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ABSTRACT

The practical integration of user-defined functions in the
relational algebra is relatively straightforward. However, it
is significantly more difficult to support this in the relational
calculus. Since most query languages are calculus-based,
translation of such queries with functions into the equiva-
lent algebra queries becomes a serious problem. This paper
explores the issue of the semantics of complex value calcu-
lus queries in the presence of functions.

The class of domain independent queries is known to be
undecidable. We identify two large decidable subclasses
of domain-independent formulas with external functions,
namely, the embedded evaluable and embedded allowed
formulas. We then define a recursive class of ‘embedded
allowed’ database programs and prove that embedded al-
lowed stratified programs satisfying certain constraints are
embedded domain-independent. Finally we develop an
algorithm for translating embedded allowed queries into
equivalent algebraic expressions as a basis for evaluating
safe queries in all calculus-based query classes.

1. INTRODUCTION

Database Management Systems (DBMSs) are widely
used to support new applications such as engineering de-
sign, image/voice data management and spatial informa-
tion systems. Complex values (nested relations, complex
objects) and functions (system-defined or user-defined) are
important for both practical and theoretical purposes. In {4],
SQL3 generalizes the relational model into an object model
offering abstract data types and therefore allows users to de-
fine data types which suit for their applications. Tables may
then contain collections of objects. As for supporting the
operational behaviours of any user-defined type, query lan-
guages are extended in such a way that user-defined func-
tions can be registered in DBMSs such as Informix. For
example, the following SQL statement [15]

create function vesting (date)
returns float

as external name ‘foo’
language C;
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registers a function called “vesting” on a data type “date”.
The function returns a float value and is written using the
programming language C. The function has been com-
piled and is kept in the file foo. DBMS can then use
any user-defined types/functions in the same way as built-
in types/functions. Alternatively, programming languages,
such as PASCAL/R and Persistent Java, extend impera-
tive languages to incorporate access to a particular database
model.

It is well known that some calculus queries cannot be
answered sensibly. In the database field, to answer sensi-
bly means that the values of any correct answer lie within
the active domain of the query or the input [17]. There are
only certain calculus queries (or formulas) which can be re-
garded as reasonable in this sense. Such queries are called
domain independent as they yield the same answer no mat-
ter what the underlying domain of interpretation. The fol-
lowing are examples of unreasonable query phenomenon.
(1) {x | ~Movies("Cries and W hispers”,”Bergman”,x}
(2) Given two relations R{w,y) (w requires y) and S(x,y)
(x supplies y). The question, “Which suppliers sup-
ply all parts required by project ICS?” is expressed by
{x | ¥Y[=RUICS,y) V S(x,»)]}. (3) {x | 3y 2(P(x) A—Q(y) A
x+y = z}. The set of correct answers for each of the above
queries depends on the domains of the variables.

The practical integration of user-defined functions in the
relational algebra is relatively straightforward. However, it
is significantly more difficult to support this in the relational
calculus. The main reason is that the semantic of relational
algebra queries evaluated on a database instance is indepen-
dent of the underlying domains while the relational calculus
is domain sensitive. Therefore, the semantics of calculus
queries in the presence of functions need further investiga-
tion.

Most relational query languages such as SQL and QUEL
are calculus-based. If the answers of relational calculus
queries are possibly infinite sets or even undefined, it will
be difficult to specify a well-defined translation procedure in
order to translate user queries into the equivalent relational
algebra queries based on which the underneath relational
database systems can evaluate. In the past, Van Gelder and
Topor in [19] identified such problems in SQL and QUEL.
Since SQL attempts to incorporate user-defined types and
functions, the problems will become more serious.



As domain-independence is undecidable, it is desirable
to develop syntactic conditions (called safery conditions)
that ensure domain independence. The evaluable formulas,
originally proposed by Demolombe {8] and discussed by
Van Gelder and Topor [19] in the context of flat databases,
comprise the largest decidable subclass of the domain in-
dependent formulas.. The allowed formulas proposed by
Topor [17] are a strict subclass of the evaluable formulas.
Van Gelder and Topor [19] investigate the properties of two
such classes and develop algorithms to transform an evalu-
able formula into an equivalent allowed formula and from
there into relational algebra.

Hull and Su study several alternative semantics of the re-
lational calculus and show that they all have the same ex-
pressive power [11]. Abiteboul and Beeri [1] define the
notion of bounded-depth domain independence and show
that, with extended interpreted functions and predicates, the
algebra, the bounded-depth domain independent calculus,
the safe calculus and the datalog-like language have equiv-
alent expressive power. Their paper [1] also provides a
translation from safe calculus into the algebra. This transla-
tion is based on associating, with each subformula, “range-
restriction” for the free variables that are occurring in the
formula.

Escobar-Molano, Hull and Jacobs [9] introduce the no-
tion of embedded domain independence, generalize the “al-
lowed” criteria to incorporate scalar functions and develop
an algorithm for translating these em-allowed queries into
the relational algebra. Their translation framework uses
finiteness dependencies [14] which are analogous to func-
tional dependencies and carry information about how sub-
formulas involving scalar functions can restrict the possible
range of variables. Suciu [16] propose a notion of domain
independence (called ef-domain independence) for queries
with external functions. This notion generalizes those of
generic and domain independent queries on databases with-
out external functions.

In this paper, we extend the above notions for the com-
plex value data model and explore the issue of the incorpo-
ration of external functions into query languages. Our work
presented here can be viewed primarily as an extension of
work in [9, 19].

The main contributions of this paper are as follows: (1)
We generalize the criteria called evaluable (8, 19] to in-
corporate external functions in the context of the complex
value.model. Two large decidable subclasses of the ex-
tended embedded domain independent formulas are iden-
tified, namely, embedded evaluable and embedded allowed
calculus formulas. (2) We introduce the em-allowed com-
plex value databases, and show that the class of em-allowed
stratified database programs satisfying certain constraints is
embedded domain-independent and investigate its proper-
ties. And (3) we develop an algorithm for translating em-
bedded allowed formulas into complex value algebra ex-
pressions. This algorithm can be viewed as a generalization
and extension of those presented in [9, 19]. It adopts the
notion of finiteness dependency. This approach is differ-
ent from that of [1] in that we can apply a heuristic method
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presented in {9] to simplify the computation involving finite
dependencies required to implement the translation.

2. PRELIMINARIES

In this section we briefly review some well known con-
cepts of the complex value data model and query languages,
and establish some basic terminology. We assume familiar-
ity with the basic notions of relational database theory.

We generally assume that there is only one sort of do-
main element rather than many (e.g. integer, float, string)
since the nature of the elements is irrelevant to this paper.
We let dom denote a countably infinite set of uninterpreted
constants. We focus on a fixed finite set F of functions and
a fixed finite set Rel of relation names. Functions are asso-
ciated with signatures.

The complex value data model allows the application
of two basic constructors, tuple and set constructors
recursively. The abstract syntax of sorts of this data model
is given by t=dom |< By : T,..., B : T >| {t}: where k >0
and By, ..., B are distinct attributes [2].

Example Consider the sort of a complex value relation R:
{<A:dom,B:dom,C:{<A:dom,E: {dom}>}>}. A
value of this sortis {< A:a,B:5,C: {<A:d,E: {} >,<
A:e,E:{e,f,} >} >}

We define dom(t,D), for some type T and a given
subset D of dom to be: (1) dom(dom,D) = D,
(2) If T is a type, {1} is a set type with domain:
dom({z},D) = Pgin(dom(tr,D)) and (3) If 71,...T,
are types, < Ti,...Tp > is a tuple type with domain:
dom(< 11,...t, >, D) = {{a1,...,an] | ai € dom(ti,D)}.

As in the case of the relational data model, query lan-
guages have been developed so far from three paradigms,
namely: algebraic, logic, and deductive.

The complex value algebra

The complex value algebra is a many-sorted algebra,
denoted by ALG®Y. The algebra is a functional language
based on a family of core operators and a query is an
expression in this language to be evaluated in the given
databases.

The core operators are the basic set operators, se-
lection, projection, tup._create, tup_destroy, set_create,
set_destroy and powerset. A detailed description of these
operators can be found in [2].

The complex value calculus
Calculus formulas are constructed from atoms of the
form
’ ! [
R(Ty,..:,Tn), T=T,TET orTCT,

where R € Rel and the 1;s5, T and T are terms. Formulas
are constructed from atomic formulas using the standard
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connectives and quantifiers: A, V, -, ¥, 3. We denote the
complex value calculus by CALC®.

Example The second component of tuples of relation
R:{< A,B >} is replaced by its count number:

{x| 3y(R(Y) Ax.A = yAAx.B = count(y.B))}

If d C dom then a pre-interpretation is a pair (d, ). An
interpretation is (d, F, I), where F C ¥, F = (fi,... 1), fis
are functions; I is a database instance.

If o is a valuation over free(9), then the notion of the
interpretation (d, F, I) satisfying ¢ under o, denoted by
I=(g, F) 9[0], is defined in the usual manner.

A query g is an expression {x1,...,X» | @(x1,...,%s) }. Let
the types of x1,...,x, be I'1, ..., Tn. The notion of the answer
g(X) to the query g on the instance I'in the pre-interpretation
(d, F) is defined by:

q(d, F)(I) = {[(V] s ...,V,,] | v; is of type I},
I=(g, F) ©(V1y-sVn)}

The active domain of a database instance I, denoted
adom(l), is the set of all constants occurring in I. This
is defined analogously for formulas @ and queries g. In
addition, we use adom(g, I) as an abbreviation for adom(q)
U adom(1).

Rule-based languages for complex values

Query languages based on the deduction paradigm
are extensions of Datalog to incorporate complex values.
Those languages are based on the calculus and do not
increase the expressive power of the ALG® or CALC®.
However, certain queries can be expressed in this deduction
paradigm more efficiently and with lower complexity than
they can be by using the powerset operator in the CALC®.
A major difference between the various proposals of logic
programming with a set construct lies in their approach to
nesting: grouping in LDL {6], data functions in COL [3],
and a form of universal quantification in [12). We briefly
review the concept of Datalog for complex values and
queries.

Definition A darabase clause (rule) is an expression
of the form p(t) < Li,...,Ln, where the head p is a derived
predicate, and each L; of the body is a literal. A program P
is a finite set of rules.

Definition A database is a finite set of database clauses. A
query is a formula of the form « W, where W is a calculus
formula(i.e., W € CALC®) and any free variables in w
are assumed to be universally quantified at the front of the

query.

Definition Let P be a database program, Q a query
— W. An answer to P U{+ W} is a ground substitution 6
such that V(W) is a logical consequence of P.
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Definition Let P be a database program, W a for-
mula, and S an interpretation. Then ans(®, W,S) is the set
of all answers to P U{+ W} that are ground substitutions
for all free variables in W.

3. DOMAIN INDEPENDENCE

We begin this section with the standard definition of a
domain-independent formula. A calculus formula g (with
no embedded functions) is domain independent if gq(I) =
aq (I) for each input instance I, and each pair d, d C dom.
The value of ¢ on I can be determined by evaluating g using
the finite set adom(q, I) as the underlying domain.

The notion of “embedded domain independence” was
proposed to generalize “domain independence” to incorpo-
rate functions [9]. The fundamental idea behind this notion
is that, for any query g, there is a bound on the number of
times functions (and their inverses) can be applied [1]. The
answer to g on an input instance I depends on the closure
of adom(q, I). We review this notion for complex objects as
follows.

Given a database instance I and a query g, let C
be a set of constants that appear in g. Following [1],

we define term™(DB), for some database DB with in-

terpretation (d, F, I) by: (1) term®(DB) &ef atom(1,Cy)

@) term™ 1 (DB) % term"(DB) U {atom(fi(®)) | f E F;x €

dom(t;,term"(DB)),i = 1,...,1}, where arom(1,C;) are all
atomic values appear in the instance I and C4. Two
databases DBy = (d,, F1, I) and DB; = (d2, F,, I) agree on
atom(1,C,) to level n if (1) term™ ' (DBy) = term**1(DB3)
and (2) Vx € dom(t;,term”(DB)), f; € Fy, _ff € Fy, filx) =
f,-' (x),1i.e., fiand ff agree on any input whose atomic values
are in term"(DB).

A calculus query g is embedded domain independent at
level n if, for all interpretations §; = (d;, Fy, I) and $; =
(da, F2, I) which agree on atom(I, C;) to level n, g yields
the same outputon §; and S;. g is embedded domain inde-
pendent if for some n it is embedded domain independent
at level n.

Next we will review the notion of external-function do-
main independent queries proposed by Suciu [16]. Let DB,
DB» be two databases with interpretations (dy, Fy, 1), (da,
Fa, I,) respectively. A morphism £ : DB, — DB, is a
partial injective function § : d; — dj such that (1) for ev-
ery i, E(R;) is defined and &(R;) = R'l-, where R; € I, R:- €
I, and (2) for any x € dom(%;, dy), if fj(i(x)) is defined

then so is §(fj(x)) and fj(é(x)) = E(f;(x)), where f; € Fy,
fj- €F,. Let us write e C e;, whenever expression e] is
undefined or e; = e2. A query is a partial function g map-
ping any database DB with interpretation (d, F, 1) to gq g(I)
€ dom({t},d), T is some type for query result. q is external-
function domain independent (ef-domain independent) iff
for every morphism & : §1 — S, g4, F,I2) € 94, F,(I1)-



4. EMBEDDED EVALUABLE AND
EMBEDDED ALLOWED FORMULAS

As (embedded) domain-independence is undecidable, it
is desirable to identify large decidable subclasses of em-
bedded domain-independent formulas. We propose two
such decidable subclasses: embedded evaluable and em-
bedded allowed formulas. To define embedded evaluable
we need to define certain relation between variables and
(sub)formulas. It is called constrained {19]. We propose
a procedure to define such a set of constrained variables.

A key element in the notions of evaluable and allowed
formulas is the definition of the bd function which asso-
ciates finiteness dependencies with complex value formu-
las. First we review finiteness dependency (FinD)[9].

A formula ¢ satisfies the finiteness dependency X — Y,
denoted @ = X — Y, if for each interpretation (dom, F,
I) and each i > O there is some j > O such that ofY]
C term*J(1, Cy) whenever o is a variable assignment for
X1,.-,%n satisfying ofX] C term'(1, Cy) and 1 =g F ¢[o]. If
T is a set of FinDs over a variable set V then the closure of
Tover Vis

MV ={X->Y|XYCVandTHX =Y}

For a formula @, T is a shorthand for ["*-/7¢(®).

Example Let the sort of relation R be {< ¢ : dom,x :
{dom} >}. Letting ¢ = R(t,x) Az € xA-Q2) A f(t) =,
it can be shownthat Q0 —tx, oEx o1, 0=t =y,
pEx—y and g =0 txy.

We present the overall definition of bd, and then de-
fine the notion of constrained relation.

Definition Given a formula @, bd(g) returns the set
of FinDs, as in Figure 1.

In Figure 1, the formulas 1-11 and their associated
function bd were presented in [9]. We add formulas 12-16
for the complex value model. The operator @ is defined as
follows: Given the sets I'1,...,I, of FinDs, I ® ... QT =
{X,..X, > YeTfori€(l,..,n]}[9]

We now define the notions of constrained relation and
em-evaluable formulas. To give these definitions, we define
the set of constrained variables of a formula using the
following procedure.

procedure constrained-variables(ct)

input: a calculus formula @

output: a subset of the free variables of ¢

begin

(pred is a predicate in {€,C})

(In each of the cases following, X denotes a set of variables
that are members of T)

(Y denotes a set of unconstrained variables generated
during the process)

_17_

1998 International Computer Symposium

Workshop on Software Engineering and Database Systems

December 17-19, 1998, N.C.K.U_, Tainan, Taiwan, R.0O.C.

Y =0
case ¢ of
R(%) sa(e) =X,
EA-RE) : crlp) = (cr(E) — X) Ufz] bd(E) = 0 = 2;
Y =YUX~{z|bd(€) EO— 2}
EV-R(T) :ct(9):=(cx(E)-X);Y:=YUX

-& 1 ct(9) = ct{pushnot (—E)),
for & not of the form R(%)

f@) =t :Iftisavariableand X C {z| bd(0) =
0=z}, c(p):=1
T pred T :1ftisavariable and Z C {z| bd(@) |
1 @ — z}, ct(@) := T where Z = set of
variables that are members of T
EiVEs ct(0) :=ct(&)Uct(&) — Y; where
&1 and &; are not of the form —R(7)
Eing set(9) = {z| bd(&1) = 0 — z}U
(2] bd(E2) =0 = 2}U
(ct(E1)Uct(E2) - Y), where
E; and &, are not of the form =R(%)
2t (@) 1= cr(8) — {x}
. () 1= cr(8) — {x}
end

We say that a variable x is constrained in a formula ¢
if x € ct(0).

Consider a fixed database DB and variable x of type
T;. Intuitively, the fact that x is constrained in a for-
mula @ tell us that if @(x,7) is true, then either (1)
x € dom(t;,term™(DB)) or (2) @(x,y) is true for all values
of x, i.e., x € dom(t;,dom).

Example Consider the following formula

@ = (Px,y) VOO Ax € yA(R(,u) V=S(¥))-

Let A= (P(x,y) V(). B=x€y, C= (Ry,u)V-S(y).
By using bd functions listed in Figure 1, we get
bd{9) = © — xy. Then by using the constrained-
variables procedure, we get (1) ct(4) = {x}, @)
ct(AANB) = {z}bd(A) EO > 2}U{z|bd(B) E 0 —
U (ct(A) Uct(B) - ¥) = {y}UOU ({xy} U {x} - 0) =
{x,y}, and (3) ct((AAB)AC) = {z| bd(AAB) =0 —
U{z|bdC)EO = 3 U(at(AABYUct(C)—-T) =
{5, }U0U ({5} U} = 1) = {59} U} = fx 3,

Definition A formula @ is em-evaluable if:
(a) bd(9) =0 — free(9);
(b) for each sub-formula 3xy of @, X C cr(w);
(c) for each sub-formula Vxy of @, X C ct(—v).

Definition A formula ¢ is embedded allowed (em-allowed)
if: :

(a) bd(9) =0 — free(g);

(b) for each sub-formula 3%y of @, bd(y) = free(IXy) —
(%N free(w)];
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12| xc{ylom} | {X ==}

131tet {X = 1}®
14| 1e7 [/
15|tCt {X = 1}®
16|1CT 0~

@ bd(9)
1 [ R(T1,.Tn) {0 X}°
where X = set of variables that are members of {7y,..., Ty}
2 | =R(@) 09
3 |- bd(pushnot(-E))
for & not of the form R(%)
4 | flTlyenTn)=T 1 0%°
if T is not a variable, or T is a variable occurring in one of T1,...,Tn
5 | f(riyeenTa) =1 | {X = 1}¢
if T is a variable not occurring in any of Ty, ..., Ta,
where X = set of variables occurring in Ty, ..., Tn
6 |x=y {x=yy—x}"®
7 |m#Fn 0*°
8 | EiN..NE, (bd(E1)U...ubd(E,))"?
9 | &V.VE (bd(&}) ®...® bd(En))"?
10 | 3XE (bd(E) - all FinD in which some variable in X occurs)™?
11 | VX§ (bd(E) - all FinD in which some variable in ¥ occurs)*®

if x is a variable not occurring in ¢,
X = set of variables occurring in ¢.

. . - . . !
if T is a variable not occurting In 7,

. . . !
where X = set of variables occurring in T

if T is not a variable or T is a variable occurring in T

. . . . . /
if T is a variable not occurringn T,

. . . !
where X = set of variables occurring in T

if T is not a variable or T is a variable occurringin T

Figure 1. The function bd.

(c) for each sub-formula VEy of ¢, bd(~y) =

free(VEy) — [FN free(w)]
Theorem 1 Every em-allowed formula is em-evaluable.

Proof We consider the condition (b) of em-
allowed definition. As for each sub-formula Xy,
bd(@) k= free(Iiy) — [EN free(y)], W must not be only
of the form —R(%). If ¥ occurres in the form -R(X), it
must also occurres in some other form of R(%), f(T) =T,
T pred 7. Therefore, by constrained-variable procedure
we can get X C ¢r(), which is satistied the condition (b) of
em-evaluable. Similarly, the condition (c) of em-allowed
holds, then the condition (c) of em-evaluable holds as
well.O

Example The following formula is em-evaluable.

o(»2) = I(p(xy) Va») Az= ()]

Let A = [(plx,y) VgD) Az = f(y)]. We have
bd(@) = 0 — yz and ct(A) = {x,» 2}, as required for
@ to be em-evaluable. bd(A) = 0 — yz, so @ is not
em-allowed.

_18_

Example Consider (x,y) = 3z3ud(x,y), where
Alxy) = (R@) AS() AXC (7] (y+2.4) € uC}).
bd(A) = {0 = zu,zu = yzuy — x}™A. bd(e) =

{0 = 50 — x}>° We have bd(p) = 0 — xy (i.e.,0 =
free(@)); bd(A) =0 — zu, and 0 — b xy —
zu (i-e., free(3z3ud) — {z,u}). So ¢(x,y) is em-allowed.

The safety condition and the equivalence of the domain-
independent CALC®, the safe CALC® and the ALG®
have been studied in [1]. The syntactic condition known
as safery ensure that each variable is range restricted, in
the sense that relative to the given ordering, it is restricted
by the formula to lie within the active domain of the query
or the input. For example, in the case x = f(x1,.-., %)
in a formula F, x is restricted if all the x; precede x in
the ordering. A formula is safe relative to a given partial
ordering if all the variables are restricted in it. It is easy to
check that every safe formula is em-allowed.

Theorem 2 Every em-allowed formula is embedded do-
main independent.



Proof Since the complex value algebra ALG® with exter-
nal functions is embedded domain independent, the proof
is demonstrated in the course of translating em-allowed for-
mulas into equivalent algebra queries; see the Section 6. O

Theorem 3 Every em-allowed formula is ef-domain inde-
pendent.

Proof By Theorem 2 and Section 6, every em-allowed
formula can be translated into an equivalent complex value
algebra (ALG®) query with external functions. All queries
in the nested relational algebra AR A + fix are ef-domain
independent [16]. Nﬂ(ﬂ‘ is equivalent to ALG®” without
powerset with external functions. By definition, it is easy
to check that the powerset query is ¢f-domain independent.
Therefore, every em-allowed formula is ef-domain inde-
pendent. O

By adopting the algorithm (con-to-gen) described in
[19] with minor modification, every em-evaluable formula
can be translated into em-allowed formula in the context of
the complex value model. We summarize the relationship
between these classes as follows:

embedded domain
_» independent
safe ~» em-allowed —=em-evaluable

ef-domain independent

5. DOMAIN-INDEPENDENT DATABASE
PROGRAMS

Just as not all calculus queries are reasonable, so not
all complex value database programs are reasonable. The
set of correct answers to an acceptable query can depend
on the language; that is, the answer to a query may not be
domain-independent. We give two examples.

Example Let P be the database program:

gla) +
(.._

r(x,y) [p(x,2) Az= f(x)]Vaq(y)

The set of answers to P U{+ r(x,y)} depends on the
interpretation, so P is not a reasonable database.

Example Let P be the database program:

p({a}) +
g(x) « q(x)
rix) + g)Ap@Axdz

Let Q be the query + r(x). Then, if a is the only constant in
the domain of an interpretation, there are no answers for P
U{Q}- But, if the domain contains any constant b # a, then
{x/b} is an answer for P U{Q}. So P is not a ‘reasonable’
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We introduce the notion of an embedded domain-
independent database program in order to capture the
concept of a ‘reasonable’ recursive program query.

Let Cp denote the set of constants appearing in the
program P.

Definition A database program P is embedded domain-
independent at level i if ans(P, A, §1) = ans(P, A, ), for
all interpretations §1 = (d;, Fy, I) and §3 = (d3, F5, I) that
agree on atom(Cep, 1), and for all atoms A in P.

Therefore, given a database I and an interpretation S,
a program P is embedded domain-independent if for every
atom A in P and for every interpretation S’ which agrees
with S on (Cp, I), the set of answers for A is independent of
the interpretation s.

We now consider the decision problem for the class of
embedded domain independent programs. Unfortunately,
the class of embedded domain independent programs is
recursively unsolvable. As for deductive databases, it is
desirable to search for subclasses with simple decision
procedures. We define the class of ‘em-allowed” programs
and show that every em-allowed program that satisfies
certain constraints is embedded domain independent.

Definition A rule is em-allowed if each variable that
appears in the head also appears in the body and the body

is em-allowed.

Definition A database program P is em-allowed if
each clause in P is an em-allowed formula.

Example The following database program is em-allowed.

pla) «
s(xr,z2) « roy)AzCyASdz
g(x,v) « s(x,z) Av=count(z)
t(x) + p(x)Valxc)

Not every em-allowed database progrém with stratified
negation is embedded domain-independent. The following
example exhibits this phenomenon.

Example Let P be an em-allowed stratified database
program:
q(a) «
q(b)
rxny) < rxy)
st {y}) « rxy)
pla) + —qx)As{x,z)Ax€z
tla) ¢ -p(a)

Suppose ¢ is the selected derived relation. Then {a} is a set
of answers for r if, and only if the domain of the interpreta-
tion contains only constants a and b.

database program.

!See {7] for a detailed description.
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We prescribe the following two additional conditions for
stratified programs using both negation and functions.

Cl If the rule p(x) « q(y), ... , f(...), ... is in stratum P;
and the rules defining g are in some stratum Z;, then
j < iif y appears in bd(f), otherwise j <.

C2 If the rule p(x) & p(x)A ... is in stratum P; then it
must include some predicate g such that the variable x
appearsing, g € Pjand j <1

We denote the set of em-allowed stratified programs satis-
fying the above two constraints as Dataloggy, —ra:-

Theorem 4 Every query expressed in Datalog®) .., is
embedded domain-independent.

Proof (sketch) A query is expressible in Datalog®™ with
stratified negation if and only if it is expressible in CALC®”
[1]. As each rule in the program is em-allowed, each vari-
able is range restricted. For each stratum, the rules defin-
ing a predicate can be expressed as a safe CALC®” formula.
Constraints C1 and C2 guarantee that any function will only
produce finitely many new values. Therefore the program
is embedded domain-independent. O

Theorem 5 Let P be an em-allowed program, S and s two
interpretations and Q a query - W. If P is stratified and
satisfies constraints C1 and C2 (i.e., P € Datalogep_grai)r
and W is domain independent, then ans(P, W,S) = ans(®P,
w,S).

Proof This follows from the result of Theorem 4 and the
definition of an embedded domain independent formula. O

6. EVALUATION

We describe a non-trivial generalization of the algorithm
of [9] for translating embedded allowed complex value for-
mulas into equivalent algebra queries. Our algorithm con-
sists of the following four steps.

1. Replace all sub-formulas of the form ¥y(y € x — @(y))
by x C {y| 9(y)}. Next replace any remaining sub-
formula of the form V@ by —=3—¢. Rename the quanti-
fied variables if necessary.

2. Transform the em-allowed formula F obtained in step
1 into an equivalent formula F' in Existential Normal
Form (ENF).

3. Put the formula F into an equivalent complex value
algebra normal form y (ALGNF).

4. Translate y into an equivalent algebra expression Ey.

Step 1 is accomplished using the transformations men-
tioned above. We briefly describe Steps 2 to 4.

Step 2: It is convenient to think of a calculus formula
in terms of its parse tree.The leaves of the tree are atomic
formulas.There is a sub-formula which corresponds to
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each internal node labelled by V,A, =, 3x or a sub-formula
x C {y| 0(»)}. We introduce the concept of Existential
Normal Form.

Definition A formula F is in Existential Normal Form
(ENF) if and only if:

1. Ttis simplified 2
2. Each disjunction in the formula satisfies:
(a) The parent of the disjunction, if it has one, is A.

(b) Each operand of the disjunction is a positive for-
mula.
3. The parent, if any, of a conjunction of negative formu-
las is 3.
4. For each sub-formulax C {y | ¢(y)} in the formula F,
@ isin ENF.

In order to satisfy the conditions of ENF, it is necessary o
transform in the sub-formulas that violate these conditions.
This can be done by using the transformation rules, Tg -
T2, stated in [9].

Example Consider the formula ¢ = =(-=(f(x) =
yAx € z) A=T(x)) AS(z). It can be translated into 0
= (({(f(x) =yAx€2z)VT(x)) AS(z), which is in ENF.

Step 3: We start by defining the concepts of a maxi-
mum sub-formula and complex value algebra normal form,
then we give a necessary transformation rule not presented
in the relational model.

Definition A sub—formu]e/l G of a formula F is maxi-
mum if either G is F; or G s root is A; or G is a child node
of 3,V,— or arange formulax C {y { 9(y)}.

Qur aim is to transform a given em-allowed query
into an equivalent query, all of whose maximum sub-
queries can in fact be translated. During this step, the
function bd is crucial to decide whether a sub-formula is
em-allowed.

Definition An em-allowed formula F is in complex
value algebra normal form (ALGNF) if F is in ENF and
every maximum sub-formula of F is em-allowed.

In addition to the rules Ti3 to Ty stated in [9], we
need the following rule to transform ENF em-allowed
formula to complex value algebra normal form.

Rule T17: E A AERAXC {1 o)} = E A AERAXC
{y]o(y) ALi, A...AE; } where @(y) is not em-allowed, but
o) A& A ... AL, is em-allowed.

Example Consider the following formula 3u3s(S(u) A
RE)AxC{y| (y+s54) € uCIA(t € xA-Q(1))). We
apply the above rule to obtain 3u3s(S(u) AR(s) Ax C {y|

2In every sub-formula 3%, each x; is actually free in ¢ and the polyadic
operators A, V, 3 are flattened. See (9] for detailed description.



S(u) AR(s) Ay+5.A € w.C} A (t € xA-Q(¢))) which is in
ALG®NF.

Step 4: Translating an ALG®NF formula into an
equivalent algebra expression can be performed by apply-
ing the following method: conjunctions are translated into
joins or Cartesian products, negations into generalised dif-
ferences (diff) {19] , existential quantifiers into projections,
inequalities into selections and equalities and arithmetic
operations into appends which are described below.
Append is a relational operator which is defined in {18].
We shall denote it by ®. Suppose r is a relation of [-tuples,
then @g(;, y(r) is a set of I+ 1 tuples, k </, where g is
an arithmetic operator on the components iy, ..., ix . The last
component of each tuple is the value of g(iy, ..., ik)-

Example Consider the following formula 3z3u(R(z) A
S(uynt € {y|y +z.A € u.C} A=Q(t)). Transforming it into
ALG®NF yields 3z3u(R(z) AS(u) At € {y | R(z) AS(u) Ay
+z.A € u.C}A-Q(2))

The equivalent algebra query is obtained using the follow-
ing program

E| = tup_creates (set destroy(tup destroy (nc(S))));

Ey = ’)'IAICJ (GCIEC(S X El));

E3 = E3 x (ma(R)); Ey = Qyz3)(Es);

Es = ”“’C'Ay—»x(E‘*); Eg = nA',X.y(Ej ;

E7 = replace < [A',X,Z = (rename,,(X) diff Q)] > (Es)
Eg = mx z(E7)

where g(2,3) = column 2 — column 3. Note that E; is
equivalent to unnestc(S). A detailed description of the
complex value algebra including set_destroy, tupcreate
and replace can be found in {2].

7. CONCLUSION

Translation of relational calculus queries that support
both user-defined functions and complex values into the
corresponding relational algebra queries is challenging, be-
cause the class of domain independent is known to be un-
decidable even for DBMSs that don’t support user-defined
functions and complex values. In this paper, we iden-
tify two large decidable subclasses of embedded domain-
independent formulas, namely, the embedded evaluable and
embedded allowed formulas. The question: can a broader
subclass of embedded domain independent formulas, be
recognized efficiently remains open.

We define a recursive class of “embedded allowed”
database programs and prove that embedded allowed strat-
ified programs satisfying certain constraints are embedded
domain-independent.

We also investigate the issue of how to implement com-
plex value calculus queries with the incorporation of func-
tions. A rather involved construction has been shown for
translating embedded allowed calculus formulas into the al-
gebra. The algorithm presented here is still open to opti-
mization. A formal analysis of the complexity of the com-
plete algorithm also needs detailed study.
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