to the N, blocks covering the specific x;. The
arrangement makes that learning for one element also
alters the values in the neighborhood. This creates the
generalization capability. As shown in Figure 3, there are

15

N #N,-1 blocks. Thus the memory size for each variable
equals N,+N.-1, which is usually small (typically 20 to
200). For N, submodules and N, input variables, the total
memory size required will be NxNXx(Nj+N-1). A
memory size of 20k, which is considered small, is required
for a structure with 20 submodules, 10 input variables and
100 blocks (ie., N;+N-1 = 100). The requirement of a
small memory makes this scheme easy to implement and
very attractive.

While the SPSNN uses single-variable
memory arrays, for a K-th order SPSNN, the required

memory size is —K—(—’g—ﬂNv(Nq +N,-1).

1998 International Computer Symposium
Workshop on Atrtificial Intelligence
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

HERHEUUUE Iz

filxin eler_nent 4) = sum of weights for blocks 4, 5, 6 and 7

i Block N#N,-1 '

Figure 3. Blocks for overlapped rectangular pulses and the computation of f; (N, = 4 in this illustration).

B. Learning Algorithms

Learning algorithms for the SPSNN are based on
gradient descent on the mean squared error surface in
weight space. The mean squared error is given as

E=3$E, = L5t -SPSNN,)? (1)
s=1 5=l

where E, represents the error on pattern s, f, is the desired
(target) output for pattern s, L is the number of samples,
and SPSNN, is the actual output of the SPSNN when
pattern s is presented. The objective of learning is to find
a set of weighis that minimizes the function E. The
following equations can be used to derive the learning rule
for the K-th order SPSNN:

SPSNN(-)=P,+ P+ ...+ P,+ ...+ Py @)
2= IS 3)
i=1
N,
Su= Y fu(%)) @)
J=1
Ng+N, -1
L= D waBa(x)) ®)
’ k=1

The gradient descent method makes a change on a
weight proportional to the negative derivative of the mean
squared error with respect to the weight. Thus the
learning rule is
E.

s —
x,x—

av’,!-"k

ﬁE: aPn $m’ ér’".'f
dﬁlésﬂ @25 5“%%

(6)

Aw, ik

and the amount to be updated for w,;; is

AW |x, = % (ts ~SPSNN HTIS,, 1B (x5) (7)
p*i

where o is a learning rate. With the rectangular pulse
basis function, only N, Bu(x;)’s have nonzero values.
Thus updating will occur only for those N, corresponding
memory elements (i.e., weights).

16

C. Learning Procedure

Fixed structure

The following summarizes a basic learning
procedure in which the order of the SPSNN is determined
before the training starts:

1. Initialize all memory arrays with random memory
contents between -6 and 8.

2. Obtain a training sample.

had

Compute the overall output for this sample and
calculate the error.

4. Update all memory arrays using (7).

If the error for the past N samples is acceptable, then
stop.

Otherwise, go to step 2.
Flexible structure

The following summarizes a learning procedure in
which in which the network is allowed to grow to an
adequate order:

1. Initialize the neural network with the Kth-order
SPSNN. Select all learning parameters.

2. Initialize all memory amrays of the newly added pi-
sigma submodule (with order > K) with random
memory contents between -5 and 5.

3. Obtain a training sample.

4. Compute the overall output for this sample and
calculate the error.

5. Use Q percent of the error to update the new pi-sigma
submodule and (100-Q2)/ K percent of the error for

each of the old pi-sigma submodules, where X is the
current order of the old network.

6. Update all memory arrays using (7).

7. If the error for the past &, samples is acceptable, then
stop.

8. If the improvement in the last N, samples is
insignificant, then add one more pi-sigma network
(with an order higher than the current one by one) to
the neural network and go to step 2. Otherwise, go to
step 3.

III. An Example and Results

In this section, results for approximating a 2-D
Gabor function [9] is provided for an illustration of the
new SPSNN technique. The convolution version of
complex 2-D Gabor functions has the following form

={[(x/ 2’ +x21/257) 2 oT +¥ox7) ®)

glxy, X)) = 27:). 7€
where A is an aspect ratio, G is a scale factor, and u, and v,
are modulation parameters. In this simulation, the

following Gabor function was used.

[(x3+x§)/2(o.5)2]

glxy, x)) = cos(27(x, +x,)) ®

2;:(0 5)z

The normalized mean squared error (NMSE) as a
measure in the learning process is defined as

1998 International Computer Symposium
Workshop on Artificial Intelligence
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

NMSE = ——YMSE___ (10)

where MSE is the mean squared error, y, is the target
output value for sample input s, and ¥ is the mean value
of the target outputs.

The training started with a second-order SPSNN.
A third-order PSN was added after 75 epochs. The
SPSNN shown in Figure 4 was used to approximate (9).
Each input variable was quantized into 133 elements with
12 elements forming a block. The third order SPSNN has
12 linear memory arrays and requires a memory size of
1,728. The learning rate a was set to 0.005 and Q was set
to 50%. The training samples were generated on-line.
The normalized mean squared error (NMSE) for every
2,000 samples was collected during the learning.

Figure 5 shows the NMSE(dB) curve for the
entire learning procedure. The target function and
the SPSNN output are plotted in Figure 6(a) and
Figure 6(b), respectively. The SPSNN demonstrates
good approximation. The outputs of three PSNs are
also provided in Figures 7(a), (b) and (c).

PSN,

\
Linecar Memory
i = ®
Linear Mesnory :
X2 Arcay
Linear Memory
X Armay

@\

®\ PSN,

SPSNN(x,, x,)

:
l = @
Linear Memiory
X2 Amy

Linear Memory
X Amyy

N\

LmarMmy :
W

-1 PSN,

Figure 4. A third-order SPSNN used for approximating a Gabor function (9), where PSN, is an n-th order PSN.

..1"{._

1998 International Computer Symposium
Workshop on Artificial Intelligence
December 17-19; 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

10

" i " L X X

0 N
5 ¢
NMSE = 0.044
-10 }

a5t

NMSE(dB)

20 }

11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 1N

/ NMSE = 0.278 (adding a 3™-order PSN)

Final NMSE = 0.035

The number of epochs

Figure 5. The learning curve for the approximation of Gabor function using the SPSNN.

8lx1, x2)
1.0

0.5 4

0.0

0.5 9

-1.0
0.5

0.5
0.0

Xy

05> 05
(a) Target function

SPSN(xy, x;)
1.0)

0.5 |

0.5
*1 . 0.0

05> 05
(b) SPSNN output

Figure 6. the target function g in (9) and the network output.

IV. Conclusion

A sigma-pi-sigma neural network has been
developed and tested. The novel structure is a memory-
based neural network that can self-generate the necessary
basis functions. While the memory cost has been reduced
and the memory technology has improved in the past
decade, practical implementation of the proposed structure
is inexpensive. It is possible to increase the neural
network size by adding new submodules during the
learning. This makes the guess of the number of
submodules not necessary.

The “product” and “sum” operators endow the new

structure fitting capabilities. Actually, there is a nature
neurobiological interpretation for this type combination of
product and sum operations. Local regions of dendritic
arbor could act as product units whose outputs are summed
at the soma [10]. In neurophysiology, the possibility that
dendritic computations could include local multiplicative
nonlinearities is widely accepted. Mel and Koch [11]
argue that sigma-pi units underlie the learning of nonlinear
associative maps in the cerebral cortex. The discussions
above make us believe that this approach could lead us to
develop a new computational model that is biologically
plausible and more powerful than the currently used neural
networks.

18

1998 International Computer Symposium
Workshop on Artificial Intelligence
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

PSNy(xy, x1)
1.0
0.5 ; RO
SN
ASRNECHR,
y "'0‘3\“\\\‘\\‘:0‘:‘!0\}";-‘!(:”
,',/,'100.0 S SRR
001 XK TR PSRIENNEOR,
R O AR
o5 | I/ YRS
‘ e RIS o
'o/’-"li "’. X\ Q‘;““\ﬁ;‘:." A
S R
YO
4
4%

(a) First-order PSN output

PSNy(xy, x2)

l.OW

0.54

-0.5 -0.5
(b) Second-order PSN output

PSNy(xy, x2)
1.0
0.5 . o"‘\\‘
K
0.0 Y %
SN
s it
7 NQNWNOA
05 ‘» y Jp

-,

0.5

0.5 ™ g5
{c) Third-order PSN

References

Lee, S. & Kil, R. M., “ A Gaussian Potential Function
Network with Hierarchically Self-Organizing
Learning,” Neural Networks, vol. 4, pp. 207-224,
1991.

Rumelhart, D. E., Hinton, G. E. & Williams, R. J,,
“Learning Internal Representation by Error
Propagation.” in Rumelhart, D. E. & McClelland, J. L.
(Eds), Parallel Distributed Processing: Exploration in
the Microstructure of Cognition, vol. 1 (pp. 318-362).
Cambridge, MA: MIT Press, 1986.

Hecht-Nielsen, R., “Theory of the Backpropagation
Neural Network,” Proceedings of International Joint
Conference on Neural Networks, vol. 1, pp. 593-611,
1989 :

Homik, K., Stinchcombe, M. & White, H., “Multi-
layer Feedforward Networks are Universal
Approximators,” Neural Networks, vol. 2, pp. 359-366,
1989

Zhang, J., Walter, G. G., Miao, Y. & Lee, Wan Ngai
Wayne, “Wavelet Neural Networks for Function
Learning’” IEEE Transactions on Signal Processing,
vol. 43, pp. 1485-1497, 1995.

Figure 7. Plots for
(a) the output of the first-order PSN

(PSN).

(b) the output of the second-order PSN

(PSN,).

(c) the output of the third-order PSN

10.

11.

]g

(PSN,).

Cheng, Y. H. & Lin, C. S., "A Learning Algorithm for
Radial Basis Function Networks: with Capability of
Adding and Pruning Neurons,” Proceedings of IEEE
International Conference on Neural Networks, 1994.

Chen, T. & Chen, H., “Approximation Capability to
Functions of Several Variables, Nonlinear Functionals,
and Operators by Radial Basis Function Neural
Nertworks,” IEEE Transactions on Neural Networks,
vol. 6, pp. 904-910, 1995.

Zhang, Q. & Benveniste, A., “ Wavelet Network,”
IEEE Transactions on Neural Network, vol. 3, pp. 889-
898, 1992.

Shin, Y. and Ghosh, J., “Ridge Polynomial Networks,”
IEEE Trans. Neural Networks, vol. 6, no. 3, pp. 610-
622, May 1995.

Durbin, R. and Rumelhart, D. E., “Product Units: A
Computationally Powerful and Biologically Plausible
Extension to Backpropagation Networks,” neural
Computation, vol. 1, pp. 133-142,1989.

Mel, B. W. and Koch, C., “Sigma-Pi Learning: on
Radial Basis Functions and Cortical Associative
Learning,” in Advances in Neural Information
Processing Systems 2, D. S. Touretzky, Ed. San Metro,
CA: Morgan-Kaufmann, pp. 474-481, 1990

	
	14
	15
	16
	17
	18
	19

