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ABSTRACT

In this paper, we apply noise-adjusted principal
component analysis (NAPCA) to a partitioned
data space to resolve the inaccuracy of the noise
estimation and properly estimate the data
dimensionality. This approach is referred to
herein as PNAPCA. In contrast to the PCA-based
approaches which consider interrelationships
within a set of variables, PNAPCA focuses on
the relationship between two distinct subspaces
which are partitioned from the data space of the
original image by a simultaneous transformation.
This partitioning causes the gap between the
group of eigenvalues for signal plus noise and
noise only to become larger than all other PCA-
based approaches. The number of endmembers
can then be determined by a designed union-
intersection margin testing (UIMT).

Keywords: Noise-adjusted principal components
analysis (NAPCA), partitioned noise-adjusted
principal components analysis (PNAPCA)

1. INTRODUCTION

Multispectral/hyperspectral  imaging spectro-
metry in.Earth remote sensing applications
largely focuses on determining the identities and
abundances of materials in a geographic area of
interest. Reaching this goal largely rests on
identifying the number of endmembers in the
image, or equivalently, determining the image’s
_ intrinsic dimensionality.

All remote sensing data are accompanied by
noises. Several methods have been proposed to
address the intrinsic dimensionality problem
under the assumption of Gaussion white noise. A
previous  investigation,  like  principal
components analysis (PCA) [1]; Wax and
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Kailath [2] proposed an approach based on
Akaike information criterion (4/C) [3] and
Schwartz-Rissanen’s  minimum  description
length (MDL) [4] criterion. However, in their
approach the environmental noise is often
unknown or indeterminable in practice. If the
knowledge or an estimation of the noise
covariance is available, the minimum noise
fraction (MNF) transformation proposed by
Green et. al. [5] effectively solves this problem.
A later investigation[6] further interpreted this
transform as the noise-adjusted principal
component analysis (NAPCA) with a rapid
version proposed in {7]. NAPCA is largely
limited in that its noise whitening process
requires complete knowledge of the noise
structure for the processed data.

In this work, we perform partitioned noise-
adjusted principal components analysis (referred
to herein as PNAPCA) to resolve the inaccurate
estimation of noise in NAPCA. Also presented
herein is a more effective means of resolving the
inherent dimensionality problem. In contrast to
the PCA-based approaches which consider
interrelationships within a set of variables,
PNAPCA focuses on the relationship berween
two distinct subspaces which are partitioned
from the original data space by a simultaneous
transform. According to an error analysis of
NAPCA, the diagonal elements of the covariance
matrix in PNAPCA can be partitioned into two
distinct groups of eigenvalues: one associated
with large covariance for signal plus noise, and
its complementary with less or -equal unity
covariance for noise only. In doing so, the
number of endmembers can be determined by
performing a designed union-intersection margin
test (UIMT) and counting the number of
covariance vaiues larger than unity. The
performance of PNAPCA approach is then
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evaluated by real imaging spectrometer data sets
collected by the Airbome Visible Infrared
Imaging  Spectrometer (AVIRIS). Results
presented herein demonstrate that this method
can aptly solve the intrinsic dimensionality
problem for hyperspectral images.

2. PROBLEM STATEMENT AND SIGNAL
MoODEL

Linear mixture model for hyperspectral images

Linear spectral mixture model is extensively
employed in remotely sensed imagery to determine

and quantify multicomponents. Let 7; be an [x!

column vector denoting the i-th pixel in a
hyperspectral image, where [ is the number of bands.

A linear mixture model for the pixel r; in a
hyperspectral image can be described by [8]

r, =Ma, +n, (1)

Equivalently, (1) can be expressed as a standard
signal model:
r,=s,+n,. 2)

Its true correlation matrix is then defined by

R=Err']
= ME[aa" M + R,
=R +R,

€))

where M is an Ix p matrix denoted by
(ml,mz,---,mp) and m is an Ix1 column
vector for the spectral signature of j-th distinct
material, p is the number of materials; «, is a
px1 column vector given by (al,az,---,ap)r

where «, denotes the fraction of the j-th

signature present in r,; M, is an /x1 column
vector for the combined noise which is assumed

to be a wide sense stationary Gaussian process
with zero mean and correlation matrix R .

Notably, the true correlation matrix R is an [ x/
matrix. Meanwhile, the noise correlation matrix
R, is of the full rank / and the signal correlation
matrix R, = ME[aa”JMT is of rank p.
Therefore, the inherent dimensionality problem
attempts to determine the value of p by a given
R
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3. NAPCA AND ITS ERROR ANALYSIS
3.1. NAPCA

The NAPCA approach can be regarded as a two
stage, cascaded  principal = component
transformation with a diagonalization procedure
{9] to achieve the maximum signal-noise-ratio
(MSNR), i.e. to find a matrix 4 such that

ATRA AR A
max 7 = max T
A ATRA 2 A'RA

+1 (dueto Eq3))- 4

can be obtained. Equivalently, the above
equation means to solve the problem

ATRA=A and ATRA=1I (4b)
To obtain the desired transformation in (4), a
whitening process can be designed to
simultaneously transform R, and R. Restated,

WTRW=1and wTRW =R,, (5)
where W =@ A"*is the whitening matrix, In
addition, 4, and ¢ are eigenvalue and
eigenvector matrices of R, respectively. The
adjusted correlation matrix R o5 is not a

diagonal but a symmetric matrix in general.

Using the eigenvectors of R, ie. @ > 8 the

basis for the second transformation leads to

LID,, =1 (6-a)
and DR, D=y (6-b)

Consequently, the desired NAPCA transform can
be derived by

A=, 40, - o)

The subsequent transformed covariance matrix is
then expressed as

Rypurca = AT RA=diagl{A,,+,4,] ®)

Consider a situation in which the noise
covariance matrix R, is accurately estimated
from the data. This allows us to partition the
transformed data space into two parts: one
consists of eigenvalues larger than one and its
complementary of eigenvalues of unity. This
observation implies that {1}7 =1/+1 and

A =15 where 1+ are the associated
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eigenvalues for the signal correlation matrix R, .
Under such a circumstance, the inherent
dimensionality of the data can be determined by
examining the number of eigenvalues larger than

unity.
3.2 Error analysis for NAPCA

To analyze the error incurred while estimating
the noise, (4) can be rewritten as follows:

R= R’ + Rn (9a)
=(R, +R,)+(R,-R,) (9b)
_R+R 99

where R, represents the correlation matrix of the
estimated error. Notably, R, has the same
characteristic as the noise correlation matrix R,,
implying that R, is also a wide sense stationary
Gaussian process with zero mean and of the full
rank /. In addition, R, and R, represent the
correlation matrix of the estimated signal and
noise, respectively. The expression in (9a) differs
from that in (9c) in the sense that the former
adopts the complete knowledge of R, . However,
the latter has no prerequisite knowledge so that
the true R, is replaced by an estimate R,
resulting from the observation vector 7.

Using a statistical mode!l to describe an
observation is a conventional practice in the
signal processing community. However, the
advantage of using a priori (pr) model is
significantly diminished when the number of
observed samples is increased. Under this
circumstance, the model described by (9¢), a
posterior (ps) observation model, begins to show
its dominance and tends to replace the pr model
in (9a). As the observation process proceeds
with, the ps model eventually takes over the pr
model. Consequently, algorithms using the ps
model generally perform better than those based
on a pr model. Restated, the information given
by the ps model provides a better understanding
than the pr model and facilitates the knowledge
about the signal. In a real ps model application
similar to (9¢), an incomplete noise statistics
R, is employed rather than the true noise
statistics R, . Due to the properties of the pr
and ps model, as generally believe (9¢) performs
better than (9a). Moreover, the NAPC process in
a ps model must be differ from that in the pr
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model. The related changes are illustrated as
follows:
Step 1. (4b) is replaced by 4"R4=A and

ATR A=1 (10)
Step 2. (5) is replaced by

WTRW=1and W RW=R,, (InH
where =@ i, and A, and &, are
eigenvalue and eigenvector matrices of R,,

respectively. After the whitening process, the
correlation matrix R becomes

T(R,+R)W +1 (12)

where A4 and 4 are the adjusted correlation

matrices.

Step 3. Using the eigenvectors of Em,j,
1) as the basis for the

adj ?
transformation, i.e. (6b) is replaced by

second

PL,R,,P.,

=Auj

=diag(,i,Zz,--.,i,,;?,,,,---,I,)

= diag[(h, + &, +1), (4, + &, +1),(3, + D, (&, +1)]

(13)
where, j, and é, are the associated eigenvalues
for R, and R,
constant energy resulted in the whitening
process.

respectively, and “1” is a

Step 4. The subsequent transformed kernel
is then given by

A=B AP, (14)
and the real NAPCA can be derived by

Ry pupca = ATRA= Ay | (15)

~

In (13), three energies, A,, &;, and “1” are
independent of each another. Notably, the more
incomplete this noise statistics implies larger
error eigenvalues. Therefore, our problem
largely focuses on accurately finding the inherent
dimensionality in a low SNR situation where
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some materials may have a low probability of
occurrence within the scene, implying that they
only appear in a small number of pixels or mixed
pixels. When the signal energy of materials is
smaller than the total noise energy in the entire
image, the intrinsic dimensionality is generally
underestimated.  Restated, the intrinsic
dimensionality may be underestimated when
some eigenvalues in the estimated signai-
subspace are extremely close to an increasing
estimated noise variance.

4 PARTITIONED SUBSPACE APPROACHES

In contrast to the PCA-based approaches which
consider interrelationships within a set of
variables, the notion presented herein focuses on
the relationship between two distinct subspaces
which are partitioned from the original data
space by a simultaneous transform. The
underlying motivation of this notion is that the
intrinsic dimensionality is invariant to the
number of processed bands if this number
markedly exceeds that of endmembers. Hence,
although the gap between the group of
eigenvalues for signals and noises is difficult to
detect in the entire data space, such a gap
provide valuable insight into two smaller,
partitioned, and distinct subspaces. Moreover,
the intrinsic dimensionality of these two
subspaces is identical.

To investigate the degree of association between
two distinct subspaces, the noise-adjusted
correlation matrix R-/ given in (12) should be

partitioned as

~ R R
Radi = ,:Rl RlZ }
2t 2
izr.l +/is,l +1 ﬁ:.ll

R.LZI R?:,Z + /i:,l +1 (] 6)

where R, isan kix ki sub-matrix with i=1,2

and k1+k2=l, and [ is the dimension of R.
Without a loss of generality, we assume that
p<<kl<k2. For an extreme case where the

noise matrix is  band  independent,

ie.p = R, 0 the error correlation
! Q Rn,Z ’

matrices R, ., and R equal zero. In

&.adj,21
such case R,, contains only signal information

of R and the estimation of the rank of

s.adj12”?
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R, allows us to determine the number of

endmembers within the scene. However, since
the actual value of R and R, are unknown in

practice, the average of the outer products of the
sample data is used as an estimate of R. That is,
z_l< ¢ 17
R= N ; rr, an
where {r}” represents the i-th, 1<i<N,
observation vector. The rank of the estimated
submatrix g _ is obviously no longer p, but

k(< k2) due to the inaccuracy of the estimation.

When the noise matrix is band independent the
true rank p through matrix decompositions can
be estimated in several ways, e.g. the singular
value decomposition (SVD) can be used to
estimate the signal subspace and its orthogonal
complement. However, SVD cannot give a
correct estimation for unknown correlation
matrices. To improve this drawback, a
partitioned version of the NAPCA (PNAPCA)
transformation is developed to estimate the true
rank p from R, by utilizing the error analysis
discussed in discussed in Section3.2.

Since R, and R, are symmetric and positive
definite matrices, each of these matrices can be

diagonalized by a unitary  similarity
transformation

DR Dy, = Ay, (18-a)
and @I R, @, = Ay, (18-b)
where Dp =[PP P4 ~ and

D, =[qnllz,~--:‘h] are unitary matrices whose
columns are the eigenvectors of R, and R,,
respectively. The diagonal of matrices A, and
Ay, are the respective eigenvalues of matrices
R, and R, arranged in a descending order.

Next, an [x/ unitary transformation matrix Q is
constructed to rotate the noise-adjusted
correlation matrix R,,. This unitary matrix is

defined by

| Pu 0 (19)
Q'[Q a>,,j
Therefore, the PNAPCA transformation is

defined by
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Ry pnapca = QT RaijQ

- [Q;}RIQRI Q;IRIJQRZ}
Q;ZRZIQRI Q;szan (20)
- [Am 211]
Ly Ag,
with
A,y = diagl(A, + &+ D). (4, + &, + D.(&,. + Do (& + D]
(21a)
Ag; :diag[(i. +& +I),"',('-i, +E, + 10,6 + D, (B +1)
(21b)
’}’u Yz o Vixz
Y Y2 Vix2
’ 21c
Z, = Yoa Vo2 = Vppe-- Y pa2 ( )
Voo Yoz oo Vparproo ¥ peii2
L70s Vi - Vi |
T
and =2y, (21d)

In (20) and (21), 4,, and4,, are transformed
energy matrices in which {i}?, and {1},
represent the rearrangement of the adjusted
signal energy, R, and R, ;. respectively.
In addition, {£}%, and {£}? are the
rearrangement of the adjusted error energy in
R, .y 34 R, ., respectively. Owing to R,,,
Z,, is the transformed covariance matrix whose
diagon alelements y, =pR,,q, for

represent the cross-covariances

i=L2,...k
between these two transformed variances A,
and A ., . However, some of these variances may
be too small to have any statistical significance.
For this problem, a conventionally used approach
is to test the null hypothesis to find (k1-p) smaller
cross-covariances of zeroes. That is,

HP:7p>),p¢l ='“=7H =0 (22)
The test is performed in the following manner:
Test the null hypothesis H;,j=12,- k1. If
H,,j=12,kl passes the test but H,,, does
not. Then, the estimated intrinsic dimensionality
is p.
In this work, a simple union-intersection margin
test (UIMT) is developed for the PNAPCA

transformation to replace the general null test.
Using the Scharwtz inequality and the
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relationships in (21a) and (21b) leads to

[cov(X, )] < var(X) - var(Y) (23)
so that
YRS +E+D)-(A+E+D i=12,..,p
and
2 < +1)(E +Di=p+lp+2,.. .kl

ig =

(24a)
(24b)

According to the results of error analysis and the
fact that three energies Z, éi, and “1” are
independent of each other, the set theory is
utilized to derive the threshold of the new
hypothesis test. From the perspective of the sets,
the covariance between two. variables can be
interpreted as the intersection of these two sets.
Meanwhile, the sum of the energies for two
distinct variables can be interpreted as the union
of these two sets. Hence, (24) can be rewritten as
a form of set operation:

[V ROT-R01) YO NUF-RU) |
=AU, N U M)
V(N4 U NEUE M)
vadni)uldndudnl)

=(Ani)ul
=(ini)+1  i=12...p (252)
and
vl (& uDN(E ul)
=(§NEYVENDNUVENDHUAND
(25b)

=1 i=p+L,p+2,...,kl

Since R, and R, given in (16) are correlated
with  each R,=R, =0, the
intersection of two signal energies (/i,. ') ].,) in
(25a) should be greater than zero. This
observation implies that » >1,i=1,.. p.

Therefore, the statistical threshold for the new
hypothesis test I-J(P+l is 7}) <1. Restated, the

other, i.e.

number of endmembers can be determined by
simply counting the number of diagonal
elements whose values are greater than unity in
(25).

5. Experimental Results

The analysis performed herein includes one data
cubes acquired over the Cuprite, Nevada, in
1992 by the NASA/JPL AVIRIS instrument.
Four methods are evaluated in the experiments:
(a) conventional principal components analysis
(PCA) using all bands, (b) NAPCA transform
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usihg all bands described in Section /1I-1, (c) the
singular value decomposition (SVD) to estimate
the signal subspace of R, and (d) the

PNAPCA procedure.

The data set used in the experiment is a
subsection of the Cuprite image, which is a
200x200 pixel scene. Figure 1 depicts its image
of the 0752 wm band. Since bands
corresponding to the water absorption regions
and the low SNR have no useful energy, they are
removed before processing which leaves 192
bands in this study. This area has been
extensively studied using field measurements
[10], where the “alphabet” symbols denote the
regions of the pure materials which have been
found containing six significant materials: playa,
kaolinite, alunite, silica, buddingtonite, and
varnished tuff.

In the real detection, these four techniques were
directly applied to the subsection of the Cuprite
image. Figure 2 displays their results and Table
1 lists the details of the first ten eigenvalues. In
Fig. 2(a), only the first two eigenvalues produced
by PCA can be clearly separated while the gap
among other consecutive signal and noise
eigenvalues is inadequately large. Figure 2(b)
and (c) summarizes the results from NAPCA and
SVD, respectively, where the number of
endmembers is underestimated to be five only.
Finally, results obtained from PNAPCA with
UIMT in Fig. 2(d) indicate that the number of
endmembers is six. Therefore, the PNAPCA with
UIMT is more advantageous in terms of
resolving the inherent dimensionality problem.

6.Conclusion

Knowledge of the number of endmembers is a
prerequisite  for accurate spectral mixture
modeling and endmember abundance estimation.
To cope with the inaccuracy noise estimation in
NAPCA, this work performs Partitioned version
Noise-Adjusted Principal Components Analysis
{(PNAPCA) to solve the problem of the intrinsic
dimensionality. The notion behind PNAPCA is
the partitioning of the original data space into
two distinct subspaces by a simultaneous
transform. In addition, applying a simple
hypothesis test, the UIMT allows us to accurately
estimate the number of endmembers.
Experimental results demonstrate that PNAPCA
not only performs better than other conventional
methods in computer simulations, but also
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functions well in realistic AVIRIS data.
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Figure 1: A subsection of the Cuprite scene.
The “alphabet” symbols denote the position of
the pure materials found. Letter “A” is playa,
«B” is kaolinite, “C” is alunite, “D” is silica,
“E” is buddingtonite, and “F” is varnished tuff.
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Figure 2: Results of real detection for the four
techniques: (a) PCA, (b) NAPCA, (c) SVD, and
(d) PNAPCA. Only the first fifty eigenvalues are

plotted for clarity.
A, | PCA | N4 PCA| SVD | PNAPCA
1} 1.88e+6} 1621.00] 719.63{ 4.22e+005
2| 194e+a] 469.29] 166.61] 1.31e+004
3] 2.50e+3 84.56 18.9 4.16
4] 889.14 45.87 15.8 188.25
5| 507.79]  40.01 14.0 5.84
6] 345.82 20.16 5.24 5.51
7] 236.171  14.86 3.92 0.015
gl 171.44 12.90 3.52 0.51
91 111.32 11.53 3.36 0.12
10 99.13 10.65 2.97 0.36

Table 1: the details of the first ten eigenvalues
for four methods.
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