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Abstract

The association between an instance and a class is
exclusive and permanent in many class-based, object-
oriented (O0) database systems. Therefore, these
systems have serious difficulties for applications in
which objects take on different and multiple roles over
time. Recently, some researchers have tried to relax
this restriction by allowing an object to have multiple
most specific types and be able to change to different
types during its lifetime. However, although many of
these researchers have realized the importance and
difficulties of solving the type problems caused by
their proposed extensions, formal semantics and cor-
responding type issues have not been addressed. In
particular, a type checking mechanism, which is to
ensure the correctness of program writing from the
type aspect, has never been proposed for these kinds
of OO extensions. In this paper, we develop an ex-
pressive yet semantically sound type calculus for ob-
jects with multiple types (well them roles). While the
rich modeling constructs are introduced, the calcu-
lus can still be expressed in a neat way, by using the
polymorphism of overloaded functions. Both static
and dynamic type checking frameworks are included
and discussed individually. Furthermore, we show the
important properties of our calculus, which include
Subject Reduction, Strong Normalization and Con-
fluence. The calculus described in this paper provides
a foundation for dynamic type changing and for ob-
jects with multiple most-specific types. We show that
the calculus is general enough to be applied to various
dynamic type and role models with little modification.

1. Introduction

Most object-oriented data models are based on the
notion of class. In these models, real-world entities
are represented as instances of the most specific class
and the association between an instance and a class
is exclusive and permanent. However, objects often
belong to several most specific classes in reality, and
change their classes during their lifetime. For exam-
ple, a person can be a graduate student, a teaching
assistant and research assistant, a club-member and
club-chairman at the same time or from time to time.
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Thus, the object representing this person does not
have a unique and fixed most specific class; rather it
has a changing set of most specific classes. Although
this situation can be easily represented in a model
with multiple inheritance by defining a subclass of
all the involved classes, this solution may lead to a
combinatorial explosion of artificial subclasses and the
number of possible involved classes can be enormous.
Moreover, multiple inheritance only provides a single
behavioral context for an object [16].

Recently, some researchers have proposed different
approaches (but similar ideas) to relax these restric-
tions [3, 5, 16, 18]. In particular, many of them have
used the notion of roles. A role extends an exist-
ing object with additional states and behaviors. An
object may have many roles that come and go over
time. Rather than being an instance of some unique
subclass defined through multiple inheritance, an ob-
ject simply is an instance of many types by virtue
of having many roles. Every object reference is to a
particular role. Its behavior depends on which role is
being referenced.

The concept of a role was already defined in 1977
by Bachman and Daya [4] in the context of the net-
work data modeling approach. Various role models
and implementations in the context of databases were
proposed subsequently. These include Vision [17],
ORM (15}, and aspects [16], etc., and the most re-
cent systems include Fibonacci [3], Gottlob et al’s
role extension of Smalltalk [12], and DOOR [19]. Fi-
bonacci is a new, strongly-typed database language.
Its objects simply consist of an identity and an acyclic
graph of roles. Each role can be dynamically added
or dropped. Objects are defined in classes and roles
are defined separately and form a different hierarchy.
Instead of implementing a new language, Gottlob et
al. [12] demonstrated the extension of Smalltalk for
incorporating roles. In contrast to Fibonacci, they
included multiple instantiation of roles, and the inte-
gration of class and role hierarchies. To some extent,
both Fibonacci and Gottlob et al.’s work is similar to
ORM in the sense that roles are also rooted in (though
not encapsulated into) a class, and these roles can be
inherited from the class to its subclasses. Different



from roles in ORM, aspects and views, however, the
roles attached to a class in both approaches can form
their own “is.a” hierarchy.

However, the semantics of roles as well as their
properties are still unclear as they have not been rig-
orously defined in previous work. In fact, develop-
ing expressive yet semantically sound type systems
for object-oriented programming languages is a well-
known and difficult research problem [11}. The prob-
lem is even more difficult if the concept of dynamic
role playing is introduced, although the significance
of the problem has been realized (e.g., see {1]).

This paper attempts to develop an expressive yet
semantically sound type calculus for objects with mul-
tiple roles. The calculus is developed based on the role
model used in DOOR [19], an object-role database
system. While the rich role modeling constructs are
introduced, the rigorous type soundness properties are
preserved and expressed in a neat way by using the ‘ad
hoc’ polymorphism [7] of overloaded functions. When
we design the settings of the calculus, we try to make
it more general such that it will work for different
role models or similar type systems besides DOOR.
We present the type-checking rules for objects with
multiple roles being played and for context-dependent
modeling. Furthermore, static type checking for dy-
namic type change is an interesting issue. To be able
to check dynamic changing types statically, we need
to formulate the notion of possible types which are
the types possible to be taken by a particular object,
as an object may change its types according to the
program state (which needs to be determined in run-
time). Therefore, dynamic type checking will pro-
duce a more definite result while it is not as good
as static type checking in terms of run-time efficiency.
Therefore, in this paper, both static and dynamic type
checking frameworks are included and discussed indi-
vidually. Finally, we seek to prove some important
properties for the calculus. These include Subject Re-
duction, Strong Normalization and Confluence.

The organization of the rest of this paper is as fol-
lows. Section 2 outlines the DOOR data model that
we use as a reference model to develop the calculus.
Section 3 describes a university example that is used
to illustrate the data model. In section 4, the static
type checking based on the idea of possible types is
presented. This primitive mechanism is complete but
unsound. We will then discuss the idea of conditional
types to achieve the soundness for the checking. In
section 5, the type representation of an object with
multiple types is defined as a type sequence. Then
the calculus and type checking rules for dynamic type
checking are developed. Section 6 shows some main
theorems (important properties) for the calculus. Fi-
nally, section 7 concludes the paper.

2. The Reference Data Model

This section outlines the data model for DOOR
(the detailed model is described in [19]) as a reference
model to derive our calculus.
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Object and role representation: Objects consist
of object state (in terms of the values of at-
tributes), methods, and a set of dynamically
changing roles. They are referred to via their
logical object ids (0id) and any oid uniquely iden-
tifies an object. The object state is encapsulated
and can only be queried and updated by sending
messages to the object. An object is internally
organized as an acyclic graph with the root be-
ing the object itself, and all the other nodes be-
ing roles. The parent node of any node A in the
graph is called the player (or role player) of A,
and A is said to be played-by its player. A role is
also an entry to access the object it belongs to:
an object can be accessed through itself (we con-
sider the object itself as a base role) or one of its
roles, and its behavior depends on this role. On
the other hand, roles encapsulate both state and
behavior, but do not have a persistent, globally
unique identity. A role can be itself a player and
include other roles being played.

Attributes and methods: Objects are described
via attributes, and all our objects are tuple-
objects whose fields are the values of the object’s
attributes. If the attribute is single-valued, then
the value is a single oid; if the attribute is set-
valued, then the value is a set of oids. Since
DOOR is strongly typed, a type signature needs
to be assigned to each attribute in a class def-
inition. If the signature is an object type, the
attribute value must be of that type or any sub-
type of that type. If the signature is a role type,
then the value must be an object that is playing
a role of that type or of a subtype of that type. A
method, invoked in the scope of an object (or a
role) on a tuple of arguments, returns an answer,
and, possibly, changes the state of that object
(e.g., by changing the value of an attribute). As
a function, each method has an arity ~ the num-
ber of its arguments. An attribute is regarded as
a 0-ary method.

Object class and role class: Object classes have
the function of organizing the persistent proper-
ties of objects into sets of related entities, while
role classes organize their transient properties.
The instance-of relationship between objects (or
roles) and classes determines which objects (or
roles) belong to which classes. The IS-A or sub-
class relationship, is defined between classes and
is acyclic. If a class C is a subclass of another
class C’, then all instances of C must also belong
to C'. A player-class constraint can be option-
ally defined in the role class to limit the possible
player types of a role. If it is omitted, a player
of any type is assumed. The player-class con-
straint is used to support the type-safe implemen-
tation of the methods in roles, as a role may in-
voke methods defined at its player(s). Besides the
player-class constraint, other general constraints
can be defined in the class-level and/or instance-
level to model the fact that not every object is
qualified to play a particular role. Similar to the
other properties of a class, the player-class con-
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straint of a class will be inherited by all its sub-
classes.

Types: The type of a class C is determined by the
types of its methods, described as a signature
of the form Meth : Argy,...,Argn +—+ Result,
or Meth : Argy,...,Argn +— {Result}, for
single-valued or set-valued methods, respectively.
The signature is attached to the definition of
class C, where Arg; and Result are class names.
When arguments that are instances of classes

Argy,...,Argn, respectively, are passed to the

met%lod Meth, the result is expected to be an in-

stance, or a set of instances, of the class Result,
depending on whether Meth is single- or set-
valued, respectively. Note that there are actually

n + 1 (rather than n) arguments, where the 0!

argument is not mentioned, because it is the ob-

ject of class C for which the signature is defined.

A method can have several signatures, each con-

straining the behavior of the method on different

sets of arguments. When this is the case, the
method is said to have a polymorphic type. The
signature of a method can include role types. If

a role type is included in the method signature,

the corresponding object must be playing such a

role and will be treated context-dependently from

that perspective. Otherwise, a type violation is
caused. The type of an object is more compli-
cated and its formal description is beyond the
scope of this paper. Informally, an object type
consists of a static component, i.e., the type of

its object class, and a dynamic component, i.e.,

the types of the roles being played.

Inheritance and delegation: Methods,

and player-class constraints if there are any, de-
fined in the scope of a class C are inherited by the
subclasses of C through the is-a relationship. If
there are different player-class constraints defined
in a subclass, a most specific class will override
a relatively more general one until all of them
are disjoint. Inheritance is not defined for the
played-by relationship. Instead, the automatic
delegation between roles and their corresponding
players is used. For example, suppose we model
an employee e as a role of a person p, and sezx
is an attribute of person but not of employee.
Then sez(e) would be a type error. We can cor-
rect this error by delegating the evaluation of sez
to played-by(e) {13]. This amounts to replacing
sex(e) by sez(played-by(e)).

3. Static Type Checking with Possible
Types

Modern programming languages employ type
checking techniques to guarantee that functions are
applied only to appropriate arguments. Languages
differ in the degree to which the type checking is static
(performed at compile-time} or dynamic (performed
at run-time). Statically typed languages, such as ML,
require that function applications be proved type-safe
at compile-time. This is enforced by a type inference
algorithm that assigns types to program phrases. If
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the type inference algorithm verifies that a program
cannot go wrong, the program is accepted; otherwise,
the program is rejected. Static type checking elimi-
nates the need to perform run-time type checking and
detects many programming errors at compile-time.
The cost of this efficiency and security is the loss of
programming flexibility, because no decidable type in-
ference system can be both sound and complete, i.e.,
some programs that cannot go wrong must be rejected
in any statically typed language.

Dynamically typed languages, such as Lisp and
Scheme, impose no type constraints on programs and,
in the worst case, perform all type-checking at run-
time. This permits maximum programming flexibility
at the potential cost of efficiency and security. How-
ever, in an implementation of a dynamically typed
language it is beneficial to perform at least some static
type checking. This regains some of the benefits of
statically typed languages. This is the motivation for
us to include a static checking framework in dynami-
cally typed languages for database applications. Note
that the languages in which we are interested are not
just dynamically typed, but also allow changing types
in run-time and having multiple most-specific-types
for a given object. These two features greatly in-
crease the difficulty in formulating a static type check-
ing framework in our language.

3.1. The Notion of Possible Types

As we cannot determine in compile-time what ex-
act types an object will change to during its lifetime
{(run-time), we need to work out the possible types
that an object may take by considering the played-
by constraints specified in the schema. For example,
we cannot tell whether a particular person object will
change to student or club-chairman during its lifetime,
but we can determine from the class schema that a
person object o may change its type to student, club-
chairman, employee, etc. during run-time. We call all
these valid types of o as the set of possible types for
object o. With this information, suppose that there is
a function f that takes an argument of type t and now
is applied to o. If t is not a supertype of a possible
type of o, then a type error should be reported by the
type inference mechanism. The following definitions
are defined to formulate the ideas described above.

Definition 1. Let R, = {r1,72,...,7,} be the set of
all role classes such that object o of class oc can play
any role instances of r;, where i € [1..n]. Then R, is
called a set of possible types for o. 0O

Since R, is not unique, we need to define a normal
form R} of R,.

Definition 2. We define R} to be a set of possible
types for o such that for any rj,r; € R}, ri £ 75.
We also define a global function PT such that PT(o)
returns Rj. a

The implementation of PT can be done by tracing
those played-by links in a class schema.



3.2. The Actual Run-Time Types

A role is not itself an entity but part of an object, as
there is no globally unique identity for it. Therefore,
types for individual roles are not of interest to us.
However, we are interested in how role playing will
affect the individual object types.

When a message is sent to an object from a partic-
ular role, the other roles being played by the object,
but not within the same perspective, are not involved
in responding to the message. This is the way that
roles support the modeling of context-dependent be-
havior. Therefore, role acquisition and dropping do
not change the run-time types of objects directly. In-
stead, in our settings, they will affect the possible se-
lection of objects’ run-time types. For example, a per-
son object has to play a role as student before he/she
can be treated from the student perspective.

Indeed, when sending a message to different per-
spectives (i.e., roles) of an object, different meth-
ods may be invoked for computation. This means
that objects carry behaviors of different types when
they are accessed from different roles. Therefore, the
context-dependent /role-dependent access mechanism
is the one that determines the run-time types of an ob-
ject. The run-time type of an object is not exclusive,
e.g., a TA also possesses the properties of a graduate
student.

The run-time type of an object obj is denoted by
obj(ArAz.4n) where A; denotes the type of the role
in which the methods will be looked up first, and A4,
denotes the type of role to be looked up second and
so on. In other words, A; denotes the type of the i-th
role that the methods will be looked up. The typing
rules for the type sequence are defined as follows:

(4) = A
A< Al A AL
(A1, .., 4i, ., Aj, o An) < (4., 47)
whereby A we denote an atomic type. We assume

there is a function RT (obj) that returns the run-time
type of obj.

1<i<j<n

Since order is insisted on these multiple types of
objects for method dispatching, (---) should be called
a type sequence or an ordered set of types. Further-
more, as an object can play more than one role of the
same type (i.e., it is possible to have 4; = A; where
i # j), we would call (---) a type sequence instead of
an ordered set. Therefore the run-time type of an ob-
ject is always a sequence type if objects with multiple
roles are supported. We maintain the notation 4; €
A where A = (..., 4;,...).

The order of types appearing in a type sequence
is solely decided by the implementation of method
lookup schemes. For example, in Fibonacci (3], both
upward lookup and double lookup are supported. The
former searches a method in an upward manner from
a starting role while the latter looks for it in both
downward and upward manners. Since an object is
just a collection of roles that are organized as an
acyclic graph, the notion of static type is not needed.
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In DOOR, in contrast, an object consists of its own
state and methods (prescribed by its class, or more
generally, static type) besides a set of changing roles.
Therefore, under both upward and double lookup
schemes in DOOR, the type sequence of an object
includes its static type. This also demonstrates the
idea of object specialization described by Sciore [17].
That is, objects may become more specific (special-
ization) by dynamically playing different roles during
computation. However, they always possess the prop-
erties prescribed by their static types (“compile-time”
types).

3.3. Type Checking by Set Operations

Rather than starting with a sound but uncom-
plete type checking mechanism, we derive a set of un-
sound but complete typing rules and then they will
be improved/augmented with other more expensive
checking techniques. The type checking rules for ob-
jects with multiple, changing types will be exactly the
same as for other languages with typical type check-
ing mechanisms, except that we are dealing with a set
of types of an object instead of having a fixed type for
each object. To save space, we discuss only the rules
for some interesting constructs, which include basic
type, substitution, type change, and function appli-
cation.

F o0:PT(0) 1€ PT(o0)
Fo:T
Fo:PT(e) T€PT(0) Fr <7
Fo:t
Fadd: R—>RU{r'} RNR #¢ +o:R
F add(o): RU {7’}
Fsub:R->R—{r'} RNR #¢ Fr o:R
F sublo): R—{r'}
bFm:r—>r" r1€PT() F o:PT(0)
F m{o) : 7’

The above type checking rules are obviously com-
plete but unsound. For example, the first rule means
that every type in the set of possible types of o is it-
self a type of o. This is definitely not always true.
For instance, suppose that student is a possible type
of person. Certainly, not every person is a student.
However, these typing rules will help us to filter out
the obviously incorrect answers in no time. For ex-
ample, if one tries to change an instance of person to
a vehicle, a type error can be immediately produced.
Similarly, if a function which expects a vehicle as an
argument is applied to an instance of person, a type
error should be reported without going through fur-
ther checking/analysis.
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3.4. Soundness Improvement with Condi-
tional Types

With conditional types [2], the type of an expres-
sion e that may result in an object o can be con-
strained using information about the results of run-
time tests in the context surrounding e. For example,
in an expression

if e; then e; else e;

conditional types can express that e; is evaluated only
in environments where e; is true, and es is evaluated
only in environments where e; is false. This can be
done by the idea of control-flow analysis. Control-flow
information in type inference is crucial to comput-
ing accurate type information in dynamically typed
programs like the ones mentioned in this paper. For
instance, by keeping track of those statements for
changing types (e.g. add and sub), we can determine
a sound type checking mechanism. Therefore, we pro-
pose a two-pass static type checking. The first pass is
based on the idea of possible types while the second
is based on the control-flow analysis. It is no doubt
that the second pass is more expensive than the first
pass.

4. Dynamic Type Checking with Over-
loaded Functions

4.1. Overloading, Subtyping, and the Cal-
culus

This subsection develops the typed ARg-calculus,
which is used to provide a theoretical foundation for
objects with roles. The calculus is inspired by the
calculus for function overloading [8]. The code of an
overloaded function is formed by several branches of
code. The branch to execute is chosen, when the
function is applied, according to a particular selec-
tion rule which depends on the type of the argument.
The crucial feature of the present approach is that a
subtyping relation is defined among types, such that
the type of a term generally decreases during com-
putation, and this fact induces a distinction between
the ‘compile-time’ type and the ‘run-time’ type of a
term. Castagna, Ghelli, and Longo [8] studied the
case of overloaded functions where the branch selec-
tion depends on the run-time type of the argument,
so that overloading cannot be eliminated by a static
analysis of code, but is an essential feature to be dealt
with during computation. Using their result, we can
develop the method selection rules for objects with
multiple and changing types.

The motivation of overloaded functions comes from
considering overloading as a key feature of object-
oriented programming, when methods are viewed as
‘clobal’ functions. In object-oriented languages the
computation evolves on objects. When an object re-
ceives a message it invokes the method associated to
that message. The association between methods and
messages is described by the class, as an array, the
object belongs to. Thus objects are implemented as a
tuple of internal state and class name (as well as the
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roles being played, if roles are introduced to the lan-
guages). This implementation has been extensively
studied and corresponds to the ‘objects as records’
analogy of [6]. Another way to implement message-
passing is to consider messages as names of overloaded
functions: according to the class (or more generally,
the type) of the object the message is passed to, a
different method is chosen (this approach is used in
CLOS [10]). By this, in a sense, we inverse the previ-
ous situation: instead of passing messages to objects
we now pass objects to messages. Objects are still im-
plemented by a tuple of internal state and class name
(and roles being played), and become in this way ar-
guments of overloaded functions.

Indeed in the first approach objects carry methods
with them; thus the types of the objects contain also
the functionality of the value. This causes some prob-
lems and requires an excessive use of recursion. On
the contrary, in the overloading approach, the type of
an object is no longer blurred by functional types.
The functionality is fully expressed by methods as
global, overloaded functions. Of course other prob-
lems arise, especially in the modeling of the encap-
sulation of the state, though they do not seem over-
whelming. On the other hand, the full expressiveness
of records is recovered, as record types and values are
derivable notions in our approach.

It is clear that overloaded functions express compu-
tations which depend on input types. This will save us
a lot of effort and complexity to consider different set
of methods encapsulated by different changing roles of
an object, as different codes of overloaded functions
may be applied on the basis of input types.

4.2. Types

We extend the traditional lambda calculus with
types to be defined in this subsection. We first de-
fine a set of Pretypes and then among them we will
select those that satisfy the conditions to constitute
the types.

PreTypes 3 V == Al(4:,...,4A) |V 2V
{Vi= V.., V., >V}

where 4 is an atomic type (including ¢). Subtyping
relation on Pretypes is obtained by adding the rules
of transitive and reflexive closure to the following:

U, <U; WV <V,
U1—>71 SU‘_)"‘)VQ

Viel, 3jeJU <Ujand V] <V/"
{UJ'» - Vj'}je.l < AU = Vi'}ier

as well as the ones for type sequence above. Intuitively
if we consider two overloaded types U and V as a set
of functional types then the second rule states that
U < V if and only if for every type in V there is one
in U smaller than it. We can now define Types:

1. 4 € Types
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2. (A1,...,An) € Types
3. if Vi,Va € Types then V; —» Vo € Types
4. ifVvi,jel

(a) (Ui, Vi € Types) and

(b) (Ui <U; = V; <Vj) and

(¢) (U; § U; = thereis a unique h € I such
that Uh = inf{Ui, UJ})

then {U; = Vi}ier € Types

where U; § U; means that U; and U; are downward
compatible, i.e., they have a common lower bound.
An overloaded type is inhabited by functions made
out of different pieces of code. When an overloaded
function is applied to an argument, a choice is made
of the code that will be actually used in the computa-
tion. The choice is based on the type of the argument
and the condition of 4(c) assures its uniqueness.

4.3. Terms

Informally, terms correspond to terms of the classi-
cal lambda calculus plus an operation which concate-
nates two different branches and forms an overloaded
term. Since we want the branches of an overloaded
function to be ordered, then we construct them as
customary with lists, i.e., we start by an empty over-
loaded function and add branches, concatenated by
ampersands. We also distinguish the usual applica-
tion M - M of lambda calculus from the application of
an overloaded function M e M since they constitute
two completely different mechanisms: indeed to the
former is associated a notion of variable substitution
while in the latter there is the notion of selection of a
branch. This is stressed also by the proof-theoretical
viewpoint where these constructors correspond to two
different elimination rules. Finally, a further differ-
ence, specified in the reduction rules, is that over-
loaded application is associated to call by value, which
is not needed by the ordinary application. For same
reason we must distinguish between the type U = V'
and the overloaded function type with just one branch
{U -V}

Terms 3 M= z¥ [ Az M| M- M|
el M&EYM | MeM

4.4. Type Checking Rules

The rules to type-check the calculus are shown in
Figure 1. The subsumption ruleis not used in the type
rules, however, the system enjoys the subsumption
property, i.e., for any U < V and for any context
C[] and terms M : U and N : V, if C[M] is well-
typed then C[N] is well-typed too. This means that
our system could be presented using the subsumption
rule. Note that with the subsumption rule the run-
time type of a term (used only in the reduction rules,
to perform branch selection), should be defined as the
minimum type of a closed normal term.

_2'{_

[taut.] be:¢
[taut.] e’V
[intro] —W’—
FA"M: AV
: EM: U=V N W<U
lelim, <] FM-N:V
FM W < {U = Viticoy
fintros] EN:Wo<Up =V,
F(M&W=Ydisn Ny {Us 5 Vidica
FN: (A], --,An)
FM:{U; = Vikier
lima] Ui =min, g ¢y ominier{Ui|Ax < Ui}

FMeN:V,

Figure 1: Type checking rules for the calculus.

5. Important Properties
5.1. Reduction

For simplicity, we consider the types of overloaded
functions as ordered sets. The order corresponds to
the order in which branches appear, i.e., in which they
are ‘constructed’ according to the rules. Also, we will
allow a reduction of the application of an overloaded
function only when its argument is in normal form.
This is a crucial point, because if the argument of an
overloaded function is reduced, its type may change.
Therefore, a different branch of the overloaded func-
tion might be chosen. As a matter of fact, in object-
oriented languages one can send messages only to ob-
jects in normal form (see [8] for further description).
In summary, we define the reduction relation > as
follows:

(B): (AzA.M)N > M[z4 = N]
(Bry): ¥ N : (A1,...,Amn) is closed and in normal
form and U; = mingmin; {U;]Ax < U;} # ¢ then
((]\/Il&{Ui—)‘/i)i=l...n M) e N)
B MyeN forj<n
My-N forj=n

(context): If My > M, then

(MN) > (MyN)
(NMy) > - (NMs)
Az4.M) > (Azt.Ms)
(Mi&N) > (Mo&N)
(IV&]V[]_) > (N&ﬂ/[?)

In (Bry), U; = mingmin; {U;|Ax < U;} # ¢ is used
to find the first type in the type sequence (miny) of
the object such that the overloaded function (min;U;)
can be found. The reasons of the two restrictions
in the (8r,) is that two operations may change the
type of a term: namely, reduction and substitution.
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Since we want the type of the argument of an over-
loaded function to be fixed, we require that it is in
normal form in order to avoid reductions and that it
is closed in order to avoid substitutions. The intuitive
operational meaning of (Br,) is easily understood
when looking at the simple case, i.e., when there are
many branches as arrows in the overloaded type. In
this case, under the assumptions in the rule, one has
(Aﬁﬁcn.&ALJ(N) >* A@Af

The nested formalization above of (Gr, ) is needed as
M, may be an application P1Qy, i.e., the ‘external
operation’ in M) is application, instead of an &.

Theorem 1. Every well-typed ARg-term possesses
a unique type. O

5.2. Main Theorems

In this subsection we present the main results for
our calculus. The results closely follow the idea and
settings in [8]. We start with a generalization of the
subject reduction theorem which states that if a term
is typeable then it can be reduced only to typeable
terms and these terms have a type lesser than or equal
to the type of the redex.

Theorem 2. (Generalized Subject Reduction)
Let M :U. If M p* N then N : U’, where U’ < U.
0

This theorem is important because it states that the
computation is well-behaved with respect to types.
Next we have the Strong Normalization theorem. As
is well-known, strong normalization cannot be proved
by induction on terms, since G-reduction potentially
increases the size of the reduced term. For this reason
we introduce, along the lines of [14], a different notion
of induction on typed term. This notion is shaped
over reduction, so that some reduction related prop-
erties, like strong normalization or confluence, can be
easily proved to be typed-inductive. We entirely omit
the proof and just note that the main lemma for it,
which proves that every typed-inductive property is
satisfied by any typed term.

Terms

Theorem 3. (Strong Normalization)

strongly normalize.

Now we can prove the (syntactical) consistency of the
calculus.

Theorem 4. (Church-Rosser) If M > P and M >
Q then there exists N such that P >*N and Q >* N.
0

The proof of this theorem is technically the easiest
of the three since it is not difficult to show that
the calculus is weakly Church-Rosser. Then, by the
Newmann’s lemma, one directly derives the Church-
Rosser property for it. This theorem is important
since it assures that no matter how the calculus is im-
plemented it always returns the same result. Thus it
behaves in a deterministic way.

_28_

6. Summary

As the idea of objects with multiple, changing
types, or called ‘objects with roles’ is getting popu-
lar in the context of programming languages as well
as database systems (especially object evolution in
object-oriented databases), in this paper, we have pro-
vided a theoretical foundation for objects with multi-
ple, changing types (in terms of roles). This work is
entirely novel. We have formulated a calculus to an-
alyze the semantics and type issues of roles. Overall,
the paper can be concluded as follows:

» The setting of our calculus is general and fits var-
ious role models with different message passing
semantics. Moreover, it can be easily adjusted
to model the different subtle aspects of different
models. For example, the compile type (or static
type) of an object can be omitted or assumed to
be ¢ to model that an object is simply a collec-
tion of roles in Fibonacci f3]

o We point out that the different (multiple) types
of an object are actually determined by the role
in which the object is accessed (i.e., context-
dependent access). Therefore, role update oper-
ations (such as acquiring roles or dropping roles)
are not directly related to the object type deter-
mination, though they affect what role is avail-
able to be selected as an object entry point. As
a result, the determination of types can be sepa-
rated from the dynamic role updates.

e Using the idea of overloaded functions for con-
structing the calculus, both objects and roles will
contain only their internal states and roles be-
ing played. This helps in simplifying the calcu-
lus as methods are pulled out of classes. More-
over, method selection is used, instead of mes-
sage passing, to implement delegation among the
roles being played by an object. This provides at
least an alternative to describe delegation among
roles, apart from those informal descriptions used
in (3, 19].

e We have shown the rules to type check an object
with multiple roles (or multiple types). We have
also proved some important properties of the cal-
culus for roles, in terms of the proofs for Subject
Reduction, Strong Normalization and Confluence
theorems.

e Both static and dynamic checking frameworks
are described. It is unlikely to be able to check
types in compile-time without formulating a set
of possible types which are possible to be taken
by a particular object, as an object may change
its types according to the program state (which
needs to be determined in run-time). Therefore,
dynamic type checking will produce a more def-
inite result while it is not as good as static type
checking in terms of run-time efficiency.

More work is needed to be done on objects with
roles, or the context of ‘types evolving during com-
putations’. For instance, our ongoing work is to in-
vestigate the expressive power of object with multiple
roles. In fact, given the reference model described in



“this paper, we can show that object with roles is at
least as powerful as parametric type classes {e.g., see
[9]), as the former can model the latter but not vice
versa. For example, a method of a role class may have
an argument type or return type which depends on its
player type. Along this line, this idea can generate the
modeling of parametric type classes with roles.
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