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ABSTRACT

This paper presents a variation of the wavelet-based
fractal signature recently developed by Espinal,
Huntsberger et al. Here, the overcomplete-wavelet-frame,
instead of the standard wavelet basis, is used as multiscale
signal/image representation to enhance the textural
characterization by fractal signatures derived therefrom.
Experimental results have demonstrated that this approach
can improve texture representation and enable better
detection of texture boundaries.

1. INTRODUCTION

Textures are repetitive visual patterns for surfaces of
objects and provide important information for object
segmentation and identification. The traditional statistical
image texture analysis is concerned with the spatial
interacdion of pixel intensities over a certain
neighborhood. Local features may be extracted from the
co-occurrence of pixel intensities at specified neighboring
positions relative to each pixel in the image. Statistics
may be taken on such measurements to provide a texture
description.  Segmentation of a textured image is a
difficult task, in particular, the accurate texture boundary
determination. Recent research on human vision suggests
the plausible modeling of Gabor filtering or wavelet
filtering which may provide the joint space/frequency
resolution. Multichannel filtering with different scale and
orientation tuning is able to provide localized spatial
changes in frequency [1]; however, outputs of the Gabor
filter bank are not mutually orthogonal which may lead to
significant correlation among texture features. On the
other hand, wavelet transform provides a unifying
framework for multiresolution analysis and can be applied
to texture analysis and segmentation [2-9]. Unser [6] and
Laine [7] introduced the use of wavelet frames for
representing texture characteristics, and extracted features
from the wavelet channels for texture classification and
segmentation. Hsin etal. [8] used modulated wavelets for
providing both spatial frequency and orientation
selectivity in texture segmentation. More recently,

Espinal et al. [9] used wavelet-based fractal signatures as
a texture measure for recognition and segmentation. They
have show its capability to distinguish texture boundaries.
In this paper, we evaluate fractal signatures based on
overcomplete-wavelet-frame representation of a textured
image with a goal to enhance their texture
characterization and localization. Our experimental
results on sample images have shown that this method can
improve texture segmentation and provide better detection
of texture boundaries. In the following section, we will
give a brief review of wavelet transforms and wavelet
frames. We will then discuss the overcomplete-wavelet-
frame based fractal signatures.

II. WAVELET BASIS AND WAVELET FRAMES
Wavelet Transform
Wavelet transform is used as a new methodology for
multiscale representation of all finite energy signals, that
is, signal f(x) in function space L[R). A wavelet y(x) is
a small wave satisfying certain conditions such as having
Zero mean value and decaying rapidly toward zero (e.g.,

compactly supported). When y(x) is dilated with a
dyadic scale 2/ and translated in integer units n,

w0 =27y x~n),

the set {;a(x)} forms a basis spanning a subspace W;.
Corresponding to w(x), there is a scaling function &(x)
related to y(x) via

Y0 =2 g(2x-k).
k

¢(x) satisfies a 2-scale dilation equation

p(x) =2 h(k)p(2x — k).

®(x) can be similarly dilated and translated
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Oyu(x) = 2772 p27x-n)

and the set {¢;z(x)} forms a basis spanning a subspace V.
Any function in the respective subspace can be
represented as a linear combination of these basis
functions. Let A be a projection operator which projects
a function f(x) in L%R) into the subspace V;, that is, it
approximates f(x) by fj(x) at resolution 2!, where jeZ (a
set of integers). A multiresolution analysis is a set of
spaces (V) z that satisfy the following properties:

@ ..cclcVclcV,cV,cV;c...
, which means that an approximation at a higher
resolution contains all the information in a lower
resolution;

@ f(x)eV, e f;2xeV,;

® Ug¥=L®. (%2,

jeZ

The approximation f;,(x) in Vj, is further approximated
by fi(x) in V; with approximation error represented in Wi,
so W is a complement to V;in V;,and V,, =V, @ W

Compactly supported orthogonal wavelets have been
constructed by Daubechies such that {¢;x(x)}xez forms an
orthonormal basis for V. {¥jx(}xez forms an
orthonormal basis for Wj, and W; LV;. If we stop at a
scale level j=J, f(x) can be represented by the following
description

f(x) = ch,k¢j,k(x) + Z Edjx Vix(X).
k Ok

where the scaling coefficients ¢;, and wavelet coefficients
d; can be computed by

Cin = zh&-2n)cj.u
k

dp= Zg(k~2n)c5.u
k

For the biorthogonal multiresolution analysis, the function
space LX(R) is described with two different series of
embedded subspaces, one is dual to the other,

1

~

VeV, LV,C

]

=

e V/ is the dual of V]

UeY=L®, V=2

jel

UjeZ ‘71 = LZ(R)’ ﬂvj =,

jeZ

~

Vi and V, are spanned by sets of scaling functions

{@;n} and {aj,n}, respectively. ~ Similarly, there are
complementary subspaces W} and W] dual to each
other, spanned by sets of corresponding wavelets
{W 2} and {¥ ju}, respectively. Wavelets ¥ (x)
and § (x) are dual to each other, so that

<Y ng®), ¥ x> = Suadox

The orthogonality holds only between dual subspaces,
ie,

<
!
<
@
T
<
I

i OW,
VAW, V. LW,, and W, 1W, forj<k
Any function f(x)e L3[R) can be represented as

0=, D, <0 fX) >y, (%)

where < - , - > denotes the inner product. If f; is the
projection of f(x) in Vo and the decomposition is stopped
at the scale level J, then

- 1
60 = B O00>0, 00+ D <, (D f00>Y, 0

1
= chx¢jk(x) "‘2 Ed,-kv/,-k(x)
k =1k

with = < 8, (), F(X) >, di= < P, (%), F(x)>.

The scaling coefficients and wavelet coefficients in the
decomposition are recursively computed by

¢ = D h(g=2k)cy,
q

dp = Z 8(g—2k)c;,,
q

where {il' (n)} and { g (n)} are the low-pass and high-

pass decomposition filters, respectively. Note that E (n)
and g (n) are derived from the dual scaling function
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&(x) and dual wavelet ¥ (x) instead of the
decomposition scaling function ¢(x) and wavelet y(x).

In practical applications to digital signals and images, f(x)
is not known; we use the original digital data as {cox}.
For applications to digital images, the 2-D wavelet
transform can be implemented by a tensor product of two
1-D wavelet transforms: first along the row direction, and
then along the column direction. An image of size nxn is
decomposed at the first scale level to four subimages,

n n L
each is downsampled to size Exa consisting of one

scaling subimage denoted as LL (low-pass filtered both
horizontally and vertically) and three wavelet subimages
denoted as HL (low-pass filtered horizontally and high-
pass filtered vertically), LH (high-pass fiitered
horizontally and low-pass filtered vertically), and HH
(high-pass filtered both horizontally and vertically). The
scaling subimage is to be further decomposed to the next
scale level, etc.

Overcomplete Wavelet Frames

The set of scaled and transiated decomposition wavelets
{5} forma frame,

wi ,
Wb;j,k(x) = 2 z l//(z—}x - kb)7

if there exist positive constants A and B, with 0<A<B<eo,
such that

A < Srveel <A

holds for all f(x)e Lz, where b denotes the translation

unit at scale j, " f"z = ( f f) measures the energy of
signal f(x). A and B are called frame bounds of the frame
{W ). If A=B, then the frame is called a tight frame,

i.e., a set of complete and independent basis. Every tight

: ~ 1
frame {y} has a dual given by ¥ = Z W, then

f(x)=i— Z(f,l//,,‘)l//“, fel

j.keZ

When A is equal to 1, the frame becomes an orthogonal
basis. Frames may contain redundancy, oversampled
frames generate redundant frames. If b=2", Wo,u(x)
represents a dilated y(x) with scale 2 but translated by k
units in the original scale; this set {Wox(x)} is called the
overcomplete wavelet frame.  Wavelet coefficients
obtained  in wavelet  decomposition  without
downsampling are wavelet coefficients of the
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overcomplete-wavelet-frame decomposition.  They are
computed by

Cj,k = 2 h (n)cj—l,k+2"l"
n

djv/c = zg(n)cj—l,kﬂj‘ln :

When the orthogonal wavelet transform is considered,
h(n) and g(n) will be used in the above equation. Since
they are available at all pixels, they provide more
localized information for all scales even though they
contain some redundant information. This is utilized in
multiscale edge detection [3] and also in texture analysis
[6]. We will examine fractal signatures based on the
overcomplete-wavelet-frame decomposition.

III. OVERCOMPLETE-WAVELET-FRAMES
BASED FRACTAL SIGNATURES

Fractal is a mathematical model describing the scaling or
self similarity property in geometry. Fractal dimension is
defined as a measure of roughness (or smoothness) of a
surface. If f(x) is a graph over a unit interval of x and the
interval is divided into 2" subintervals, let us attempt to
cover the graph with N(v,f) elementary squares of side
length 27 (or balls of diameter 27). The fractal dimension
of a graph is given by

dim(f) = Jig L= iy
log
2—v

log N(v, f)
log2®

The scaling by 2 as v—yc will reveal the roughness of f
in variation over the interval. The notion of fractal
dimension may be applied to wavelet subimages to
characterize certain texture information in an original
image f, since wavelet components of an image reflect the
high frequency information on the surface [9,10,11].
Instead of counting the number N(v,f) of elementary
volumes which cover the wavelet surface, one can
compute the sum of absolute amplitudes of wavelet
coefficients Wyg(f) at the scale level (-v) on sub-samples
of spatial resolution 22" over a unit area. Here 6=1, 2,
3 denote the horizontal, vertical and diagonal channels,
respectively. Thus [9]

10g+ {2A=2—Zv
log* 2"

dim[graph(f)]= lirg

where A is the elementary area 27'x2” at the scale level (-
v), log*(y)=max(log y, 0) for y>0 and log*(y)=0 for y=0,
and the summation is taken over the unit area in the
original scale (level 0).
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Wavelet-Based Fractal Signature

In practical situations, one can not compute wavelet
coefficients Wyp at the infinitely fine resolution (scale
level -o0). Instead, one can use fractal signatures D;p at
each pixel (=1.2,....J; 6=1,2.3) defined by [9]

b - 1og+{ZN(p)|Wjﬁh/2'2f}
o log*(27)

where the summation of [Wjel's is taken over a
neighborhood N(P) of mxm pixels around each pixel P
and j=1, 2, ..., log.m.

Based Fractal

Overcomplete-wavelet-frame
Signatures

We propose to evaluate fractal signatures on wavelet
subimages from the overcomplete wavelet frame
decomposition. In this case, wavelet coefficients Wi at
any pixel location for all scale levels j=1 are readily
available, these signatures extract more localized
information at each scale even though the computation
involves some redundant information. When used as
texture features in texture segmentation, they may help to
provide improved texture boundaries. Note that the
summation term in the numerator of Dje is equivalent to
the windowed mean of wavelet frame coefficients used by
Unser [6]. The fractal signature modifies the windowed
mean by a factor depending upon the scale. We will
explore the potential merit of these fractal signatures in
experiments discussed in the following.

IV. EXPERIMENTS ON TEXTURE
SEGMENTATION

Texture segmentation experiments were performed on
two images: (1) a composite of four Brodatz images
(128x128 pixels) shown in Figure 2, and (2) a cloud
image (360x300 pixels) shown in Figure 6. Biorthogonal
wavelet Bior 2.2 (in Matlab) and Daubechies’ orthogonal
wavelet Daubech3 were used, decomposition scaling
functions and wavelets are shown in Figure 1.
Decomposition filter coefficients are given by:

Bior 2.2
{1 ()} = [-0.1768 0.3536 1.0607 0.3536 -0.1768]
{7 @)} =[0.3536 —0.7071 0.3536}

Daubech3
{h()} = [0.0352 -0.0854 -0.1350 0.4599 0.8069 0.3327]

{g()} = [-0.3327 0.8069 -0.4599 0.0854 0.0352]
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Figure 1. Scaling functions and wavelets used in our
experiments.

Decomposition up to level 2 were considered. Using
selected texture features, the fuzzy C-means clustering
algorithm was applied for texture segmentation,

A Composite of Four Brodatz Images

In this experiment, first, we compared segmentation
results obtained by using three different sets of features:
(1) overcomplete-wavelet-frame based fractal signatures,
(2) wavelet-based fractal signatures of Espinal et al,, and
(3) windowed means in wavelet-frame decomposition
used by Unser (but without further extraction with
Karhonen-Loeve transformation).  The biorthogonal
wavelet Bior 2.2 was used and only the first level of
decomposition was considered. Since only fine textures
are included in the whole image, we chose a small
window size of 8x8. The ground truth about the four
textures in the composite image was known, so the
segmentation results were evaluated by computing the
correct classification rate in each case, as shown in Table
1. Using fractal signatures based on wavelet-frame
coefficients (see Figure 3 and Table 1) improved the
segmentation result in comparison to using fractal
signatures based on the standard wavelet coefficients
(Figure 4 and Table 1). When compared to the case of
windowed means of wavelet-frame coefficients (see
Figure 5 and Table 1), it also gave better performance
with a small gain in classification rate. This observation
overcomplete-wavelet-frame
decomposition has merits in texture feature extraction.



Table 1: Experimental results of texture segmentation of
the image in Figure 2 using three different sels of features
extracted on the first level of wavelet decomposition.

Decomp. | Window | Classif.
Filter size rate
Wavelet-based
fractal signature | Bior 2,2) 8x8 73.34%
Windowed mean
in wavelet-frame | Bior (2,2) 8x8 89.00%
decomposition
Wavelet-frame-
based fractal Bior (2,2) 8x8 90.72%
signature
Second, using  the overcomplete-wavelet-frame

decomposition approach, we compared the performances
of Bior2.2 and Daubech3 in texture segmentation, and
also examined the effect of using reduced samples in
computing second level fractal signatures, as show in
Table 2. Bior2.2 gave a better performance. Using skip

sampling at scale level 2, only 1 of the wavelet-frame
4

coefficients were used in evaluating D,e, the resulting
classification rate was essentially the same. This suggests
a possible saving in computation time, but maintaining
the improved performance in texture segmentation.

A Cloud Image

A cloud image (360x300 pixels) in Figure 6 shows a part
of a remotely sensed image of clouds over the North Sea.
This image was experimented before by Hsin [8] for
texture segmentation with modulated wavelets. A spread
of of cold air is on the left, and cloud streets of a cyclone
appears on the right. Three texture classes were assumed
to exist: cyclone cloud streets, cold air, and the rest
(including sea and land). We used the biorthogonal (Bior
2.2) wavelet frame decomposition and selected six
wavelet-frame based fractal signatures at the first two
resolution levels, Dy, Di2, Dis Do, Daa, and D,;. The
window size was 32x32. The clustering algorithm was
applied to segment the image into three texture classes as
shown in Figure 7(a), the determined texture boundaries
were overlaid on the original image as shown in Figure
7(b). This result is better than what was attained in Ref.
[8]. We also noticed that the addition of fractal signatures
at scale level 2 improved the texture segmentation when
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Table 2: Experimental results on texture segmentation of
the image in Figure 2 using overcomplete-wavelet-frame
fractal signatures extracted on the first two levels of
wavelet decomposition.

Decomp. Method Window Classif.
Filter size rate
Bior (2,2) Fully over- 8x8 90.93%

sampled
Bior (2,2) | Skip sampling 8x8 91.00%
at level 2.
Daubech3 Fully over- 8x8 87.46%
sampled
Daubech3 | Skip sampling 8x8 87.45%
at level 2

compared to the resuit obtained by using fractal signatures
at scale level 1 only.

V. CONCLUSION

We have introduced a variation of wavelet-based fractal
signatures for texture segmentation by evaluating fractal
signatures on wavelet coefficients of the overcomplete
wavelet frame decomposition. The coefficients for all
scales (j=1, 2, ..., J) are readily available at every pixel in
this image, the computation of fractal signatures at all
scales becomes more convenient and more localized in
comparison to the standard wavelet- based fractal

signatures.  Experimental results have shown their
improved  performance on  multiscale  texture
segmentation.
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(a) Segmentation into three texture classes (b) The original cloud image with an overlay of the
» segmented texture boundary.

Figure 7. Texture segmentation of the cloud image in Figure 6 obtained by using the overcomplete-wavelet-frame based
fractal signatures at the first two decomposition levels, ( Bior 2.2, window size 32 x 32),
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