1998 International Computer Symposium
Workshop on Computer Networks, internet, and Multimedia
December 17-19, 1998, N.C K.U., Tainan, Taiwan, R.O.C.

USING RMI TO IMPLEMENT REMOTE
CONTROLLER/VIEWER APPLETS
FOR JAVA APPLICATIONS

Jr-Ren Tsai, Gwo-Cheng Chao, Daniel J. Buehrer

Institute of Computer Science and Information Engr.
National Chung Cheng University
dan@cs.ccu.edu.tw

ABSTRACT

It is well-known that X-windows has the capability to
_remotely display and control applications. This paper
uses Java’s Remote Method Invocation (RMI) technology
to design a package that has a similar capability. By using
this package, a server side Java application will be viewed
and controlled remotely by an applet running on a Java-
enabled browser. The Java programmer need not worry
about the messages being passed between the client and
server, since the message passing is hidden in the package.
A Java application writer can first write a standard Java
application, and then use our xawt package to replace the
Java.awt Abstract Window Toolkit (AWT) package. He
need only make very minimal changes to his source code to
create an RMI version of his application which can use a
remote Java applet to display and control the server-side
application.

1. INTRODUCTION

In recent years, World Wide Web (WWW) technology
has been developing quickly. The Java programming
language has become well-known, since its applets can run
on the Web by using a Java-enabled browser. There are
many advantages to the Java language, such as portability,
pure object-orientation, support for multiple threads,
reflective capabilities, serializability, interactive form and
resource editors, ODBC and CORBA bridges, security
cassettes and signature capabilities, internationalizability,
etc.

Our goal is to allow a Java programmer to develop
remote services by first coding a stand-alone application,
and then replacing the standard java.awt window library
by our xawt library, causing the program to be remotely
displayed and controlled by a light-weight applet which is
running on a Web browser. Such an arrangement has
several advantages. First, the applet is very light-weight,
and has low down-load time. The services provided by
the server side can be much more powerful since there are
no security constraints on Java stand-alone applications.
The server can even use libraries implemented in other
programming languages, such as C/C++. The Java stand-
alone application can call these libraries via the Java
Native Interface (JNI). The server can freely write to
disk and can freely communicate with any other servers or
agents on the network, unlike applets, which can only
communicate with the host from which they were loaded.
The Java Development Kit 1.1.x, a Java language standard,

includes Remote Method Invocation (RMI), Java’s
enhanced platform-independent, object-oriented remote
procedure call methodology. The important contribution of
this paper is to develop a methodology for transforming a
standard Java application, which can run on a single
machine, into a client-server application which uses RMI
calls to a remote lightweight Java applet. This will be done
by implementing an xawt package which will replace the
standard java.awt package. Our goal is to minimize the
changes in the source program that are necessary to
transform it into a client-server application.

As well as displaying the window objects remotely, the
low-level keyboard, mouse, and other events are handled
on the client side, and the higher-level events are returned
to the server, also via RMI calls. Thus, client-server
programmers no longer need to be concerned with the
complexities of the messages between the client and server
applications. Moreover, clients can rely on the security of
Java applets, since the applets theoretically cannot look up
or destroy other information on the client machines.

2. BACKGROUND

It is important to first understand what Java applets
can and can’t do, as well as some details about Java’s
message passing and inheritance mechanisms. This section
will briefly describe these details.
2-1 What Applets Can and Can't Do

There are many things that an applet cannot do, but
which a stand-alone Java application can do. That’s why
we want to use applets, which can be safely executed
anywhere on a browser, to control and view a stand-alone
application that has no security restrictions. Even though
browsers such as Internet Explorer™ (a registered
trademark of Microsoft) and Netscape™(a registered
trademark of Netscape) now permit signed applications to
be downloaded and run on the client, this could prove to be
very dangerous if these applications are widely used. Can
you imagine what would happen if some day a disgruntled
employee at some famous company would put a virus into
their Java spreadsheet application? The other main
advantage to our approach is that the client applets are all
very lightweight, and are suitable for network computers.
They can be downloaded very quickly, unlike applications.

Although each browser has its own implementation
of security policies, basically Java applets are not allowed
to access-the client machine’s disk or execute native
metheds on the client’s machine[10]. They can only
make network connections to the host from which they

1998 Internationatl Computer Symposium L
Workshop on Computer Networks, Internet, a_nd Multimedia
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

were loaded. The applet windows have a special look so
that the user can tell they are not completely trustworthy.
Applets can, however, display HTML documents, and can
call public methods -of other applets on the same HTML
page that they were loaded from.

2-2 Abstract Window Toolkit (AWT)

The Abstract Window Toolkit (AWT) is a Java package
providing powerful GUI classes, such as GUI components
(e.g. Buttons, Frames, TextFields, etc.), Event classes (e.g.
ActionEvent, AdjustmentEvent, etc.), Event Listeners (e.g.
FocusListener, ItemListener, KeyListener, MouseListener,
etc.), and other helpful classes (e.g. Font, Image, Point).

2-2-1 AWT GUI Components, Peers and the Java
Virtual Machine

Peer classes are interfaces to native code that the AWT GUI

components can call. For example, java.awt.Button has a
variable of class type java.awt.peer.ButtonPeer. When we
call a method that depends on the GUI of a Button, such as
setLabel(“test”), the Button passes the request to the
method setLabel(“test”) of its own ButtonPeer. Then this
ButtonPeer passes the request to a machine-dependent code
to change the label of the Button. Going the other
direction, when a user clicks the mouse on this Button, an
operating-system-dependent window message occurs. The
Java VM receives the message and lets the peer call the
method defined in the Button class [4]. As of JDK

version 1.1, programs should not directly manipulate peers.

2-2-2 Packages and Inheritance

A package contains classes that are related to each
other. A package is represented as a directory of an
operating system. That is, the directory of a package named
xawt must be put in the directories of the CLASSPATH
environment variable. Java source code which uses the
classes in the package must contain the statement import
xawt.*; For instance, in windows95/NT systems the
autoexec.bat file might contain the command:

set CLASSPATH=.;c:\mypackages;

Then, the class files of the xawt package must put into
either a subdirectory named xawt of the current directory or
the c:\mypackages\xawt directory. It is quite reasonable
that an xawt.event package would be put into a
subdirectory named event of the xawt directory [7].

.Name collisions

Suppose there are two classes named Button, one in
the java.awt package, and one in a subdirectory of current
directory named xawt. Suppose that a java source program
has the following lines in it:

import java.awt.*;
import xawt.*;

/* Here is some code using Button */
Button b = new Button();
Then a name collision error will occur since the compiler
does not know which Button class is to be chosen. Here
are some solutions when we want to choose the Button in
the xawt package:

(1) .
import java.awt.*;
import xawt.*;

/* Here is some code using Button */
xawt.Button b = new xawt.Button();

@) :
import xawt.Button; /* add this line */

import java.awt.*;

import xawt.*; /* this line can be removed
if there are no other classes in the xawt package which
will be used except Button */

/* Here is some code using Button*/
Button b = new Button();
Figure 2-1 Alternative methods of importing
xawt.Button

One goal of this paper is to change user source code
as little as possible, so solution (2) is the best choice. In the
example above, if many new Button objects are defined,
solution (1) requires us to change much source code, while
solution (2) does not.
Maodifiers

For our concerns, the following is an important
feature of the AWT GUI components:

2-3 Message Passing

Delegation-Based Event Handling Model

Each component in JDK 1.1.x has methods named
addXXXListener and removeXXXListener (where XXX is
one of a specified set of Events) to add or remove a

Listener Object. Several listeners may be delegated to
listen to the same events, and they will all be called when
that event occurs.
Event Masks
When we call addActionListener() of a Button, the
ACTION_EVENT MASK of the Button will be enabled.
Similarly, removeActionListener() will disable the mask.
When a user clicks on a Button, if
ACTION_EVENT MASK of the Button is enabled,
processActionEvent(ActionEvent e) of the Button will be
called. If the ACTION_EVENT _MASK is disabled, the
click will have no effect. Besides addXXXListener /
removeXXXListener, there are methods named
enableEvents(long eventsToEnable) / disableEvents(long
eventsToDisable) to enable or disable the event mask.
2-4 Remote Method Invocation
Remote Method Invocation

(RMI)

allows

programmers to create distributed Java-to-Java applications,
in which methods of remote Java objects can be invoked
from other virtual machines, even on different hosts and
operating systems [2]. A special case is when a client and
server mutually call each other’s methods [2].

.RMI Architecture

RMI can dynamically call remote methods. For example,
given a method name, RMI can dynamically create a stub
with the appropriate argument types and call the
corresponding skeleton on the other side. These
arguments and values may even make use of Java's
methods for type checking and type casting.

3. SYSTEM ARCHITECTURE

3-1 Structure Overview

First, let us look at the main ideas of the
Controller/Viewer Applets and the Application Server as
illustrated in Figure 3-1. This Figure shows the Server Side
Application Server providing launching services for user
applications. The dotted arrows show that Applet 1, with
client id 1, has launched two applications, ApB and ApE,
and Applet 1 is controlling and viewing instances of these
two applications.

Server Side

Clients

User
Applications

Figure 3-1 Controller/Viewer Applets and Application
Server

Second, Figure 3-2 gives a detailed view of the
relationship between Controller/Viewer Applet 1 and ApB.
For Every GUI component of ApB, Appletl creates a
similar component. These pairs of components must
cooperate with each other.

Although the xawt package uses same set of names as
components in the AWT GUI, we use the names SFrame,
SButton, SLabel instead of Frame, Button, Label here in
our explanations, to distinguish between the xawt package
and the java.awt package. CFrame, CButton and CLabel
are the client side components that SFrame, SButton and

SLabel will cooperate with. Both the server side and the

“client side components extend the components from the
java.awt package. For instance, SFrame and CFrame are
subclasses of the java.awt.Frame,

1998 international Computer Symposium)
Workshop on Computer Networks, Internet, and Multimedia
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

C/V Applet 1

CFrame

ApB

SFrame

ELSESIREEEESIEIAES:

R

Figure 3-2 Detailed view of a controlleriviewer applet and
. a launched application

Figure 3-3 shows the structure of the cooperation between
client side and server side components. We give a simple
explanation for this Figure here:

1. Default AWT method: call the original methods in the

java.awt package.

2. Calling an overridden method: when a subclass extends
our component, 2 method call in a client must be redirected
to the overriding method of the subclass running on the
server, not the original mehtod inherited from the
superclass.

3. Listener calls: when a Listener object is added to a
component, we must let the client know about the Event,
since the control of that component is in the client.

4. Event processing calls: when the client side component
receives an Event, it must let the server side component
know about it so that it can notify the Listener Objects. -

»

RS
~.“'-: SRANRRAANERAANY

257
5555

A

g s
7

s

b224 22
T s
R

POALLIILIAL LI LT

,‘;5‘
&

JomnessRannannsare,
s,

27

RELILITILIITIITTI

rreey
SRR

F tgure 3-3 Structure of cooperation between client sxde
and server side

3-2 Cooperation between the client side and server side
components

1998 International Computer Symposium
Workshop on Computer Networks, Internet, and Muttimedia
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

In our model, we must separate each component
Comp into CComp and SComp running on the client and
the server, respectively. The relations between them are
described in Figure 3-4. The labels 1, 2, 3, 4 here have the
same meaning as in Figure 3-3.

1. Variables related to Event Masks:

We keep the event masks on the client side CComp to let
Controller/Viewer Applet know which Events of Comp we
care about and which we don’t. The server need not know
about the Mask behavior.

2. Variables related to Event handlers:

When Events occur, only the server side component knows
which listener objects should be notified. So, we put the
variables regarding the Listener objects in SComp.

Comp {
/*Event Mask variables*/
/*Event handler vars*/
/* variables used for
other purposes */

/* methods related to
Event Masks */ ...

/* methods related to
Listeners */... /*
methods related to Event
processing */

/* methods used for other
purposes */

4" Ll

CComp extends SComp extends
java.ant.Comp { Jjava.awt.Comp {
/*Event Mask variables*/ /* Event handler vars */
/* variables used for _— =
other purposes™/
T ST T T T T ARE methods related to
/* methods related to isteners */
Event Masks */ methods related to
/* methods related to sent processing */
Event processing ¥/ "methods used for other
/* methods used for other [purposes */
purposes */
/* methods used for
overriding */
}
R S35

Figure 3-4 Relationship between Comp, CComp and

Scomp
3. Variables used for other purposes:
For the variables not belonging to I or 2, when showing the
CComp in the Controller/Viewer Applet, some variables
may be used by the methods doing the showing. If we were
to keep the data in SComp, when the methods are called in
CComp, they would use the unknown values of the

. -4-

variables, since the variables have not been assigned by the
application. That’s why we keep these variables in
CComp.

4, Methods related to Event Masks:

When addXXXListener(l)/removeXXXListener(n) of
SComp are called by an application, the
XXX EVENT _MASK of CComp must be

enabled/disabled (for the same reasons as described in 1, 2).

Here, we mean the methods named enableEvents(long

eventsToEnable) / disableEvents(long eventsToDisable)

described in Section 2-3-2.

S. Methods related to the Listeners:

These methods are named
addActionListener(ActionListener m)

and removeActionListener(ActionListener m),

as described in Section 2-3-1. We keep these method calls

in SComp. The meaning of 3 in Figure 3-4 is that when

some Listener Object is added to/removed from SComp,

we must enable/disable the Event Mask in CComp to let

the Controller/Viewer Applet handle/ignore the Events.

6. Methods related to Event processing:

Now, let’s see the meaning of 4 in Figure 3-4. When

some Event occurs, CComp will check the Event Mask. If

it had been enabled, CComp will redirect the method call

from CComp to SComp to let SComp notify the Listener

Objects.

7. Methods used for other purposes:

(A) Methods used for other purposes: 1 in Figure 3-4
says that when an application calls
SComp.compMethod(...); we redirect it to

CComp.CcompMethod(...); where CcompMethod looks as
follows:
CcompMethod(...) {

super.compMethod(...); /* call the default method */

If this method changes some variable, it will affect
variables in CComp instead of in SComp. (This will let 3
be executed in Figure 3-5 on the next page.)

Step 4: redirects the method call to CComp.

Step 5: calls the default compMethod of Comp.

(B) Methods used for overriding: 2 in Figure 3-4: If
some subclass of SComp named UserComp overrides the
compMethod(...), the calls between CComp and SComp
and UserComp will be as shown in Figure 3-5. (Here, the
application creates a component of type UserComp, not
SComp. CComp will cooperate with UserComp).

Step 2: calls the overriding method

Step 3: occurs when the overriding method calls the super
method

Step 1: occurs when other methods of CComp call
compMethod

3-3 Inheritance Problem

Section 3-2 describes some, but not all of our system.
A subclass can do things to its superclass that an instance
can’t, such as calling a protected method. That is, if a
subclass of the component in our package can keep the
same behavior as a subclass of the component in java.awt

package, an instance of that component can replace the
Jave.awt component. Here, in this section, we will focus on
the override problem of applications using our package. We
will use the symbols Comp, SComp, CComp, UserComp
that we used in Section 3-2.

3-3-1 For Variables, Is It Safe to Create a Subclass of an
xawt Component?

From Section 2-2-2, we know that for an AWT GUI
component, all variables are defined as default, private or
public static final, and it is impossible to change variables
inherited from an AWT GUI superclass directly, except by
using methods which are inherited from the GUI superclass.
This property is consistent with the constraint that variables
are kept on client side, as discussed in Section 3-2. When a
subclass (UserComp) wants to change variables, it must
call ...super.method(...);. The superclass will then redirect
this request to client side component (CComp).

Comp {
...compMethod(...) {
H

SComp extends Comp
{... compMethod(...) {

compMethod(...) {
ScompRef.

\.. compMethod { ...

/*super .
compMethod(...); */

... /* user’s code is here

O A R

Figure 3-5 Solution for the overriding problem — complex
case
A subclass can have its own variables, and these
variables are kept on the server side. The client need not
know about them. The client-side component only provides
default methods and variables inherited from the java.awt
package.

3-3-2 Is It Safe to Override Methods Inherited from an
xawt Component?

1998 International Computer Symposium
Workshop on Computer Networks, Internet, and Multimedia
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.O.C.

Let’s see Figure 3-5 again. We will take a closer look
at the problem of overriding methods:
Case 1:
See Figure 3-6. In Comp, if methodA does not appear in
any other methods of components in the java.awt package,
we can say that all method calls of methodA must be made
on the server side (we do not discuss the case of event
handling here). When overriding occurs, if methodA of
UserComp calls super, the calls will be 1 -—-- 2 --- 3. If we
do not call super or other inherited methods, the calls will
stop at the server since no variables defined in Comp will
be changed by the override method of UserComp. Of
course, if some method calls super.methodA(...), the calls
2 - 3 will occur and may change some variables, as for the
default behavior of methodA in Comp.

Comp {
/* methodA4 does not
appear in any other.
" methods of component
in java.awt package */
...methodA(...) {

%

SComp extends

IGEIRE IR

377

257

R

27

........................

UserComp extgnds

SComp {
...methodA(...

/*super.methodA(...);

SR

LI sse:

VR

283 I

Figure 3-6 Solution for the overriding problem — simple
case

Case 2:
See Figure 3-5. In this case, compMethod(...) and

N otherMethod(...) are defined in Comp. Our CComp inherits

Comp. In order to call the overridden code defined in

i UserComp.compMethod(...), we redirect the call as 1-—-2.

A method named CComp.CcompMethod(...) keeps the

. default behavior that the Comp.compMethod(...) has.

If ...UserComp.compMethod(...) calls super, the calls
beginning at 1 willbe 1-2-3-4-5.

3-3-3 Restrictions of RMI — a Seolution for Protected
Methods

* In our model, the calls between the client and server
are based on RMI technology. RMI methods must be
defined as public methods. This is not sufficient for our use
because of the existence of protected methods in
components. We use a public method as a proxy for each
protected method (see Figure 3-7).

1998 International Computer Symposium
Workshop on Computer Networks, Internet, and Multimedia
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

After getting the Client to launch the application, besides
importing our package components to substitute for those
in the java.awt package, only one line must be added -
Server.registerFrame(Client, f);. The show() must be
done on the Client. The registerFrame will create a
CFrame object running on the client Applet and the
cooperation between the SFrame object and the CFrame
object begins. Besides, the SFrame object will save the
Client object in a private variable. When adding the Button
b, method Server.registerButton(Client, b); will be called
by the add(...) method.

Comp{... protected
methodA(.

SComp extends Comp
Nroteded
methodA(...) {
CCompRef.CmethodA

CComp extends Comp
{... public

CmethodA(...) { ... SFrame.add(...)

super.methodA(...); /* the Client is saved in a private variable of the SFrame
*/
Server.registerButton(Client, b); ..}

A CButton object will be created on the client Applet, and
B . the cooperation between SButton abd CButton begins.
Figure 3-7 The solution for protected RMI method calls Everything seems to be ok, except if we add lines that
in our model change the behavior of SButton b before it is added to the
Frame f:

e

3-4 Add / Remove a Component in a Window

We will describe the add/remove problem by using the
Frame and Button components. Other components can be
treated in a similar manner. Label, TextField, etc. are like a The method setLabel(...) will change the label of
Button and FileDialog is like a Frame. A Frame is shown
on the screen by calling the show() method of the Frame,
but a Button cannot be shown before it is added to a

SButton b to a new one. But there is no client side CButton
object to cooperate with, since b does not know who the
’ client is yet (In fact, this problem also occurs when
window such as a Frame. constructing the CButton object, since we don’t know

In our mode!, wg must let SFrame and SButton'know which constructor and arguments to use when creating
where the client is so that they can cooperate with CFrame SButton). If we kept the label in SButton, the rule that

and CButton of the Applet running on the client. See the variables must be kept in the client side component in our

following cer segment, where again, to distinguish our “model will be broken (see Section 3-2). Two possible
package and java.awt package, we use the symbols SFrame solutions to this problem are:

and SButton to denote Frame and Button provided in our 1 Tracking the methods that have been called

package: | before the add(...):

1._normal application: There are plenty of methods existing in a component. If
many methods have been called, we must keep the correct
order of these method calls and the arguments they used.
After add(...) is called, do the same method calls to
CComp. This solution is quite expensive in terms of
overhead.

2. Copying variables after the add(...) takes place:

After adding b to f, variables that have been changed must
be retrieved from SButton and sent to CButton. This is
impossible since some variables are private and no method
can retrieve their values.

Neither 1 nor 2 is a good solution. To understand the
solution we provided, we must take a closer look at what
register does:

CComp extends Comp{
private SCompRef proxy;
public void setProxy(SCompRef s){
proxy = s;
}

}

SComp extends Comp {
private CCompRef proxy;
public void setProxy(CCompRef c) {
proxy =c;

v
s

R X
R R R NANS R

Server.registerComp(Client,SCompObject) will:

1. new a CCompObject in Client.

2. The cooperation between the client and server

using RMI is created by writing:
CComp.setProxy(SCompObject);
SComp.setProxy(CCompObject);

That is, they get the reference to each other and use the

reference as the object itself. All redirect method calls

between the two objects is done by

calling ...proxy.methpd(...);

We introduce our Fake Proxy idea that we use:

SComp extends Comp {
private CComp fakeProxy;
private CCompRef proxy = fakeProxy,
public void setProxy(CCompRef ¢) {
proxy = ¢;
}
}

T R TR TR
O R O S OO

We initialized the proxy variable to a CComp object
fakeProxy in Server. Before the fadd(b); takes place,
method calls and variables that are changed will affect the
fakeProxy. When fadd(b), occurs, we use the Object
Serialization technology to send a copy of fakeProxy to the
Client Applet, and store it into a running CButton object.
Then, call the setProxy as specified above to make the
connection between the SButton object and CButton object.

The case of removing a component from a window
has a behavior which is similar to that of adding a
component. Before removing, we must use Object
Serialization technology to send the CComp object running
in the client Applet to the server and store it into the
fakeproxy variable of the SComp object. Then, call the
sctProxy to make the connection (start the redirect
mechanism) between the SComp object and CComp
objects running in the Server.

4. MAKING THE LIBRARY EASY TO USE

In this section, we focus on the restrictions that
programmers must know about when using the package we
provide. For convenience, we discuss a problem with two
components -— Frame and Button.
4-1 The Problem of Importing

One goal of this paper is to change user source code
as little as-possible. We provide an alternate set of AWT
GUI components. With this approach, one application can
use the classes we provide by writing the following code:

1998 International Computer Symposium
Workshop on Computer Networks, Internet, and Muitimedia
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

import xawt.Button; /* is the name of the
package we provide */

import xawt.Frame;

xawt

import java.awt.*;
import java.awt.event.*;
Note that there exist many classes that we do not need to
provide, such as java.awtFont, java.awtevent.*,
java.awt.AWTEvent, ctc. This is because a client Applet
only uses the default superclass behaviors, and applications
which define new subclasses eventually just invoke these
superclass behaviors, which are provided by the client’s
browser. Otherwise, instances are automatically serialized
and sent as an argument to the client by RMI’s message-
passing mechanism. For example, a font is an object
which can be serialized and sent to the client. This solves
the problem in X-windows, where a client is unable to
display some text because the client has a different set of
fonts than the server.

We must import java.awt.* for the server application to use
these classes which xawt does not provide. Because of the
name collision problem discussed in section 2, we cannot
just write:

import xawt.*; /* xawt is the package name we
provide */

import java.awt.*;

import java.awt.event.*;

4-2 The Problem of Passing the Client to an Application

One important fact is that we must let an application
using this package know where the client applet is. We
must pass the client to the application when it is launched.
A Java application starts with the method:

public static void main(String args[)) {...}

If we were to keep the clientid (in string format) in args[0},
much code would need to be changed (i.e. we must change
args[0] to args[1], args[1] to args{2], and so on). Hence, we
pass clientid to an application in the last element of the
args(] array in our system. Programmers only need to skip
the last element of this array. That is, args.length-1 is the
actual count of the number of arguments passed to the
application and args[args.length-2] is the last argument
which the application programmer is concerned about.
After passing the clientid, the following code is needed:
ControlViewInterface Client =

Server.getControl ViewInterface(args);

Here, Client is the reference to the client launching it.
getControlViewInterface is a static method of the
application Server to be used to translate the clientid into a
client reference.

4-3 The Problem of Showing a Frame, Dialog, etc.

One main difference between a Frame and a Button is
the “show” method. A Frame can be shown on the screen
by calling the show() method of the Frame. A Button
cannot be shown before it is added to a window such as a
Frame. When we want to show a Frame in an application
using our package, we must let the client know about it,
since the showing must done on the client. So, after

1098 International Computer Symposium))
Workshop on Computer Networks, Internet, and Multimedia
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

constructing a Frame, we must register it with the Client:
Frame serverSideFrame = new Frame(“test”);
Server.registerFrame(Client, serverSideFrame);
Why don’t we combine these two lines into one line as
follows?
Frame serverSideFrame = new Frame(Client, “test™);
If we were to do it this way, every constructor of Frame
would have to take an extra argument -
Frame(ControlViewInterface Client, ...), and some
special code would have to be added to each constructor to
handle the client side behavior. Subclasses of the Frame
would need to do this, too. This approach is not a good idea
since much code would have to be changed.
In the case of Button, we can hide the similar code:
Server.registerButton(Client, serverSideButton);
We put such calls in the add(...) methods of the Frame. So,
there is no need for the programmer to change his source
code for these components. Note that for a source file, the
lines to “import” and “get Applet reference” only need to
be added one time. Most applications do not have many
frames, so not very many “register” calls are necessary.
Hence, for a typical application with thousands of lines,
there may be only about twenty lines that need to be added
(changed).
4-4 Performance Issues
(1) Our system will be implemented by using threads:
There may exist many clients running at the same
time, and components may be created simultancously.
Assigning at least one thread to each client will improve
the performance of the server [1].
(2) Downloading the xawt package in advance can speed
up the applications:
For a user of our system who wants to launch applications,
he can download the xawt package in advance, and set the
CLASSPATH environment variable of his system to let the
browser use the xawt package that he downloaded. When
running applications, the classes defined in the xawt
package then need not be passed through the network
because of the already-existing downloaded xawt package.
(3) No user-defined classes need to be passed to client:
Remember that a client Applet only provides the
default behaviors the GUI classes in the java.awt package
have, and applications are actually run in a server. There
is no need for an application to pass user-defined “classes”
to client Applets (“objects” of default class types and their
subclasses will be passed if they appear in arguments of
some default method).
(4) In most situations, one application does not contain
many GUI components to be shown:
A typical application does not usually contain many
GUI components. In other words, the total cost for creating
and running client-side GUI components is not expensive.

5. SUMMARY AND CONCLUSIONS
By using this package, a server side Java application can be
viewed and controlled by an applet via a Java-enabled
browser. The programmer need not worry about the
messages being passed between the client and server, since

the message passing is hidden in the pacKage.

import xawt. Frame;
/* solve the name collection problem */
import xawt. Button;
import xawt. *;
import java.awt.*;
public class testApp {
* public static vord main(String args[]) {
ControlViewlnterface Client =
/* get the Applet reference */
Server.getControl ViewInterface(args),
Frame f = new Frame(“test”),
Server.register Frame(Client, f);
/* after this line, we can treat f as a normal Frame
nothing special to do with a Button*/
Button b = new Button(“This is a Button™),
f..add(b);
f.pack();
f.show(), }}

For a Java programmer who wants to provide services, if he
chooses to use an applet and put it in the Web, the security
constraints of the applet may confine the development of
the application. Furthermore, large programs may have
terrible download time. By using this package, we can use
lightweight components to control and view the
applications instead of downloading them. Besides, there
are many already existing Java applications in the world.
By re-compiling: the source files with our package, the
applications can be controlled and viewed on the web
browsers easily.

Our xawt package has the same class interfaces as the
original java.awt package. This means that users can use
our package as the default package without any difficulty.

REFERENCES
[1] Doug Lea, Concurrent Programming in Java 2nd Ed.
Addison-Wesley. ISBN: 0201310090, Dec 1997.
[2] Ann Wollrath, Jim Waldo, Roger Riggs, “Java-Centric
Distributed Computing JavaSoft,” IEEE Micro, May/June
1997, 0272-1732/97.
[3] Jamie Jaworski, Java Developer's Guide, Sams.net.
ISBN: 157521069X, 1996.
[4] Nataraj Nagarathnam, et al, Java Networking & AWT
API SuperBible, Waite. ISBN: 157169031X, 1997.
[5] Paul Tyma, et al, Java Primer Plus, Waite. ISBN;
157169062X, 1997.
[6] JDK 1.1 #sE5R, HUTIERE, AR 1997
[71 Sun Microsystems Java HomePage hitp://java.sun com
[8] James Gosling, et al, The Java Application
Programming Interface Vol. 1: Core Packages, Addison-
Wesley. ISBN: 0201634538, 1996.
[9] James Gosling, et al, The Java Application
P ineIntert Vol 2. Wind Toolki :

Applets , Addison-Wesley. ISBN: 0201634597, 1996.
[10] Mary Campione & Kathy Walrath, The Jlava

Intemnet, 2nd Ed., Addison-Wesley,Jan 1998.
[11] Glenn Vanderburg, et al., Tricks of the Java Gurus
Sams.net. ISBN: 1575211025, 1997.

[12] John Rodley, Writing Java Applets, Coriolis Group,
ISBN: 1883577780, 1996. .

_8-

	
	1
	2
	3
	4
	5
	6
	7
	8

