1998 International Computer Symposium
Workshop on Image Processing and Character Recognition
December 17-19, 1998, N.C K.U., Tainan, Taiwan, R.0.C.

A FAST APPROXIMATION ALGORITHM FOR 3D IMAGE RECONSTRUCTION

Tung-Kuang Wu

and Martin L. Brady |

Department of Information Management
Minghsin Institute of Technology
HsinFong, HsinChu, Taiwan, R.O.C.
Email: tkwu@mis1.mis.mhit.edu.tw

ABSTRACT

In this paper we present a fast algorithm for the
computation of planar projections of a 3D image (i.e.,
the three-dimensional Radon Transform, or 3DRT)
and the inverse problem of reconstructing a 3D image
from its projections. For an NxNxN image I(x,y,2), it
would generally :{equire O(N?) time to compute the
projections of N° different planes, since each plane
contains about N4 sample points from I(x,y,z).
Reconstruction of an NXNXN imagg from N
projections also would usually take O(N7) time. Our
fast approximate algorithmth performs, planar
projection and backprojection in only 0(N3log N)
time.

1. Introduction

The reconstruction of 3D volume data by 2D
sectional imaging (a slice at a time) is commonly
used in X-ray computed tomography. Consecutive 2D
sections are stacked to form a 3D image, with the
data for each section being acquired and
reconstructed independently of any other section
({107, [12]). But this approach makes poor use of the
available imaging photons in the case of nuclear
medicine (in particular, Positron Emission
Tomography) by rejecting the direction of the photons
outside a single section. One of the reasons for this
waste of activity was that no practical computer
algorithm had been developed for reconstructing 3D
images from all the data which could be acquired if
the interslice collimators were omitted [15]. But the
demand to increase the sensitivity of reconstructed
images by making better use of the oblique rays is
driving the development .of 3D reconstruction of
digital images.

For an NxNxN image 1(x,y,z), it would generally
require 0(N5) time to compute the projections of N3
different planes, since each plane contains about N2
sample points from /(x,y,z). Reconstruction of an
NxNxN image from N3 projections also would usually
take O(N5) time. A numerical algorithm for the
approximate reconstruction from a finite set of plane
integrals is reported in [4] and {17] with second order
difference as the filter. [14] and [16]} developed a

two-stage reconstruction algorithm using two
successive 2D filtered backprojection processes. The
two-stage method reduces the computational steps
from 0(N5) to O(N"’). An novel algorithm requiring
only 0(N3logN) computation steps is reported in [11]
for 3D reconstruction (using the Fourier method) from
data collected in Fourier space at points arranged on
a grid of concentric cubes. Although fast in
computation time, the special data collection method
is limited to applications in MRI tomography. In the
case of PET, to acquire a full set of planar projections
is not possible due to the geometry of the detectors.
To solve the problem, some researchers ([5], [6], [15]
and [18]) propose a two-pass 3D reconstruction
procedure by first estimating (reconstructing) the
voxel value in each grid point using the conventional
2D backprojection method, followed by a planar
forward" projection process to approximately compute
the planar projections that are not collected by the
detectors. After the full set of projections are
available, a 3D reconstruction is applied. The
complete procedure is shown in Algorithm 1.

Algortihm 1. 3D Image Reconstruction Procedure

Step 1: Perform a 2D image reconstruction and
obtain an estimation of the 3D voxel data set.

‘Step 2: Perform 2D forward projection to the 3D
data to obtain a set of planar projections that

~are not collected by the detector.

Step 3: Perform a 3D image reconstruction using
both the detector-collected projections and
forward-projected planar projections
(computed in Step 2).

Studies shown in [6], [13] and [19] indicate that it
takes hours to compute the above 3D image
reconstruction and between 78 to 86% of the total
computation time is devoted to the forward projection
and backprojection phases. As a result, a fast
forward/backward projection algorithm has important
implications to 3D imaging, which can potentially
speed up the reconstruction process.

-213-

1998 Intemational Computer Syrmposium]
Workshop on Image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

In this paper we will present a fast algorithm for
the computation of planar projections of a 3D image
(i.e., the three-dimensional Radon Transform, or
3DRT) and the inverse problem of reconstructing a
3D image from its projections.

The remainder of this paper is organized as
follows. A brief description of the Approximate
Discrete Radon Transform (ADRT) algorithm, upon
which our projection algorithms are based, is given in
Section 2. The extension of the ADRT to compute
approximate planar projections is described in
Section 3. A truely 3D image reconstruction
algorithm based on the planar projection algorithm is
presented in Section 4. Finally, we give a summary
of our work and further research orientation in Section
5.

2. Approximate Discrete Radon Transform

In the 2D Discrete Radon Transform, a set of
summed projections is computed through a 2D image
at various orientations. Consider an NxN image,
I(x,y). If the sampling is dense enough so that every
pixel is used to compute at least one ray at any given
projection angle, then the number of sequential
operations needed to compute 2 single 2D projection

will be Q(Nz), and computing projections at N

different angles (independently) will require Q(N3).
However, for discrete non-interpolated line sampling
algorithms, different orientations do not necessarily
have to be computed independently. There can be a
great deal of intersection between the sample points
of lines at neighboring angles. For example, Figure 1
shows lines at two orientations that share half of their
data points. One can potentially save time by
computing such shared partial sums only once for use
in two or more lines. Unfortunately, it is generally
difficult to determine the proper subsets and order the
computations accordingly, and it may be easier to
simply calculate the sums independently. The
Approximate Discrete Radon Transform defines a new
line sampling algorithm that sacrifices a little
accuracy and generality in order to generate line
rasterizations that allow maximum sharing of
intermediate terms. As a result, the ADRT is able to
compute a specific set of N projections over an NxN
image in only O(NzlogN) steps. We briefly describe
the ADRT algorithm below (see [2],[3] for a detailed
description).

The ADRT algorithm computes projections at &
different angles in the range & = 07 to 45°
concurrently. Projections in the ranges 45° ~ 90, 90°
- 135°, and 135" ~ 180" are obtained from symmetric
variations of the basic 0° — 45° computation that we
discuss here. Rays are projected from integral points
on the base line, y = 0, to integral points on the line y
= N-1. In particular, rays from pixels (x,0) to the
pixels (x+a, N-1) are projected, where a = 0,1,2,...,
N-1, to obtain projections at N different angles, € =
tan‘l(a/(N—l)). Additional samples between (x,0)
and (x+a, N-1) are taken from pixels near the ray that
passes through these end points.

8,

A

»
ST RS Rty ek Sred St

—

TTTETT CIRIIALIN

R Berbol aiule Stk Sadl 2

- -
Zé

Figure 1. Overlap between neighboring lines.

In order to simplify the discussion, the image is
right-padded with zeroes at coordinates (x,y),

N<x<2N, 0<y<N. 2N2 rays then projected from
pixels (x,0) to (x+a [mod 2N}, N-1), where x = 0,1,
2,..., 2N-1. The cyclic definition of x-coordinates
means that rays that “fall off” one of the sides of the
image continue by taking samples from the zero-
padded region. Each ray will draw exactly one
sample from each row, and thus consist of the sum of
N points. (In practice, unnecessary computations
within the zero-padded region can be avoided by
checking boundary conditions.)

Consider the N sample points of a ray projected
using the ADRT algorithm. A set of p consecutive
sample points are defined along the ray, from lower
end point (x,y) to upper end point (x+a, y+p-1), as a
p-point segment of the ray. The x-displacement of a
segment is the difference in the x-coordinates of its
upper and lower end points. (The y-displacement of a
p-point segment is p—1.) The position of a segment is
described by the coordinates of its lower end point.
The ADRT algorithm proceeds recursively, first
computing the sums of a set of 2-point segments that
are contained in many rays. Pairs of 2-point segments
are then added to form sums along 4-point segments,
and so forth.

The first three steps of the ADRT are illustrated
in Figure 2 for an 8x8 portion of an image. It begins
by computing the sums of pairs of pixels, to form
segments of two pixels each, with orientations of 0°
and 45°. Specifically, 2NxN/2 sums of vertical 2-
point segments are obtained by adding the pixels
I(x,y) and I(x,y+1) for x=0, 1, 2,..., 2N-1 and y = 0,
2, 4,..., N-2. Similarly, 2NxN/2 diagonal 2-point
segment sums are obtained by adding the pixels I(x,y)
and I(x+1, y+1) in the same range (recall that the x-
coordinates are taken modulo 2N).

In the second pass, pairs of 2-point segments are
added to obtain 4-point segments. The vertical 2-
point segments are used to compute 4-point segments
with x-displacements of 0 and 1, and the diagonal
segments are used to compute 4-point segments with
x-displacements of 2 and 3 (see Figure 2). In the
third pass, pairs 4-point segments are summed to
construct 8-point segments at eight different gngles,
with x-displacements from 0 to 7. In pass i, 2*-point

-214-

1998 international Computer Symposium
Workshop on Image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

segments with x-displacements of 0, 1, 2,..,, 201 are
computed, where '11 segment of x-displacement a is
the sum of two 2¢—1-point segments of x-displacement
la/2]. The algorithm completes in logN passes,
computing N-point segments with x-displacements a
from O to N-1, from positions (x,0), x =0, 1, 2,..,,
2N-1.

A pseudo-code description of the ADRT
algorithm for angles in the range 0-45" is shown
betow (Algorithm 2). Rj(x,y,a) denotes a segment
computed in pass i with lower end point (x,y) and x-
displacement a. The initial image I(x,y) is
represented as RQ(x.y,0), and the image is padded
with an additional N2 zeroes on the right side. In
each pass, the number of different angles (x-
displacements) doubles, but the number of y-
coordinates that contain lower end points is halved,
so the total amount of data remains constant. After
log N passes, the projection data is obtained from
RlogN(x,0,a), where the angle of a line (x,a)is 8 =
tan—1(a/(N-1)) with respect to the positive y-axis and
its distance from the origin is d = xcos 8.

Algorithm 2. ADRT computation for 0° —45°.

Initialize Ryp:

for y = 0 to N-1

{ forx=0toN-1
for x = N to 2N-1

Ro(x,3,0) = I(x,)
Ro(x,y,0)=0

}
Compute the RT:

fori=1tologhN
for a=0to 2i-1) '
for y =0 to N-2!step 2*
for x =0 to 2N-1
Ri(x.y.a) = Ri_1(x, y, Lal2]y +
Ri1GeH a2, y+2i-1, Lan2)y

Pass 1

Exactly N2 segment sums are performed in each

pass i of Algorithm 2, and thus only O(NzlogN)
operations are required to compiete the algorithm, an
O(NNogN) speedup over the time to compute the
projections independently. Therefore, N approximate
projections in only slightly more time than is required
to compute a single projection are obtained.
Furthermore, the ADRT requires only log N simple

parallel steps, and can use up to 2N2 processors.

The ADRT casts a total of 2NZ rays (d,6)
(although N/2 of them pass entirely through the
padded zeroes). The specific set of values (d,0) are
determined by the image size, N. Note that the
angles and spacings are not uniformly distributed (A8
and Ad are not constant). However, the set of rays
are quite dense, so a desired sample (d,8) can be
obtained from the computed set by interpolation. The
sample points along a ray are not interpolated, and
may even be greater than 1/2-unit from the intended
ray. However, the maximum distance of any sample
from its ray has beem proven to be less than
(1/2)(log N -1), and is in practice even smaller -[2].
In the first part of our work, we extend this technique
to generate a variety of fast approximate 3D
projection algorithms. We then show how to apply
these algorithms to 3D image reconstruction.

3. The Approximate Dsicrete Planar
Projection (ADPP) Algorithm

Using the fast 2D Approximate Discrete Radon
Transform (2D ADRT) algorithm designed for the
two-dimensional Radon Transform presented in
section 2, we construct an algorithm to compute
approximate planar projections at N2 different

orientations, in only 0(N3)og N) time. A total of N
planes are projected at each angle, and most pass

Pass 3

NN L
S

0

.
N

»

S e---

a: 1

N
AN

0

Figure 2. Segments computed in the first three passes of the ADRT. The upper half shows the set of segments
computed. For each pass, one complete set of angles is highlighted, beginning in the lower right corner of the
NxN image. Below, the construction of the segments (using the shorter segments from the previous pass) is
iltustrated. Solid lines represent segments computed in the previous pass, and a dashed line joins two segments

to be added.

-215-

1998 Intermational Computer Symposium
Workshop on image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

through Q(N?) data points. Our algorithm is thus
G)(NzllogN) faster than computing them
independently.

A planar surface integration (planar projection
using the addition operator) can be computed by
summing parallel line projections. For example, if
each line.in Figure 3 represents a line projection
(with no pixels overlapping in each line projection)
along a one-pixel wide strip specified by ¢, adding
all of the parallel line projections along angle B gives
the planar surfice integration specified by o and B.
This implies that planar integration can be computed
using a two-phase procedure: (1) first compute line
integrations (with orientation) within slices of 3D
data, (2) sum cross-slice line integrations (of angle
) along a specific angle (B).

4 e
B

""" 2SR B

X

4>

Figure 3. Planar surface projection computation by
adding numerous parallel line projections.

The availability of the ADRT algorithm allows us
to make use of the above two-phase procedure very
efficiently. By proper arrangement of a 3D image
data set, the two-phase Approximate Discrete Planar
Projection (ADPP) (for 0 £ @ <m/4 and 0 < B < w/4)
can be computed with multiple applications of the 2D
ADRT algorithm. The ADPP algorithm proceeds in
two phases. In the first phase, we compute line
projections within each 2D slice of the image,
I(x,y,z=c), where ¢ is the set of integers between 0
and N-1 (data is arranged in a 3D array, with size
NxNxN, as shown in Figure 4(a)). This is done by
applying the (two-dimensional) ADRT algorithm to
each of the N slices. This yields a set of line
projections P1D(d,@.z). In the second phase, we
rearrange the computed line projections to a new 3D
data set (as shown in Figure 4(b)) and again apply
the 2D ADRT algorithm, this time within planes of
constant ¢, i.e., slices P1D(d, o=c¢,z). This is done so
as to sum coplanar projections of a fixed o. We thus
compute planar projections, P2p(d,a,pB), from line
projections of a fixed angle B, where 4 denotes the
distance of the plane from the origin, and (e,B)
specifies its orientation. Note that in the ADPP
algorithm, we represent the terms o and 3 with a and
b, where o = tan"1(a/(N~1)) and B=tan"}(GAN-1)).
Selecting any horizontal slice (say P1p(d,a=0,2),
highlighted in Figure 4(b)) and integrating along
some line on that slice as shown in Figure 4(c), a

-216-

line integral specified by a and b is equivalent to a
planar integration (also specified by a and &) in the
original object space. For example, the line
integrations L1 and L2 in Figure 4(c) are equivalent
to PI and P2 in Figure 4(d). We give more details of
the ADPP algorithm as follows.

Assume the 3D volume is represented by a 3D
array I(x, y, z). The following pseudo code gives a
high level description of the two-phase procedure.

Algorithm 3. ADPP computation for 0 < o < x/4 and
0<B<n/4
for range of angle {0,n/4] do

{
for z=0 to N-1 do

apply 2D ADRT to slice I(x, y, z)
store the output in 3D array
P1p(x, a, z), a=0,N-1

}
for range of angle [0,7/4] do

for a=0to N-1 do

apply 2D ADRT to slice P1p(x, a, 2)
store the output in 3D volume
Pyn(x, a, b), a=0, N-1

}

The above algorithm computes N2 sets of planar
projections for 0 < ¢ <n/4 and 0 < B<w/4. The
algorithm contains two phases, and each phase
requires N applications of the 2D ADRT. Since the
ADRT algorithm requires O(Nzlog N) time on an
NxN 2D image, the ADPP algorithm takes omnly
0(N3log N) time. By comparison, it takes ow?)
time to compute a single planar projection and ow3)
time for a set of N planar projections, provided that
each planar projection is computed independently. A
total of @(N5) time is thus required to obtain all N2
sets of planar projections independently. As a result,

our algorithm achieves a speedup of 0(N2/logN).
4. Truly 3D Image Reconstruction

The planar projection algorithm presented in
Section 3 can be applied to the image reconstruction
problem in several ways. It can be used to compute
forward projection, 2D image reconstruction, and truly
3D image reconstruction. In this section, we base our
discussion on Algorithm 1 (the 3D image
reconstruction procedure) and show when and how the
planar projection algorithm can be of use.

4.1 Application of the ADPP in 3D Image
Reconstruction

Obviously, the ADPP algorithm can be used in
the forward projection process (Step 2 of Algorithm
1), It happens that the same algorithm can also be
used in the backward projection process (Step 3, as
will be discussed in later section). Note that if Step

(N-1, N-1, N-I)j (N-1, N-1,

1998 International Computer Symposium
Workshop on Image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

1)

\ &

(0, 0, 0)
(a)

(6,0,0)

(b)

*p

()

a=0 (N-1, N-1,N-1)

¥

0,000 *o

(@)

Figure 4. Planar integration procedure.

(a) a 3D data set. (b) a reorganized 3D data set after the first

application of ADRT. (c) A slice of 2D array extracted from (b), the two line integrations (LI and L2) are
equivalent to the two plane integrations (PI and P2) shown in (d). Note the correspondence of b between (c)

and (d).

1, the 2D image reconstruction, is computed using the
2D ADRT, the whole 3D image reconstruction
procedure then contains repeated applications of the
2D ADRT, plus some filtering steps. This greatly

simplifies the implementation of the 3D
reconstruction process.
4.2 Linogram Property of the ADPP
A
ot |12 71
o X
| & >
b a—*? N-I

Figure 5. A plane (P) specified by (d, a, b) in the
object space. The plane can also be regarded as one
that is spanned by the two lines L1 and L2.

A line in 2D is specified by two variables d and 8
, and the line can be represented by the equation d=
xcosf + ysin@. A line projection process based on
this line equation maps a fixed point in the (x, y)-
coordinate system to a sinusoidal curve in (d, 8)
space (which is why the mapping is called a
sinogram [9]). As a result, conventional methods to
reconstruct a fixed point (x,y) (through
backprojection) from projection space require
summation of the projection data that are located on
the sinusoidal curve. We can, however, arrange the
projection data so that projections that pass through a
fixed point in the object space correspond to a
straight line in the projection space. A sampling of
this kind is called a linogram [7]. A direct advantage
of a linogram sampling is that no interpolation step is
required to produce uniform samples when computing
backprojection through the Fourier Transform method
({11, [8]). It also indicates that the backprojection

process can benefit from a fast line rasterization
algorithm (in particular, the 2D ADRT algorithm).
Recall that a projection is specified by (d, a) in

the 2D ADRT, where d represents the distance along
the x-axis between the origin and the line, and a
represents the x-coordinate difference (x-
displacement) between the starting and end points of
the line. An example of a line constructed by the 2D
ADRT (for an NxN image) is depicted in Figure 5. In
general, a line that passes through points (d, 0) and
(d+a, N-1) can be represented as:

(N-1)x - ay = (N-1)d)
By rearranging Equation (1) to the (d, a)-coordinate
system, we get:

Y _ =

(N_l)a+d-x -(2)
As we can see, a line in (x, y) object space (Equation
(1)) is mapped to a line in (d, @) projection space
(Equation (2)). This shows that the non-uniform
sampling of the 2D ADRT algorithm meets the
linogram property. It remains to be shown that the

ADPP algorithm preserves the linogram property by
repeated applications of the 2D ADRT algorithm.

(N-1N-1N-1)

(000)

Figure 6. A plane (P) specified by (d, a, b) in the
object space. The plane can also be regarded as one
that is spanned by the two lines L1 and L2.

(doo)

To prove that the ADPP algorithm meets the
linogram property, we need to show that planes that

-217-

1998 International Computer Symposium
Workshop on image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

b=c (N-1N-1N-1)
i L N_1

a=0

Xy

\ (1,0,0) N e (x=1, 2=0)

(a)

0,0,0

a=0
a=c2
z=0
P
5
(1,0

(b)

Figure 7. A two-phase backprojection example showing that a grid point can be reconstructed by summing
planes that intersect at a common line, and then summing over such intersecting lines of various orientations

within a slice of fixed z axis.

pass through a given point in the object space are
mapped to points that are located on a plane of the
projection space. Consider 2 plane P specified by (4,
a, b) in object space, as shown in Figure 6. Note that
the plane can also be considered to be defined by the
two perpendicular lines, L1 and L2, located on the x-y
and x-z planes respectively and sharing a common
end point (d, 0,0). The two lines have end points
(d,0,0), (d+a,N-1,0) and (d,0,0), (d+b,0,N-1)
respectively and can be represented as follows.

LY _aid=
I Fgptd=r O

z
L2: (N—l)b+d'x» 4)

Also note that a finite plane is formed by an
aggregate of a finite number of parallel lines. For
example, in Figure 6, lines that are parallel to L2 and
originating from end points located on L1 can
uniquely determine all the points on the plane P. As
a result, combining the two equations by replacing
the two end points of L2 with (dg,y,0) and
(do+b, y, N-1), where d £d(< d+a and is represented

by Equation (3) as do=x—(7vl_-1—)a, we obtain a

number of parallel lines that uniquely specify the
plane P as follows.
Y AN R =

P (N—l)b+(N—l)a+d X (5)

Thus, a plane P is mapped to a point d,a,b)in
the projection space. Furthermore, assume that plane
P passes through a grid point (x0, Y0, zg). The
equation of P can be rearranged as follow:

Y0 0 _,_
Lt o= ©

It can be easily seen that planes that pass through
a fixed point in the object space indeed map to points
that located on a plane in the projection space, and
thus the ADPP algorithm does meet the linogram
property.

P:. d+

-218-

Finally, we need to show that the planar
projection specified by Equation {(6) can be computed
by application of the ADPP algorithm, by
demonstrating the four end points of P’ are located at
integer grid points. This can be shown by substituting
a and b with O or N-1 respectively, and checking the
value of d. The results of these substitutions are
shown below.

a\b 0 N-1
0 d=xQ d=x)-20
N-1 d=x0-y0 |d=x0-y0-20

Since x(, y0, z(are integer, d is thus an integer
that ranges from —2(N-1) to N-1.

4.3 ADPP for 3D/2D Backprojection

The linogram feature of the ADPP algorithm
ensures that the backprojection procedure can be
taken along planes, and thus allowed an efficient
implementation with repeated applications of the 2D
ADRT algorithm. We give an intuitive example in
Figure 7, which shows how a point can be
backprojected from planar projections. Note that we
use terms (a, b), the x- and y-displacement, instead of
(8, ¢) to specify the orientation. Figure 7(a) shows
planes (planar projections) with d=1, a=0 and
varying b that pass through grid point (1, 0, 0). As
can be seen, the planes intersect at a common line
(x=1, z=0) on the y-z plane. As we change the value
of angle a of the planar projections, the common line
of intersection also changes its orientation, but still
pass through a common grid point, (1, 0, 0), as
illustrated in Figure 7(b). An integration over all of
the linear projections (represented by lines) thus
reconstructs grid point (1,0,0). By varying the
values of d, a, and b, and summing the planar
projections accordingly, we can reconstruct the value

" of different grid points. Note that each of the planes

(planar projections) shown in Figure 7(a) is
represented by a point in the projection space. More
specifically, these points are located on the same
plane (a=0) of the (d, a, b)-volume. As a result,

application of the ADRT algorithm to slices with
varying b and constant a give a set of backprojected
lines (linear projections), as shown in Figure 7(b).
Summing all the backprojected linear projections
along different planes of a then give the
backprojected grid points. This is how our two-phase
ADPP-based reconstructed algorithm operates.

Algorithm 4. Procedure for the computation of
forward/backward projections and filtering.

E i Projection.
Phase 1:
for slice I(x, y=C, 2),0<c<Ndo
{
for0<i<4do
Compute line projections
P1i(x, y=c, a) using the 2D ADRT
}
Phase 2:
for slice P1;{x, y, a=c),
0<c<Nand0<i<4do

for0<j<4do
Compute planar projections
Pzij(x, b, a=c) using the 2D ADRT

}
Bac! i Projecti
Filtering:
Compute second order difference
P"3ij(x, b,), 0<ij<4
from planar projections P2i(x, b, a)
Phase 3:
for slice P"2j(x, b, a=c),
0<c<N and0<ij<4do
{
Compute projections
P3jj(x, y, a=c) using the 2D ADRT
}
Sum partial projections
P3jj(x, y, a=c), 0 <j <4 = P3(x, y, a=c)
Phase 4:
for slice P3;(x, y=¢, a),
0<c<Nand0<i<4do
{
Compute line projections
P4j(x, y, z) using the 2D ADRT

)
Sum partial projections
P4i(x,y,2),0<i<4 =[x, y,2)

We give a detailed description of the
reconstruction in Algorithm 4. The algorithm
presented in Section 3 computes forward planar
projections at angles corresponding to 0 < o5 B<ni/4
(0 £ a, b< N) in the spherical coordinate system.
Other angle ranges can be computed by slight
modifications to the basic algorithm. A total of 16
applications of the ADPP algorithm (for 0 < @, Bsnm)
are thus necessary to complete the full planar
projection process. Since each application of the
ADPP algorithm takes O(N-°loghN) time for ag
NXNxN 3D image, the total computation time for N
planar projections remains O(N logN). Note,
however, that in an actual implementation, the ADPP

1998 International Computer Symposium
Workshop on image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

algorithm can be broken down into two steps and
some of the repeated line projection computations in
the first phase can be avoided. We give the
procedure for the computation of the full set of
forward and backward projections (plus the filtering
step) below. We also present the forward projection
procedure, since it is needed to compute forward
planar projections for use with our study. I(x, y,z)
and I(x, y, z) represent the original and the
reconstructed 3D image respectively.

Note that 20 (rather than 32) applications of the
2D ADRT (to each of N slices of size NxN) are
required in the forward or backward projection
process.

The 3D image reconstruction procedure can be
performed starting from the filtering step in Algorithm
4 if a full set of planar projections are available.
However, the ADPP-based algorithm can also be used
to compute the 3D reconstruction if only line
projections are available. By starting from the second
phase of Algorithm 4, we forward-project the line
projections to 2D planar projections. Once the planar
projections are computed, a 3D image reconstruction
can be perforrged. The computational complexity
remains O(N-°logN), however the complicated
filtering steps required in 2D image reconstruction are
avoided. Note that the data must be collected in
linogram fashion (see [1] for approaches in collecting
Linogram projections) or interpolated into the proper
sampling distribution.

5. Conclusion

In this paper we have presented an
asymptotically fast approximate planar
forward/backward projection algorithm which, when
combined with a simple second order difference filter,
can compute truly 3D image recoanstruction (from
projections) very efficiently. This algorithm is
directly applicable to medical imaging techniques
that collect planar projection data directly, such as in
Magnetic Resonance Imaging (MRI) and Positron
Emission Tomography (PET). In this case, the data
must either be collected in Linogram fashion {1] or
interpolated into the proper sampling distribution.
The fast filtered backprojection can then be applied.
However, the approach can also be applied to data
collection techniques that produce line projection
data. Often, such data are collected as independent
2D slices, and reconstructed independently using 2D
recongtruction methods. Normally, this would require
O(N%) time to reconstruct data with N angles, N
projections per angle, and N slices. Furthermore, it
requires a more complex (and in practice, time-
consuming) filtering operation, a convolution with the
function whose Fourier transform is l@l. Note that
after the first phase of our forward projection
algorithm (Algorithm 4), we obtain this same type of
data. We can therefore apply our method to this data
by starting from the second phase of the forward
projection algorithm to compute planar projections
from the line projections. We then compute a full 2-
pass 3D recogstruction as before. The backprojection
time is O(N-log N). Furthermore, the relatively
complicated Fourier domaing filtering is replaced by
a simple Jocal second order difference filter, requiring
only O(N?) time [17].

A qualitative comparison of the reconstructed
images between the ADPP-based 3D image
reconstruction and ADRT-based reconstruction

-219-

1998 International Computer Symposism
Workshop on Image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

methods would be interesting. Also, there might exist
other approximate line sampling techniques, which
may be potentially faster and more efficient than the

ADRT-based one.

An approximate curvature (non-

planar) sampling technique should have many
potential applications in the fields of image
processing and computer vision.

6. Reference

(1]

(2]

(3]

“

(3]

(6]

(8]

&)

(10]

(11]

(12]

(13}

L. Axel, G. T. Herman, and D. Roberts,
"Linogram Reconstruction for Magnetic
Resonance Imaging (MRI)", IEEE Trans. on
Medical Imaging, 9 (4), pp. 447-449 (1990).
M. L. Brady, "A Fast Discrete Approximation
Algorithm for the Radon Transform", Tech.
Report CSE-93-007, Dept. of Comp. Sci. and
Eng., The Pennsylvania State University (Oct.
1993). (submitted for publication)

M. L. Brady, W. Yong, "Fast Parallel
Approximation Algorithms for the Radon
Transform,” Proc. 4th ACM Symp. on Parallel
Algorithms and Architectures, pp. 91-99 (oct.
1992).

M. Y. Chiu, H. H. Barrett, and R. G. Simpson,
“Three-Dimensional Image Reconstruction
from Planar Projections,” Journal of American
Optical Society 70 pp. 755-762 (1980).

S. R. Cherry, M. Dahibom, and E. J. Hoffman,
"Evaluation of a 3D Reconstruction Algorithm
for Multi-slice PET Scanners," Physics in
Medicine and Biology, 37 (3), pp. 779-790
(1992). .

M. Defrise, D. Townsend, and A. Geissbuhler,
"Implementation of Three-Dimensional Image
Reconstruction for Multi-ring Positron
Tomographs,” Physics in Medicine and
Biology, Vol. 35, pp. 1361-1372 (1990).

P. Edholm, and G. T. Herman, "Linograms in
Image Reconstruction from Projections,” IEEE
Trans. on Medical Imaging, MI-6 (4), pp. 301-
307 (1987).

P. Edholm, G. T. Herman, and D. A. Roberts,
"Image Reconstruction from Linograms:
Implementation and Evualation,” IEEE Trans.
on Medical Imaging, 7 (3), pp. 239-246 (1988).

P. Edholm, and B. Jacobson, Poster, 19735
Meeting on Image Processing for 2-D and 3-D
Reconstruction from Projections, (1975).

G. T. Herman, Image Reconstruction from
Projections, (New York: Academic Press),
1980.

G. T. Herman, D. Roberts, and L. Axel, "Fully
Three-Dimensional Reconstruction from Data
Collected on Concentric Cubes in Fourier
Space: Implementation and a Sample
Application to MRL" Physics in Medicine and
Biology, Vol. 37, pp. 673-687 (1992).

A. C. Kak, “Image Reconstruction from
Projections,” Digital Image Processing
Techniques, Academic Press (1984).

P. E. Kinahan, and J. G. Rogers, "Analytic 3D
Image Reconstruction Using All Detected
Events,” IEEE Trans. on Nuclear Science, 36
(1), pp. 964-968 (1989).

(14] -

[15]

[16]

(7]

(18]

(19

-220-

P. C. Lauterbur, and C. M. Lai,
"Zeugmatography by Reconstruction from .
Projections,” IEEE Trans. on Nuclear Science,
NS-27 (3), pp. 1227-1231 (June 1980).

J. G. Rogers, R. Harrop, and P. E. Kinahan,
"The Theory of Three-Dimensional Image
Reconstruction for PET," IEEE Trans. on
Medical Imaging, Voi. MI-6, pp. 239-243
(1987).

C. M. Lai, and P. C. Lauterbur, "A Gradient
Control Device for Complete Three-
Dimensional Nuclear Magnetic Resonance
Zeugmatographic Imaging," J. Phys. E: Sci.
Instrum., 13, pp. 747-750 (1980).

L. A. Shepp, "Computerized Tomography and
Nuclear Magnetic Resonance,” Journal of
Computer Assisted Tomography, 4 (1), pp. 94-
107 (1980).

M. W. Stazyk, J. G. Rogers, and R. Harrop,
"Full Data Utilization in PVI Using the 3D
Radon Transform," Physics in Medicine and
Biology, Vol. 37 (3), pp. 689-704 (1992).

D. W. Townsend, T. Spinks, T. Jones, A.
Geissbuhler, and M. Defrise, "Three
Dimensional Reconstruction of PET Data from
a Multi-ring Camera,” IEEE trans. on Nuclear
Science, Vol. 36 (1), pp. 1056-1065 (1989).

	
	213
	214
	215
	216
	217
	218
	219
	220

