1998 International Computer Symposium
Workshop on Cryptology and Information Security
December 17-18, 1988, N.C.K.U., Tainan, Taiwan, R.0.C.

A SYSTEMATIC METHOD FOR DESIGN OF KEY
ESTABLISHMENT PROTOCOLS

Shu-Chung Ju,, and Sheng-De Wang

Department of Electrical Engineering,

National Taiwan University, Tainan, Taiwan, R.O.C.

Email: {earnest,sdwang}@hpc.ee.edu.tw

ABSTRACT

A key establishment protocol is to establish a session key
among all of the communicating parties in a computer net-
work, so that they can use the session key to secure the
subsequent messages in the session. Most existing key es-
tablishment protocols assume a specific network environ-
ment and are not subject to a systematic design approach.
In this paper, we analyzed the essentials of key establish-
ment procedure, and proposed a systematic method to
design key establishment protocols. The salient features of
it include clarifying security achievements, capability of
identifying potential efficiency, adaptability to diverse
network environments and generalized authentication envi-
ronments, and easy applicability.

1. INTRODUCTION

Before two or more parties in a network begin their ses-
sions, they may exchange some messages to authenticate
each other and establish a shared key to achieve the confi-
dentiality and authentication of the subsequent communi-
cation messages. The key establishment protocols (KEP)
serve for such propose, and the established key is named as
session key (SK) because the key is used only for the ses-
sion. Without a reliable key establishment protocol, the se-
curity requirements of sessions cannot be met at all. There-
fore, the design and analysis of key establishment protocols
are the very topics of the security research and many of
them have been proposed.

There are four basic requirements of a KEP; they are
authentication, confidentiality, confirmation, and freshness
[1][2]. It is important to examine if a KEP satisfies these
requirements and how the jobs are done. We claim that a
complete KEP should achieve all these requirements [3].

1.1 The Implementation of a KEP

A KEP can be constructed by symmetric-key or asymmet-
ric-key cryptosystems (e.g. [4][5][6]). But there are re-
strictions when the KEP is put into practical use. For ex-
ample, such KEPs may consume too much computing
power to be adopted in a computing-power- limited net-
work. In addition, the use and export of cryptographic al-
gorithms is restricted in many countries, so those KEP
cannot be adopted widely [7](8].

On the other hand, using one-way hash functions as a basis
for KEP is found to be feasible while it avoids the prob-
lems mentioned above. The mobile telephone system,
GSM, also adopts KEP based on one-way hash functions
[9]. However, it is more difficult to construct a KEP by
one-way hash functions than by cryptosystems. For exam-
ple, to keep messages confidential, one can encrypt them
by cryptosystems. But you cannot do that by one-way hash
functions. A special technique, called one-time padding,
is needed to deal with it.

One important consideration of one-way hash functions is
that the functions should have several properties, which is
defined by Berson ef al. [10] and revised by Boyd et al. [2].
A one-way function with these properties is defined as a
secure keyed one-way hash function (SKOWHEF). It is be-
lieved that conventional unkeyed hash functions, such as
MDS5 [11], SHA [12], Snefru [13] can be used to construct
SKOWHEF.

By either cryptosystems or SKOWHEF, we can construct
basic security building blocks to accomplish authentication
or message confidentiality. And by these building blocks,
we can construct a KEP. In this paper, our method for the
design of KEP is not limited to any kinds of implementa-
tions of security building blocks.

1.2 Systematic Methods for Design of KEP

Taking network environment into consideration, a family
of KEPs is needed to handle all the different situations.
Some existing KEPs assume a specific communication
paradigm, while KryptoKnight offers different KEPs sce-
narios for different network connectivity [7][14]. However,
besides its flaws reported in [2], its assumption lacks of
generality. It assumes that the communicating parties can
contact each other directly and that the protocols run
merely with one authentication server and two communi-
cating parties. When the secret keys are hierarchically dis-
tributed over several authentication servers, or when more
than two communicating parties want to establish a com-
mon session key among them, all its scenarios cannot be
adopted. It does not take bandwidth or traffic load of the
links between communicating parties into consideration,
either. For efficiency and usability, limited data transmis-
sion speed of network links and limited processing power
of network nodes should be also taken into consideration.
Therefore, we need a systematic method for design of KEP
in order to produce suitable KEP for different network en-

16

vironments.

A systematic approach to design and analysis of KEP can
help to describe how the protocol works clearly, and to
show how the protocol achieves requirements. Meanwhile,
a KEP designed in a systematic way will be more analyz-
able and understandable. In [2], the authors identify two
basic channels for KEP: an authentication channel and a
confidentiality channel. Their analysis on several existing
KEPs demonstrates that without a systematic design the
KEPs are extremely prone to flaws. They also propose
their methodology for systematic design of KEP. However,
it shows a lack of generality and it is still too ambiguous to
be put into practical use. Another issue of it is that it does
not deal with key confirmation.

In [3], we claim that a systematic method has five require-
ments: clarified correctness, efficiency, adaptability to net-
work environments, generality of authentication environ-
ments, and applicability. The method proposed in the paper
is aimed to achieve these requirements.

2. BUILDING BLOCKS OF A KEP

2.1 Security Channels

Security channels are the most primitive security mecha-
nisms by which we can construct KEP. We follow [2] and
identify two building blocks of security channels: the con-
fidentiality channel and the authentication channel. But our
implementation of the security channels posses more gen-
erality.

Our implementation is based on a small mechanism, called
nonce, a non-repeated random number. Any node in the
network should generate its own nonce and keep the nonce
non-repeated. For generality, we claim that a nonce should
not be used solely and it should be used along with the ID
number of the party that generates the nonce. Thus, the
non-repetition property of nonce can be guaranteed all over
the network.

Before we go further, we first introduce the notations in the
paper to facilitate our discussion. We use f to denote a
SKOWHF. The output of fis denoted by f (Key, {Data}),
where the first input argument is a secret key and the sec-
ond one is data, a bit string of any length. The capital let-
ters such as 4, B, C, and so on denote individual communi-
cating parties, which may be computers or users; but we
use the capital character S to denote an authentication
server. Kab denotes the secret key shared by A and B in
advance. Na denotes a nonce generated by A.

2.1.1 Confidentiality Channel

Two parties sharing a secret key between them can build a
confidentiality channel to transfer their secret messages.
Here we demonstrate two techniques for building a confi-
dentiality channel by SKOWHF. The first is one-time pad-
ding technique, which generates a random bit string, called
one-time pad to mask the secret. One has to generate the

1998 International Computer Symposium
Workshop on Cryptology and information Security
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

same random bit string to unmask the message in order to
obtain the correct message. Our implementation for one-
time padding technique is as follows:

A—B: Na, Pab@m (A sends message to B),
where Pab = f{Kab, {Na,IDa}) (one-time pad),

and & denotes Boolean operation: exclusive-or.

* The second technique is by transferring a nonce. Sender A

generates a nonce Na and delivers it to receiver B. Then B
can derive the confidential message m by computing:

m =f(Kab, {Na, IDa})

Without knowledge of Kab, one cannot derive m. The idea
of using {Na, IDa} instead of {Na} solely is to prevent the
situation that when B sends a nonce of the same value as
Na, then one can deduce that B delivers the same confi-
dential message m to A. However, Sender A cannot con-
trol the value of m in advance. When the value of m can be
randomly chosen, e.g. key, this technique can be used.

2.1.2 Authentication Channel

The authentication channel bere is constructed by a chal-
lenge-response scenario. The initiator sends a nonce as a
challenge to the responder, who then responses with a val-
ue that can demonstrate its identity. Our implementation is
as follows:

B—A : Nb (challenging nonce by B)
A—>B :m, f{Kab, {Nb, IDb, m}) (response by A)

If / (Kab, {Nb, IDb, m}) is correct, B can assure that m is
actually and currently sent by A. The authentication chan-
nel can defend the communication from replay attacks. It
should be noted that only B could verify A’s identify, not
could A. Besides, the message m is sent in plain text.

2.2 Building Blocks of a KEP

A complete KEP consists of three phases: key generation,
key distribution, and key confirmation. In the first phase,
the communicating parties agree on the method for the
generation of the session key. In the second phase, the par-
ties who have acquired the session key distribute it through
security channels to the other parties who do not have the
session key yet. When a party has received or derived the
session key, it starts to deliver confirmation messages to
other parties to accomplish the final phase, key confirma-
tion.

There are two methods of session key generation: the key
generator and the Kkey agreement. In the former method,
one party, called the SK generator, in the network is re-
sponsible to generate the session key. The session key of
the later is computed by a one-way hash function; the input
arguments to the function are a secret key and nonces con-
tributed by the parties in the network. In either method, the
parties who do not compute or generate the session key
have to obtain the session key from other parties. To trans-
fer a session key from one party to another, we can combi-

]7

1998 International Computer Symposium
Workshop on Cryptoiogy and Information Security
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

ne the confidentiality channel and the authentication chan-
nel to construct key transfer channels. We also give our
implementation of them based on SKOWHF.

2.2.1 Key Transfer Channel

If B has acquired or derived the session key, A can obtain
the key from B, directly or indirectly. If A and B share a se-
cret key Kab, B can transfer a confidential session key to A
directly, and A can authenticate B directly, too. A direct key
transfer channel can be built between them. However, if
they do not share a secret key, they have to build an indi-
rect key transfer channel between them with the help of at
least one authentication server, which shares secret keys
with A and B respectively.

Our implementation of a direct key transfer channel based
on SKOWHEF is as follows: '

A-»B : Na (challenging nonce by A)
B—A : Nb, Pba&SK, f (Kab, {Na, IDa, SK}),
where Pba =f(Kab, {Nb, IDb}) (one-time pad)

Here the authentication channel of session key is defined as
SK and f (Kab, {Na, IDa, SK}), and confidentiality channel
is defined as Nb and Pba@SK. By this protocol, B cannot
authenticate A, but B is sure that no one except A can de-
rive the SK; on the other hand, A can authenticate B and
obtain an authenticated session key from B.

The following is our implementation of an indirect key
transfer with one authentication server:

A-»B : Na (challenging nonce by A)

B—S : Na, Nb, Pbs@SK, f (Kbs, {Na, IDa, SK})
S—A: Ns, Psa@SK, f (Kas, {Na, IDa, SK}),

where Pbs=f{Kbs, {Nb, IDb}), Psé=f(Kas, {Ns, IDs})

The security channels between A and B cannot be built di-
rectly, since they do not share a secret key. However, ses-
sion key can be transferred through two confidentiality
channels: one between B and S, and the other one between
S and A. B is sure that no one except S can derive the SK,
and S is sure that no one except A can derive the SK.

Now let us consider how A authenticates B and S. A gives
its challenging nonce Na to B and S. Only when B respons-
es correctly to Na does S send message to A. When A re-
ceives correct response from S, it then believes that B re-
sponse correctly to S and the SK is truly sent by S. S nei-
ther authenticates A or B nor trusts the SK sent by B. And S
has to be a trusted party because S can modify the SK or
impersonate A or B.

2.2.2 Key Agreement

In key agreement of three-party KEP, the session key is
computed by two nonces contributed by two of the parties,
called nonce contributors. The idea of key agreement co-
mes from the fact that nonce transfer can construct a confi-

dentiality channel. When acquiring nonces, the parties with
knowledge of the secret key, called SK computing parties,
can derive the session key by computing the following
equation, called SK generation equation:

SK =f (Key, {N1, N2}).

For example, when two communicating parties, A and B,
share a secret key Kab with each other, then the session
key is computed by:

SK =f (Kab, {Na, Nb}).

In order to compute the session key SK, A and B need to
exchange each other’s nonce. Therefore, the key agreement
protocol for two parties is as follows:

A—B : Na (nonce generated by A)
B—>A : Nb (nonce generated by B)

When an authentication server S is placed between A and B,
the session key can be computed in two ways. Either the
secret key Kas shared between A and S or the secret key
Kbs shared between B and S can be the input of the SK
generation equation. The parties who have the secret key
can compute the session key. If it is Kas, A and S can com-
pute the session key, and similarly if it is Kbs, B and S can.
In addition, the two nonces can be contributed by A and S,
B and S, or A and B. Therefore, there may be six possibil-
ities of the session key generation equation.

2.2.3 Key Generator

An SK generator produces a session key for all communi-
cating parties. If a party shares a secret key with the SK
generator, it can obtain the session key through a direct key
transfer channel. If it does not, at least one authentication
server should intervene between them, so that an indirect
key transfer channel can be constructed to deliver session
keys from the SK generator. By either direct or indirect key
transfer channels, all parties can obtain session keys from
the SK generator.

The SK generators control the value of session key. The
properties of session key such as freshness and unpredicta-
bility can be centrally managed and acquired. The commu-
nicating parties can choose a dependable SK generator to
guarantee the quality of their session key. On the contrary,
in key agreement the session key is produced by a one-way
hash function with nonces randomly chosen; there is no
central session key controlling. However, a possible solu-
tion is that a communicating party that found the session
key is not appropriate can send an ABORT message to the
others to abort the session key of the running KEP. After-
wards, they try to re-establish another session key until
every party is satisfied with the session key.

On the other hand, the freshness and unpredictability of
session keys in key agreement can be achieved easily, since
the session key is generated by a one-way hash function.
The session key is fresh because the input nonces and key
are fresh, and it is unpredictable because the output of the
function is unpredictable if the input is fresh. In the key
generator approach, an SK generator can force the other

18

parties to accept any session keys, so the freshness and un-
predictability are determined solely by the SK generator.
That makes the level of trustiness on the SK generators
higher than other normal parties.

2.2.4 Key Confirmation

After the communicating parties have acquired session key
either by receiving it from other parties or by computing
the SK generation equation, they starts to confirm whether
the others have the same session key as theirs. One party
believes that the session key is distributed successfully to
the party and that the party is not an imposter if the re-
sponses of the party for key confirmation are correct.

There are two primary methods to do key confirmation: the
self challenge-response and exchanging handshake
numbers. In the self challenge-response approach, each
party uses its ID number as a self-challenge and uses the
session key to compute a response to it. For two parties,
they can exchange messages as follows:

A—>B:f(SK, {IDa})
B—A: f(SK, {IDb})

Because the session key is newly generated and delivered
confidentially, one cannot replay old self challenge-
response messages or forges valid messages to mislead
other parties.

The second method of key confirmation requires that the
SK generation equation output not only session key but al-
so two or more handshake numbers. When A receives
proper handshake numbers from B, it then believes B has
acquired the session key and vice versa; because one can-
not have the handshake numbers without the session key.
They can exchange such messages as follows:

A—>B: Ha
B—A: Hb

Here Ha and Hb are the handshake numbers. An important
requirement here is that one cannot derive the session key
by the handshake numbers.

3. MESSAGE SEQUENCE RULES TO THREE-
PARTY KEP

Message Sequence Rules (MSR) are the required patterns
of message flow in a KEP depending on the method of the
session key generation. A KEP can be constructed based
on the building blocks defined above if the message flow
of it obeys the rules. Before applying MSR, we have to
transform the KEP into the Message Sequence Diagram
(MSD), in which a MSR is denoted as a required path con-
sisting of nodes and directional links.

3.1 Message Sequence Diagram (IMSD)

Existing graphical representations of KEP often depict
merely the list of the messages in the protocol. On the

1998 International Computer Symposium
Workshop on Cryptology and Information Security

December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0.C.

contrary, the MSD focuses on describing the precedence
relationship of messages in the KEP and so it is easier to
show the parallelism of the message flow.

Figure 1 presents the precedence relationship of the mes-
sages in a protocol. The arcs denote the messages. The no-
de that has an arc pointing to it denotes the event of re-
ceiving the message, and the node that has an arc leaving it
denotes the event of sending the message. The arcs also
depict the transferring direction of messages. Therefore, an
MSD cannot only present the precedence relationship of
the messages, but also depict the receiving and sending of
messages between the parties.

o
@@ -

Figure 1. A message sequence diagram

3.1.1 Notation

We can follow along the nodes and the directional arcs to
construct a path in the MSD. An MSR corresponds to a
path in the MSD. A set of MSR specify what kind of paths
an MSD should have. Another notation of MSR relates to
key acquirement, which denotes whether the parties in the
KEP have acquired the authenticated session key.

The simplest form of the path existing notation is A~>B. It
means that there is at least one path exists from A to B in
the MSD. It should be noted that without an arc connecting
A and B directly, a path from A to B may also exist. For ex-
ample, in figure 1 along the arc 2 and 4 and the intermedi-
ate node S, the path A—B exists.

A—B—>S denotes that there exists at least one path from A
to S, while B is one of the intermediate nodes in the path.

{A, B}—S denotes that both A~S and B—§ exists, and the
path S—>{A, B} denotes that both S—A and S—B exists.
Using brace notation here is to simplify the representation
of multiple existing paths.

3.1.2 Key Acquirement

When a party, say A, in a path has derived or received ses-
sion key, its node in the MSD is denoted by (&). It is obvi-
ous that all nodes of A in the path after (&) should be (&) as
well. How to decide if the party has acquired session key
will be discussed in details later. And the following-three
sections are MSR for building blocks of three-party KEP.

3.2 MSR for Key Generator

In the key generator approach, the SK generator produces
session keys. In two-party KEP, the party who does not
generate session keys needs to obtain the session key from
the other one in the KEP. For example, if and B is the SK

'lg

1998 International Computer Symposium
Workshop on Cryptology and Information Security
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0.C.

generator, A has to obtain the session key from B through
direct key transfer and the MSR is:

A—(B) > (A),

where because B generates session key, the first node of B
in the path should have acquired the session key and every
node of B in the path is denoted as (B). After A obtains re-
sponse from B, it may also be able to acquire session key
from B’s message, so the final node of A in the path is de-
noted as (A).

In three-party KEP, the session key may be generated by
the authentication server S or by the other communicating
parties, A or B. If S generates the session key, it has to
transfer the session key directly to A and B, so the MSR is:

A— (S) »(2) AND B - (8) — (B), XG1)
where AND denotes the existence of both paths.

If A generates the session key, by the indirect key transfer
channel, A can transfer it to B with the aid of S through the

path:
B—(B)—>(8) > (B) (KG2.1)

Or, A can transfer the session key to S directly, and S in

turn transfers it directly to B:
S—-((A)>(S)ANDB—>(S)—»B (KG22)

Similarly, if B generates the session key, two possibilities
exists:

A%(B)——)(S)-—-)(A)
S—(B)—>(S)ANDA—->(S)—A

(KG 3.1)
(KG3.2)

3.3 MSR for Key Agreement

In the key agreement approach, the session key is generat-
ed by a one-way hash function, whose input parameter of
key part is a secret key shared between two parties in the
KEP and that of data part is two nonces. The goal of MSR
in key agreement is to distribute nonces to the SK com-
puting parties, which have ability to compute session keys
and to transfer them to the other parties, which are unable
to compute the session keys. The MSR for the former is
called nonce transfer rules and that for the later is called
key transfer rules.

In two-party KEP, both of the computing parties can com-
pute the session key after receiving nonce from the other
one. So, the MSR is:

A — (B)AND B - (B)

In three-party KEP, the key part of the SK generation
equation can be Kas or Kbs, and the nonce parameters can
be two of the three nonces generated by three parties re-
spectively. If the key part is Kas, the nonces are distributed
to A and S, and B has to obtain the session key from either
A indirectly or S directly. The MSR for Kas and different
nonce contributors are listed as follows:

IfSK = f(Kas, {Na, Nb, IDb}) then

{B, B}>(S) ANDB—>(A) ANDB »(S)—» (B) (KAL)
If SK = f(Kas, {Na, Ns, IDb}) then
A—>(S)AND S — (A) AND B — (8) — (B) (KA 1.2)
If SK =f(Kas, {Nb, Ns, IDb}) then
B—(S) AND {B, S}—(A) AND B—(S)—>(B) (KA 1.3)

Now we give expatiation of (KA 1.1) to gain deeper under-
standing of how these MSR are derived. The first rule, {A,
B} — (S) denotes that A and B have to sends their nonces
Na and Nb respectively to S, and after that S can compute
the session key. The second rule, B — (&) denotes that B
sends Nb to A. The combination of these two rules is the
nonce transfer rule. The nonce transfer rules of (KA 1.2)
and (KA 1.3) are derived in a similar way. As for the third
rule B = (S) — (B) of all MSR listed above, it is the rule
that makes B acquire the session key, called the key trans-
fer rule. It should be noted here that in this path S has de-
rived the session key, that is, S has received all nonces. It is
also possible for B to obtain the session key from A
through indirect key transfer; its MSR is B — (&) — (S) =
(B). It is evident that B — (S) — (B) is more efficient, so
we choose direct key transfer from S to B in these rules.

However, (KA 1.3) should not be adopted. Because an in-
truder can replay old nonces to A, which then uses those
nonces to compute a session key and accept it. Therefore,
for A to make sure the freshness of session key, the input
parameters of SK generation equation should contain non-
ce supplied by A. To be generalized, the communicating
parties with the ability to compute session keys on his own
should also be nonce contributors.

Similarly, if a session key is computed by Kbs, the MSR
are listed as follows:

If SK = f(Kbs, {Na, Nb, IDa} then

{R, B}—>(S) AND A—>(B) AND A—(5)—>(a) (KA 2.1)
If SK = f(Kbs, {Nb, Ns, IDa}) then
B—(S) AND S—(B) AND A—>(S)—(2) (KA 2.2)

3.4 MSR for Key Confirmation

After acquiring the session key, the communicating parties
can either exchange self challenge-response messages or
handshake numbers generated by the SK generation equa-
tion. They conform to the following MSR:

(A)—>B AND (B)—A (KC1)

Now let us consider how to decide when a party in the
KEP may have acquired session keys. In the key generator
approach the SK generator has the session key from the
beginning of the protocol, and the other parties have the
session key after obtaining the session key from the gen-
erator via direct or indirect key transfer. In the key agree-
ment approach, the SK computing party has a session key
after receiving the enough nonces, and the party that can-
not compute session keys has to resort to direct or indirect

_20-

key transfer from other party that has had a session key.

4. DESIGN OF THREE-PARTY KEPS

4.1 Design by a Session Key Generation Method

Given a session key generation method we can determine
the corresponding MSR and building blocks. However,
some links may not be available, so some messages should
be sent with the aid of the intervening parties. To design a
KEP, we have to transform the MSR and the building
blocks into messages over the physical links. We will il-
lustrate our ideas by an example of designing a KEP for
mobile station depicted in figure 2, where A is the mobile
station roaming to the visited domain administrated by sta-
tion B, and the station S is the administrator of the home
domain of A.

Whst)

—’

A .
— Wab)

visited domain

Whs(t) < Wab)

Figure 2. A mobile station roaming to a visited domain

If the session key generation method is key agreement in
which the SK generation equation is SK = f{Kas, {Na, Ns,
IDb}), the corresponding MSR is (KA 1.2). A and S need
each other’s nonce to compute the session key, so the non-
ce transfer rule and the messages are:

A—>(S):Na
S—(3):Ns

Because B has to obtain the session key from S through the
direct key transfer channel, the key transfer rule and the
message are:

B—(S):Nb
(S) > (B): Ns’, Psb@SK, f{Kbs, {SK, Nb, IDb}),
where S should have required Na sent by A.

To have S obtain A’s nonce, when A issues a register re-
quest to the administrator B in the visited domain, it also
sends its nonce Na. Then B sends its own nonce Nb as well
as Na to S. Now S can compute the session key and send it
to B by the message Ns', Psb&@SK, f{Kbs, {SK, Nb, IDb}).
Next, to have A obtain S’s nonce, S has to send Ns to B,
who then forwards that to A. The resulted MSD is depicted
in figure 3, where the second phase, key distribution, have
been completed.

1998 Intemational Computer Symposium
Workshop on Cryptology and Information Security

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, RO.C.

A—s B2 55—,/ @A

Figure 3. An MSD of mobile station roaming KEP by MSR
without key confirmation

To complete the final phase, key confirmation, we choose
the self challenge-response scenario. Therefore, the MSR
and the messages are listed as follows:

(B) > A:fiSK, {IDb})
(&) -> B : f{SK, {IDa}

The message, f(SK, {IDb}), can be put in the message 4 in
figure 10(a). And after receiving Ns from the message 4, A
sends the message, f(SK, {IDa}), to B. The resulted KEP is
a variant of the KEP proposed by Li Gong in [5]. Its MSD
is depicted in figure 4 and the messages in the protocol are
listed as follows.

Message 1: Na

Message 2: Na, Nb

Message 3: Ns, Ns’, Psb@SK , f{(Kbs, {SK, Nb, IDb})
Message 4: Ns, Nb’, f{SK, {Nb’, IDb})

Message 5: Na’, f(SK, {Na’, IDa}),

where SK = f{Kas, {Na, Ns, IDb})

1 2 3

A B (S) ®) 2

&2, (8

Figure 4. The complete MSD of mobile station roaming

KEP by MSR

4.2 Finding Alternatives to the KEP

If the session key generation method is not restricted, we
can choose other method to gain more efficiency. Consider
if SK = f(Kas,{Na, Nb, IDb} and the MSR is (KA 1.1), so
the required messages are listed as follows:

A—>S:Na
B— {S,(Aa)} :Nb
(8) — (B): Ns, Psh®SK, f{Kbs, {SK, Nb, IDb})

When B obtains Na from A, it sends Ab to A and {Na, Nb}
to S concurrently so that A and S can compute the SK si-
multaneously. Then B can obtain SK from S by the mes-
sage Ns', Psb@SK , f(Kbs, {SK, Nb, IDb}). The resulted
MSD is depicted in figure 5. Here we choose the approach
of exchanging handshake numbers to do key confirmation,
where Ha and Hb denote the handshake numbers.

It can be found that A in figure 5 obtains the SK earlier than
in figure 4 so that A can do key confirmation earlier. This
KEP is one pass faster than that in figure 4. The messages
in the protocol are listed as follows:

Message 1: Na

21

1998 International Computer Symposipm]
‘Workshop on Cryptology and information Security
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Message 2: Na, Nb

Message 2’: Nb

Message 3: Ns, Psb@SK , f(Kbs, {SK, Nb, IDb})
Message 3’: Ha

Message 4: Hb,

where {SK, Ha, Hb} = f(Kas,{Na, Nb, IDb})

A . B—Z——>(S

y—2
N
(A)

Figure 5. An alternative design of mobile station roaming

KEP by MSR

(B) —2— (A)

5. CONCLUSIONS

In this paper we constructed the building blocks and the
message sequence rules according to the analysis of KEPs,
by which we transformed the procedure of a KEP into
some well-defined modules. Thus, the process of designing
a KEP becomes less involved with the details of the mes-
sage sequence and the message contents. Given the envi-
ronment of a KEP, one can easily find the proper message
sequence by the message sequence rules and the message
contents by the corresponding building blocks. Besides, it
is also possible to find a more efficient KEP. Finally, be-
cause of the systematic design process, the KEPs designed
by our method can also be analyzed and understood easily.

In a large network, it may be more efficient to have multi-
ple authentication servers than to have one centralized
authentication server. The existing protocols cannot apply
to this kind of authentication environment. In [14], we have
extended the message sequence rules for three-party KEPs
to the generalized message sequence rules so that the KEPs
in a generalized authentication environment can be pro-
duced systematically by our method, too.

To be more generalized, a communicating party may also
provide the service of key establishment for other commu-
nicating parties, and the network environment may be
changed dynamically. Therefore, the on-line generation of
KEPs should be valuable. The possibilities that a computer
program can generate a proper KEP given the network and
authentication environment deserve further studying. In our
method, the message sequence diagram and the message
sequence rules can be easily represented in computer graph
data structures. Generating message sequence of the proto-
col is to find if the required paths of the message sequence
rules exist in the message sequence diagram. And after that,
the messages of the protocol are decided according to the
message sequence rules. Therefore, an on-line generator of
KEPs based on our systematic design method is quite pos-
sible.

6. REFERENCES

[1] Rainer A. Rueppel and Paul C. van Oorschot, “Modemn
key agreement techniques”, Computer Communica-
tions vol. 17, no. 7, pp. 458-465, July 1994.

[2] C. Boyd and A. Mathuria, “Systematic design of key
establishment protocols based on one-way functions”,
IEE Proc.-Comput. Digit. Tech., vol. 144, no. 2, pp.
93-99, Mar. 1997.

[3] Shu-Chung Ju, “A systematic method for design of key
establishment protocol,” Master Thesis, Department of
Electrical Engineering, National Taiwan University,
1998.

[4] Moore, J. H., "Protocol failures in cryptosystems”,
Proc. IEEE, 76, (5), pp. 594-602, 1988.

[5] Needham, R. M., and Schroeder, M. D., “Using En-
cryption for Authentication in Large Networks of
Computers”, Commun. ACM, vol. 21, pp. 993-999,
Dec. 1978.

[6] Simmons, G. J., “Cryptanalysis and protocol failures”,
Communication ACM, 37, (11), pp.56-65, 1994..

[7] R. Bird, 1. Gopal, A. Herzberg, P. Janson, S. Kutten, R.
Molva, and M. Yung, “The KryptoKnight family of
light-weight protocols for authentication and key dis-
tribution”, IEEE/ACM Trans. On Networking, vol. 3,
no. 1, pp. 31-41, Feb. 1995. '

[8] L. Gong, “Using one-way functions for authentication”,
ACM CCR, vol. 19, no. 5, pp. 8-11, Oct. 1989.

[9] M. Clayton, GSM Global System for Mobile Commu-
nication. Security Domain Pty Ltd. (CAN no:
003823461) (1991)

[10]T. A. Berson, L. Gong, and T. M. A. Lomas, “Secure,
keyed, and collisionful hash functions”, Technical re-
port SRI-CSL-94-08, computer Science Laboratory,
SRI International, Menlo Park, California, May 1994.

{11]R. Rivest, “The MDS Message Digest Algorithm”, In-
ternet RFC 1321, 1992.

[12]National Institute of Standards and Technology, “Se-
cure Hash Standard”, NIST FIPS PUB 180, U. S. De-
partment of Commerce, Draft, 1993.

[13]R. C. Merkle, “A Fast Software One-way Hash Func-
tion”, Journal of Cryptology, vol.3, no. 1, pp. 43-58,
1990.

[14]R. Bird, 1. Gopal, A. Herzberg, P. Janson, S. Kutten, R.
Molva, and M. Yung, “Systematic design of a family
of attack-resistant authentication protocols,” 1EEE J.
Sel. Areas Commun., vol. 11, pp. 679-693, 1993.

22

	
	16
	17
	18
	19
	20
	21
	22

