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ABSTRACT

Contour ségmenta.tion plays an important role in
occluded object recognition. In this paper, we
propose a segmentation method which is robust
with respect to noise. Our approach is based
on the curvature zero-crossing points extracted
from outermost contours of multi-scale images.
By using the segmentation scheme, a matching
procedure for object recognition with occlusion
is presented. This requires an affine integral
invariant representation of contours which have an
arclength as parameter.

Keywords. Scale-space Theory, Object Recogni-
tion, Contour Extraction.

1 INTRODUCTION

Object recognition has many applications in in-
dustry, defense and medical science. A fundamen-
tal problem of object recognition is recognising
occluded objects within a given scene. Feature-
based methods for object recognition have been
the goal of much recent research [1-3]. Finding ef-
ficient invariant features [4] of contours extracted
from images has been a useful solution to this
problem. A system for object recognition with
occlusion can be found in [5]. A segmentation
of the extracted contour has proved important
in occluded object recognition [6]. Segmentation
algorithm must be considered to be robust with
respect to noise and be invariant under general
affine transformation. There has been consider-
able research carried out on contour segmentation.
Kass et al. [7] focused on polygon approximation
of contour data. Since the locations of polygon
vertices are arbitrary, their technique is sensitive

to the noise and the affine transformation of the
contour. Rattarangsi et al. [8] and Rosin [9]
extracted local maxima from contour smoothed
using a fixed Gaussian scale. These points were
then used for the segmentation. Though this
approach is less sensitive to noise than the polygon
approximation method, it can suffer from loss
of structure due to over-smoothing since the ex-
tracted points are always from a single scale. To
overcome this problem, Mokhtarian [6] suggested
a multi-scale segmentation method based on the
curvature scale space. He segmented contours
using the curvature zero-crossing points of multi-
scale contours. However, the paper neglected a
basic fact that the Gaussian evolved version of the
initial contour is not the contour of the Gaussian
evolved image of the input image. This means
the extracted zero-crossing points may not be
on any contours of the Gaussian evolved images.
Using these points for the segmentation may result
in inaccurate object matching results from their
procedure.

In this paper, we consider the contours of multi-
scale image representations. For each candidate
image, we first use the edge focusing technique
(2]} to find the appropriate Gaussian scale for the
extraction of the image contour. This is based on
the Spiral architecture {10]. The curvature zero-
crossing points will then be extracted from the
contour of the Gaussian evolved image by using
Mokhtarian’s method [6]. This leads to a new
contour segmentation. Besides this, a matching
procedure will be proposed for occluded object
recognition. '

Our segmentation method avoids the creation
of pseudo zero-crossing points of curvature. and
guarantees that the contour is not over-smoothed.
Furthermore, our approach is robust in the pres-
ence of noise.
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2 MULTI-SCALE EDGE
DETECTION

An image may be considered as the collection
of pixels (picture elements). These elements
correspond to the position of the photo receiving
cells of the image capturing device. In the case
of the human eye, these elements would represent
the relative position of the rods and cones on the
retina. The geometric arrangement of cones on
the primate’s retina can be described in terms of
a hexagonal grid. This leads to the consideration
of an image as the collection of hexagonal cells
(in contrast with the traditional collection of
rectangular cells). The new representation of an
image is the foundation of Spiral Architecture.
The 'un'porta.nce of the Spiral arrangement, apart
from its intriguingly beautiful geometry, is that it
possesses powerful computational advantages for
computer vision [11].

Let f : R2 —» R be a signal of an image. The
scale-space representation L : £ x [0,00) — R is
defined such that the representation at ‘zero scale’
is equal to the original signal, i.e.,

L(50) = f(),

and the representation at ‘coarser scales’ is the
convolution

L(;t) = g(8) * (), (1)

where g : % x (0,00) — R is the Gaussian kernel
[12].

Scale-space representation is used to suppress and
remove unnecessary and distorting details e.g.
noise so that later stage processing tasks can be
simplified.

A natural way to define edges from a continuous
grey-level image L is as the set of points for which
the gradient magnitude assumes a maximum in
the gradient direction [12]. Hence, if P = (z,y) €
®? is an edge point, then [12], at this point,

L2Lgz +2LzLyLoy + L2Ly, =0,
L3Lszz +3L2Ly Loy
4+ 3L L Ly + L3Lyy, <O0.

Given discrete data, note that the six neighbour-
ing hexagons of the hexagon at (z,y) have Carte-
sian coordinates (z,y — 1), (z — v/3/2,y — 1/2),
(z—3/2,y+1/2), (z,y+1), (z+V3/2,y+1/2)
and (z + v/3/2,y - 1/2) (Fig. 1).

The derivative operators can then be obtained in
finite difference form:

(x.y+1)

172
(x-3/2,y-1/2)) (x+3 12,y-1/2)

(xy-1)

Figure 1: Ordinary coordinates of a cluster of 7
hexagons.

Le(z,y;t)

- -%[L(:z-%—\/g/?,y'*'l/?;t)
+L(z + V3/2,y — 1/2;1)]
—%[L(z —V3/2,y+1/2;t)
+L(z - V3/2,y — 1/2;1)]

and

Ly(z,y:t)
= SlL(e+VE/2y+1/21)
+L(z - V3/2,y+ 1/2;t) + L(z,y + 1;1)]
——;—[L(z +V3/2,y - 1/2:t)
+L(z - V3/2,y —1/2;t) + L(z,y — 1;1)].

The second and third order derivatives can be ob-
tained respectively from the first and second order
derivatives in the same way. An edge detection
algorithm using the edge focusing technique [13]
is as follows:

1. An edge map is defined as a binary image
represented by 0’s and 1’s with a Gaussian
resolution parameter ¢ defined earlier in this
paper, denoted by E(z,y;t). E(z,y;t) =1
if the pixel (z,y) is an edge point, otherwise
E(z,y;t) =0.

2. Create an initial coarse-level edge map
E(z,y;t), using an edge detector based on
the Gaussian bluring defined in (1) and the
differential representation decribed above in
this section.

3. For i = 1,2,-.-, create the ith-level edge
map E(z,y;t:), where t; = t;_1 — At. The
resolution parameter, ¢ is decreased by At at
each blurring step. Note that the Gaussian
operator only acts on the edge points, i.e.,
{(z,y){E(z,y;ti-1) = 1} detected in the
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previous iteration, and their neighbouring
areas.

4. The edge detection iteration continues until
the blurring scale t; is too small to blur the
image further.

Remark. The edge map obtained by a larger
"Gaussian scale has less noise and the edge map
obtained by using smaller scale has more precise
edge locations. Step 3 above compares the two edge
maps with two different scales to obtain a new
edge map with low noise. The new locations of
the edges are based on the information in the edge
map obtained with the smaller scale. The final
edge map obtained in this way has the edge points
in the right locations and is less sensitive to the
noise. Furthermore, a Gaussian scale 15 finally
determined.

3 CONTOUR SEGMENTATION

In the previous section, we have presented a
method for image edge detection. The detected
edge points are used to extract the outermost
contour/s of the image. In this section, we show a
way for segmenting the extracted contour/s based
on the curvature representation of the contour.
Let T be the contour represented by

I(u) = (z(u),y(u)),

where u is the arc length parameter, the value of
which can easily be calculated numerically at each
point on the contour. The curvature & on T is
given by

_ :z:u(u)yuu (U) - zuu(u)yu(u)
O et P

where z, and y, are the 1st order derivatives of
z and y respectively with respect to u, and z,,
and y,, are the 2nd order derivatives of z and y
respectively with respect to u.

The curvature zero-crossing points are used as the
feature points to segment the contour since they
are invariant to general affine transformation, e.g.,
rotation, scaling or/and translation. A segment
of the contour is defined as a segment on the
contour delimited by two consecutive curvature
zero-crossing points refered to as its endpoints.
The segmentation procedure can now be described
as follows.

1. Find and locate the curvature zero-crossing
points of the contour using equation (2)
above.

2. Create all segments of the contour by the
definition of segment above.

In the next section, we will present a procedure
for recognizing the occluded object based on the
segments constructed in the current section.

4 OCCLUDED OBJECT
RECOGNITION

.Due to occlusion, the recognition algorithm em-

ployed is a local one and includes several stages
described in the following subsections in details.

4.1 Affine invariant representation
of segment

Let C be a segment of the extracted contour
represented by (z(t),y(t)) with parameter ¢ (not
necessarily the arc length parameter). It is well
known that the arc length parameter defined by

¢
u= [ @i~ ao)tas 3
to
is linearly transformed under an affine transfor-
mation [4]. In the following, we will define a
parameter which will be used to construct an
affine invariant. We start with the expression of
general affine transformation. A 2-dimensional
affine transformation is a linear transformation as
follows

g = auzr+apy+bh

¥ = anZ+axny+b. (4)
Suppose C is the curve derived from C by the
affine transformation (4). It is easy to see that (4)

transforms (3) to

¢
A% [ (3 - §&)dat,

to
where A is the cofficient matrix of (4) and |A]
denotes the determinant of A. This means that
parameter u is transformed to [A]|3 by (4), where
i is the arclength parameter of C. Define a new
parameter s as follws

u

CLE-wia ©
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Figure 2: I(s) is the area made by V(s+n) -V (s)
and V(s — n) — V{(s).

where intc denotes the line integral along C. The
parameter s defined in (5) is called normalized
arclength parameter. s is invariant under the affine
transformations (4), i.e., (4) transforms s to

U

§=——r=
Ja &y — y3)3dt

We now derive an invariant representation of
contour segment under the affine transformations
defined in (4).

Let the contour segment C be represented by

I(S)>

Vis) =

) (y(S)

for s € [0,1] and Vs(s) denote the derivative of
V (s) with respect to s. Define

I(s) = [V(s+n)=V(s-n),V(s+n)-V(s)]
= [V(s+n)=V(s),V(s+n)—V(s)]

+[V(s) = V(s =n),V(s+n)—V(s)]

V(s +n) = V(s), V(s —n) = V(3)], (6)

which is the area made by two vectors, V(s +n) —
V(s) and V(s — n) — V(s), as shown in Fig. 2.
In (6), V(s +n) (V(s — n)) represents the nth
point (or pixel) in the clockwise (anticlockwise)
direction counted from V(s) along the contour.

We now prove that I(s) shown in (6) is a relative
invariant under the affine transformation shown in
(4). Assume that V'(3) is the derivation of V (s) by
(4) for any s € [0,1] and I(3) is the corresponding
transformation of I(s). Note that, s is an absolute
invariant under (4). So, V(5) = V(s) and hence

I(3)
V(5 +n) - V(3),V(5~n) - V()]
[A(V (s +7n) = V(s)), A(V(s = n) = V(s))]
|A|[V(s+n) = V(s), V(s —n) = V(s)].
(7)

This means that I(s) is an affine relative invariant
representation, i.e., it relates to its image by a
multiplication constant |A|. The multiplication
constant can be removed if the representation is
expressed in ratio form as

RO ®

where the position v is the location of the largest
absolute magnitude of the relatively invariant
representation.

4.2 Index table

In order to speed up the search of model segments,
an index table is employed. After segmentation,
the average M(s) of each model contour segment
is computed and used as an entry of the index
table.

Once the segmentation of the image contour is
completed, the average M(s) of each image con-
tour segment is computed. The average M (s) now
serves as an index into the model contour segment
index table to recover a most likely model contour
segment, i.e, to get the model contour segment
which has the closest average M (s) to that of the
image contour segment. A candidate is then gen-
erated corresponding to the match of each image
contour segment and a model contour segment
recovered from the index table. A candidate is
defined and stored as a data dtructure consisting
of an image segment, a matched model segment
[5] and the difference between the average M(s)’s
of the two segments. The difference is denoted by
segment-diff. We disqualify any candidate which
has a big segment-diff.

4.3 Candidate merging

Due to occlusion, it is possible that some image
contour segments are not fully on the boundary of
the object of interest. For example, in Fig. 3(a),
the segment from point b to ¢ is not all on the
boundary of the airplane (the object of interest)
and the segment from ¢ and d is totally not on
the boundary. Hence, it is necessary to merge the
neighbouring image contour segments if they are
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(a). Outermost contour of initial image (occluded)

(c). Occluded object contour formed by grouping

segments in (a)

_

(b). Model object contour

A
JL

(d). Extracted contour of interest object

Figure 3: Image and model contours.

both on the boundary or disqualify the segment
which is not completely on the boundary. Two
candidates ¢; and co will be merged if they satisfy
the following criteria [5]:

1. ¢; and ¢; must be differnt candidates and not
be previously merged.

2. ¢; and ¢p must correspond to the same model.

3. The corresponding image contour segments of
c; and ¢ must be neighbouring.

4. The corresponding model contour segments
of ¢; and ¢; must be neighbouring.

5. A new candidate has a smaller segment-
diff than those of ¢; and c¢;. The three
components of this new candidate are the
image coutour segment merged from the cor-
responding image segments of ¢; and c,
the model contour segment merged from the
corresponding model segments of ¢; and ¢,
and the segment-diff between the new image
segment and the new model segment .

When two candidates can not be merged, the
segment should be extended. We present this idea
in the next subsection.

4.4 Candidate extension

Again due to occlusion, it is possible that only
part of an image contour segment belongs to the
boundary of the interest object. For example, in
the Fig. 3(a), the segment delimited by curvature
zero-crossing points b and ¢ has the part from
point b to the point f belonging to the interest
object, an airplane, and the part from f to b not
belonging to it. Hence, we need to include the part
belonging to the boundary into one of the image
contour segments. In other worlds, it is necessary
to extend an image segment to contain the part.
As a result, it is important to find the object
boundary intersection points. In general [5], the
intersection point of two object boundaries in the
input image does not coincide with an endpoint
of an image segment. Therefore, in order to
find the exact location of such intersection points,
it is necessary to gradually extend the image
and model contour segments until the smallest
segment-diff is reached. If an image segment can
not be merged with its left or right neighbouring
segment, the extension will be carried out at the
left or right endpoint.

Since object intersection points are normally a

subset of the curvature extrema on the image
contour, we may simply extend an image segment
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to the next curvature extremum when we need to
do so. The following procedure [5] is applied at
each endpoint for the segment extension.

1. Extend the image segment (required for ex-
tension) to the next curvature extremum.

2. The corresponding model contour segment is
extended by the same length.

3. Form a new candidate using the extended
image segment and model segment. This
implies that a new segment-diff is computed.

Extension stops when next new candidate has a
larger segment-diff than the current one.

In figure 3(a), the initial image segment from a to
b will be extended from the right endpoint to f.

In order to extract the full contour of the interest’

object, we move to the next stage.

4.5 Candidate grouping and joining

This step is to group compatible but disjoint
candidates. We say candidates are compatible if
they are corresponding to the same model.

In this step, we simply connect all correspond-
ing image contour segments (after previous two
stages) of compatible candidates one to another in
a clockwise direction they are picked up from the
image contour using straight lines. Then a contour
is formed by the connected segments. Compute
the segment-diff between this new contour and the
model contour. Denote this segment-diff by Sd(n)
which is depending on the choice of n.

Remark. If there is only one candidate in the
compatible class, i.e., there is a single candidate
which is only compatible to itself, and the cor-
responding image segment is not o closed curve,
then the grouping simply means connecting the
endpoints of the segment by a straight line.

Fig. 3(c) shows a straight line connection of
emtrema f and g and figure 3(d) is the final
extracted contour of an airplane, the interest
object included inthe original image.

Having the above stages ready, we are now able to
suggest an algorithm for occluded object recogni-
tion in the next section.

5 RECOGNITION ALGORITHM

The following is a pseudo-code description of our
approach.

1. Acquire model contours as described in sec-
tion 2.

2. Extract model contour segments as decribed
in section 3.

3. Compute average M (s) for each model seg-
ment as described in subsection 4.1.

4. Make an index table for each model as de-
scribed in subsection 4.2.

5. Process input image to recover image contour
as described in section 2.

6. Segment the image contour using the method
described in section 3.

7. Compute the average M (s) for each image
segment as described in subsection 4.1.

8. Generate initial candidates while applying
the object indexing scheme described in sub-
section 4.2.

9. Merge candidates as described in subsection
4.3.

10. Extend the new candidates as described in
subsection 4.4.

11. Group and joint the extended candidates as
described in subsection 4.5.

12. Select the model with the smallest segment-
diff computed at previous step.

In practice, in order to make the matching pro-
cedure be more accurate, we may take a set
of values of parameter m noting that n is an
arbitrary positive integer. For each value of n,
we repeat above steps 3, 7 through 12 and find
a model object which matches best the unknown
object. The model object which is selected most
frequently by the step 12 above during the tests
is considered to be ‘identical’ with the unknown
occluded object.

-211-



1998 International Computer Symposium N
Workshop on Image Processing and Character Recognition
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

6 CONCLUSION

In this paper, we apply the Spiral Architecture
and the multi-scale theory for contour extraction.
Then we segment contours using curvature zero-
crossing points. A new recognition algorithm for
occluded object is presented.
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