1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Complexity and Guarantee of Permutation Assertion for Sorting

Pei-Chi Wu

Department of Information Management
Department of Computer Science and Information Engineering
National Penghu Institute of Marine & Management Technology
300 Liu-Ho Road, Makung City, Penghu, Taiwan 880, R.O.C.
Email: pcwu@npit.edu.tw

ABSTRACT

Assertions for sorting functions are widely used as
an example in discussions of software specification
and fault-tolerance. Complete checking for sorting
needs two assertions: order and permutation. The
order assertion checks whether the output array
monotonically increases (or decreases). The
permutation assertion checks whether the output
array contains all the elements in the input array. The
order assertion is simple and fast, whereas
permutation assertion is considered to be time-
consuming. This }saper gives a detailed analysis of
the time complexity of the permutation assertion,
which is shown O(n log n). This complexity is no
simpler than that of sorting. This paper then presents
a method that guarantees the correctness of a sorting
procedure by replacing assignments with swap
operations on any two array elements. The technique
can be applied to sorting algorithms that are in-place.
This shows that complete checking for sorting can be
achieved in linear time.

Keywords: complete assertions, time complexity,
software engineering, assignments, swap operations,
fault-tolerant software.

1. INTRODUCTION

The sorting problem is well-defined and has practical
importance. It is also used in many software
engineering textbooks to introduce the concept of
program assertions. Sorting assertions are widely
referred to in discussions of software specification [2,
6, 7] and fault-tolerance [8, 10]. A set of assertions
for a program is said to be complete, if satisfying the
set of assertions guarantees the correctness of the
program. Complete checking for sorting needs two
assertions: order and permutation [6, 9]. Let a
sorting function be denoted as Sort: array —> array.

]

The order assertion checks whether the output array
monotonically increases (or decreases). The
permutation assertion checks whether the output
array contains all the elements in the input array, i.e.,
whether the output array is a permutation of the input
array.

Since run-time assertions take overhead,
their efficiency is important. Order assertion is
simple and fast: its time complexity is O(n). On the
other hand, permutation assertion is considered to be
time-consuming and rarely used at run-time [8]. The
concept of check-sum assertion was addressed in
Randell {8]. Since check-sum assertion with order
assertion is incomplete, its power to detect errors is
further discussed in Saxena and McCluskey [9],
where the complexity of permutation assertion is
also said to be O(n log n), but no further analysis is
given. Because permutation assertion inefficiency is
the only reason to adopt an incomplete sorting
assertion, a detailed analysis of permutation assertion
complexity may be needed. Here we give such a
detailed analysis. We present an O(n log 1) algorithm
for permutation assertion and a lower bound of O(n
log n), showing the exact complexity of permutation
assertion to be O(n log n). This complexity is no
simpler than that of sorting, so it is not attractive to
perform permutation assertion at run-time.

Permutation assertion is central to
guaranteeing the correctness of a sorting procedure.
One may ask: "Why did permutation assertion fail in
a sorting procedure?” The reason is that many
sorting procedures directly assign values to the array
elements, which may arbitrarily put an erroneous
value on an array element. Such operations are very
dangerous. This paper presents a method that
guarantees the correctness of a sorting procedure by
replacing these assignments with swap operations on
any two array elements. The technique can be
applied to sorting algorithms that are in-place,

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

including insertion sort, selection sort, quick sort,
and heap sort. This shows that complete checking for
sorting can be achieved in linear time.

2. AN O(n log n) ALGORITHM

Permutation assertion has also been called the
multiplicity equality [6] of two arrays. Consider the
array 4=[1, 4, 3, 5, 9, 4] and the sorted array B={1, 3,
4, 4, 5, 9], B = Sort(4). The permutation assertion
not only checks whether all distinct elements of B,
ie., {1, 3, 4, 5,9}, are included in 4, but also checks
whether there are the same number of copies of each
distinct element in both 4 and B. Let 4rrayBag be a
conversion of an array to a bag (also called a multi-
set). That is, permutation(4, B) holds if and only if
ArrayBag(A) = ArrayBag(B). Since order assertion is
very simple, we assume that the assertion order(B) is
executed and already holds before the permutation
assertion is executed, and B thus monotonically
increases (or decreases). Adding this pre-condition is
more realistic when discussing the time complexity
of permutation assertion, because it may lead to a
simpler and more efficient algorithm. In addition, it
is almost meaningless to execute permutation
assertion after the order(B) assertion has already
failed.

The following shows the Algorithm
permutation-assert. Each element of 4 is checked to
see whether it is also in fempB, a copy of B. Each
element in zempB is "marked" when it is matched
with an element in A, such that it will never match
other element in 4. For each element in A, the
algorithm applies a binary search of array tempB. A
binary search takes O(log n) for array size n. The
time complexity of the algorithm is then O(n log n).

Algorithm permutation-assert (4, B).
Input. arrays 4 and B, where order(B) holds and n =
| 4 |, the size of 4.
Output. whether B is a permutation of 4.
Begin
tempB ;= B; {* array copy *}
for i from / to n do
index := binary_search(A[i], tempB);
{* Find a non-marked elements of tempB
whose value is A[i}.
Return index of A[i} in tempB; return 0
otherwise.
¥
if (index>0) then
mark tempB[index];

{* This element will never match again in
the binary search. *}
else
return faise;
end if
end do
return frue;
End of Algorithm.

3. ALOWER BOUND

The problem of permutation assertion can be
formulated as a process of identifying the
relationship between the input and the output arrays
of a sorting function. An element in 4 that relates to
an element in B is indicated by a line between them.
There are no lines between unmatched elements.
Figure 1 shows a relationship where the permutation
assertion holds. The output array is correct if the
relation is one-to-one and onto. Figure 2 shows an
example which output is incorrect: Although the
output array is already ordered, the input elements 6
and 7 are missing in the output. The elements 8 and 9
are also erroneously inserted to the output array.

input [1,3,5,7,2,6] A

Output [1’ 2: 33 5: 63 7] B Ofder(B)
Figure 1. An example of the relationship between the
input and output arrays.

[1,3,5,7,2,6] A

output [1,2,3,5,8,9] B order(B)
Figure 2. An example of relationship where the
permutation assertion has failed.

input

The arrays in Figures 1 and 2 contain only
distinct numbers. Figure 3 shows two relationships
where there are two 3's in the input. The outputs may
or may not preserve the order of the input. This
property is called the stability [3] of sorting. To
simplify the analysis, these two relationships will be
treated as two "decisions." That is, all numbers in the
input array are treated as distinct.

input [1,3,3,2,8,6] [1,3,3,2,8,6] A

output [1,2,3,3,6,9] [1,2,3,3,5,6] B order(B)
Figure 3. Two examples of relationships containing
two 3's.

Based on this formulation, the permutation
assertion is then a decision problem requiring
selection of a candidate from all possible
relationships (leaves of the decision tree). The time
complexity of permutation assertion can be
determined by the height of the decision tree, which
is a logarithm of the number of decision tree leaves.
Consider a pair of input and output arrays. Step 1)
Choose as r elements of the input that are also found
in the output: in total there are C(n,) combinations,
0 < r < n. Step 2) For these r elements, choose r
positions from the output array (there are n»
positions): the combination is C(n, r). For example,
the arrays in Figure 2, n=16,r =4, C(n, r) = C(6, 4)
= 15. Step 3) Assign these r elements to 7 positions;
because B is already ordered, this assignment is
unique.

Let PERM(n) be the number of possible
relationships for array size n. Since the number of
combinations in Step 1 and 2 are both C(n, r),
PERM(n) is then the summation of C(n, r)-C(n, r), 0
<r<n.

PERM (n) = Z":C(n,r)- C(n,r)

r=0

=ZC(n,r)-C(n,n -r)=C(2n,n)
r=0

The following is an example for n =2:

Letarray 4 =[4, 3].

PERM (n) = C(2,2)-C(2,2)+ C(2, 1)-C(2, 1)

+C(2,0)-C(2,0)
=]1+4+1=6.

Let X represent any erroneous number inserted to the
output array. There are 6 cases as shown below:

r=0:B=[X, X].
r=1:B=[3, X}, [X, 3], [4, X], [X, 4].
r=2:B=[3,4].

The following is the detailed computation of
the complexity order of PERM(n). It shows that the
lower bound of the permutation assertion is O(n log
n):

C(2n,n)=(2m)Y/n'n!

1998 Intemational Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Stirling's formula: log ! = (n + 1/2) logn—n+6

O(logC (21,m)) = O(log((2))~ 2log(a1)) = O(nlog n)
L O(PERM () = 0(11 logn)

Which is more complex: sorting or
permutation assertion? The decision tree for sorting
has n! leaves and the logarithm of n! is also O(n log
n) [3]. Table 1 shows the first 12 numbers of C(2n, n)
and n!. When 1 < n < 6, C(2n, n) > n!. However,
when n = 7, C(2n, n) < n!. Permutation assertion
seems to be simpler than sorting when considered
this perspective,

Table 1. First 12 numbers of C(2n, n) and n!.

n C(2n, n) n!

1 2 1
2 6 2
3 20 : 6
4 70 24
5 252 120
6 924 720
7 3432 5040
8 12870 40320
9 48620 362880 -
10 184756 3628800
1t 705432 39916800
12 2704156 479001600

4. ARRAYTOBESORTED: AN ARRAY WITH SWAP
OPERATIONS

To support safe operations on an array, a new array
type called ArraytobeSorted is proposed.
ArraytobeSorted provides swap operations on any
two array elements, and allows only one way of
writing an element. A series of swap operations on
an ArraytobeSorted makes a permutation of the array.
Thus, the permutation assertion holds immediately.
Simply applying order assertion can then guarantee
the correctness of the sorting procedure.

Figure 4 shows the interfaces of array
(Array) and ArraytobeSorted (ArraytobeSorted).
All these codes are in C++ [1] class templates, where
the type parameter T represents the element type of
the array. Template Array is a definition of an
ordinary array. The operator{]() returns a
reference to an array element. Each element can be
read and written via the returned reference. Template

1998 International Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1898, N.C.K.U., Tainan, Taiwan, R.0.C.

ArraytobeSorted provides swap() to swap any
two array elements, operator (] () to get the value
of an element, and size() to get the number of
elements in an array. An ArraytobeSorted is
created by giving an ordinary array to its constructor
ArraytobeSorted(). The given ordinary array is
not copied: only a reference is kept in the
constructed ArraytobeSorted. Thus, procedures
that operate on ArraytobeSorted change the
ordinary array. Except using swap(), there is no
other way to write an element.

template<class T>
class Array
{
public:
Array(int s);
Array(Arrayé& a);
T& operator{] (int i) const;
int size() const;
bi

template<class T>
class ArraytobeSorted
{
public:
ArraytobeSorted (Array<T>& a) : A{a) { }
int size({) const { return A.size(); }
T operator[] (int i) const
{ return A[i]; }
void swap(int i, int 3J)
{
T temp;
temp=A[i];
A(i}=A[]];
A[j]=temp;
}
private:
Array<T>& A;
}i
Figure 4. The interfaces of Array and
ArraytobeSorted.

Figure 5 shows an example of using the
ArraytobeSorted interface. Procedure
selection sort is an implementation of the
selection sort algorithm [5]. The inner loop of
selection sort finds a minimal element from an
unordered p—art of an input array. The minimum
found is put in min and its array index is put in
index. The procedure then swaps the minimum with
the first element using swap(i, index).

template<class T>
void selection_sort (ArraytobeSorted<T>& A)
{
int size = A.size():
for(int i=0; i<size; i++)
{
T min = A[i]l;
int index=i;
for (int j=i+l; j<size; j++)
if (A{jl<min) { min=A[j]; index=3j; }
A.swap(i, index);

Figure 5. Code of selection_sort using
ArraytobeSorted.

5. APPLICABILITY TO SORTING ALGORITHMS

The technique introduced in Section 4 can be applied
to many sorting algorithms. For example, the codes
given in [5] for quick sort and heap sort already use
swap (or called "exchange") operations on two array
elements. Using ArraytobeSorted on these
algorithms is straightforward.

The technique is also applicable to insertion
sort algorithm. The insertion sort algorithm inserts
an element into the array each iteration. There are
two steps: 1) find the proper position for the new
element, and 2) insert the element into the array.
Step 1 applies a sequential or binary search. Step 2
needs to shift each element that is greater than the
inserted element by one position. This step is usually
done using a series of assignments on array elements,
which may cause problems such as duplicated or
missing elements. Fortunately, this step can also be
done using a series of swap operations on array
elements. Figure 6 shows the insertion sort
code. The code uses sequential search and swapping
elements during searching.

template<class T>

void insertion sort(ArraytobeSorted<T>& A)

{
int size = A.size();
for (int i=1l; i<size; i++)
{
int index=i;
for(int j=i-1; 3>=0; j--)
if (A[j]l<A[index])
break;
else

{
A.swap(index, j);
index=j;

}

Figure 6. Code of insertion_sort using
ArraytobeSorted.

This technique cannot be applied to sorting
algorithms that need additional storage. For example,
bucket sort and radix sort use buckets to store
elements, and merge sort uses a temporary array
when merging two sorted arrays. The array elements
are temporarily stored in these additional storage and
later moved to the array. These operations cannot be
conducted using ArraytobeSorted.

Table 2 summarizes the applicability of the
technique to various sorting algorithms. The
technique can be applied to sorting algorithms that
are in-place, including insertion sort, selection sort,
quick sort, and heap sort.

Table 2. Applicability of swapping to
various sorting algorithms.

Algorithm Ap. Reasons
insertion sort shift data by a series of
swapping

swap the minimum with
first element

selection sort N

bucket sort x need a separate storage
’ for buckets
radix sort x need a separate storage
for buckets
merge sort x need a temporary storage
quick sort v directly using swapping
heap sort v directly using swapping

Ap. = Applicability

6. CONCLUSIONS

The exact time complexity of permutation assertion
has been proven to be O(n log n) by giving an O(n
log n) algorithm and an O(# log n) lower bound. This

1998 international Computer Symposium
Workshop on Software Engineering and Database Systems
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

paper has also presented an array interface which
guarantees swapping elements to be the only way to
change an array. Using this kind of arrays in a
sorting procedure, the permutation assertion holds
immediately, and simply applying order assertion
guarantees the correctness of the sorting procedure.
This shows that complete checking for sorting can be
achieved in linear time. This technique can be
applied to algorithms such as insertion sort, selection
sort, quick sort, and heap sort.

REFERENCES
[1] M. A. Ellis, and B. Stroustrup, The Annotated
C++ Reference Manual, Addison-Wesley,

1990.
[2] C. Ghezzi, M. Jazayeri, and D. Mandrioli,
Fundamentals of Software Engineering,

Prentice-Hall, 1991.

[3]1 E. Horowitz and S. Sahni, Fundamentals of
Data Structures in Pascal, Computer Science
Press, 1984.

(4] C. L. Liu, Introduction to Combinatorial
Mathematics, McGraw-Hill, New York, 1968.

[5] U. Manber, Introduction to Algorithms: A
Creative Approach, Addison-Wesley, 1989.

[6] Z. Manna and J. Waldinger, The Logical Basis
Jor Computer Programming, Volume I
Deductive Reasoning, Reading, MA: Addison-
Wesley, 1985.

[7] H. A. Partsch, Specification and
Transformation of Programs: A Formal
Approach to Software Development, Springer-
Verlag, 1990.

[8] B. Randell, "System Structure for Software
Fault Tolerance," IEEE Trans. on Software
Engineering, Vol. 1, No. 2, pp. 22-232, June
1975.

[9] N. R. Saxena and E. J. McCluskey, "Linear
Complexity Assertions for Sorting," IEEE
Trans. on Software Engineering, Vol. 20, No. 6,
pp. 424-431, June 1994.

[10] I. Sommerville, Software Engineering, 4th Ed.,
Addison-Wesley, 1992.

	
	1
	2
	3
	4
	5

