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ABSTRACT

In randomized curve detection, sampling is the pro-
cess of collecting a set of edge pixels in a edge map
from which hypotheses are generated and verified. In
the present work, we propose to define a sample to be
a set of edge pixels on the path of a random straight
line thrown into the edge map. It is shown that with
the proposed sampling method, the number of random
samples to take can be determined easily and reliably.
This is a significant improvement over some existing
works where determining this number depends one or
more edge map characteristics that may not be easily
obtained. Experimental results show that the proposed
sampling method is robust with respect to noise and in-
completeness of the curve under detection.

Keywords: curve detection, random sampling, ran-
domized iterative methods

1 Introduction

Randomized curve detection samples sets of edge pix-
els to form hypotheses of the curves under detection.
In the existing works, the samples are either collected
randomly on a pixel-by-pixel basis, or sought from the
edge map heuristically. In both cases, deciding the
number of random samples to take is an important
design decision that must be made prior to executing
the detection program. This design decision problem
has been addressed in depth in several existing works
utilizing theoretic or heuristic models [1, 2, 3, 4]. A
common feature of nearly all of these works is that, in
the computation of the number of random samples to
take, they invariably use one or more edge map specific
characteristics such as the number of true curves in the
edge map, the amount of noise, the minimum number
of pixels on a true curve, the maximum number of pix-
els on a false positive, and so on. The limitation of
using edge map specific characteristics is obvious from
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a practical point of view: they are either not available
or difficult to extract. It is also interesting to observe
that, in some of these works, additional assumptions
on certain edge map characteristics are made; they can
impose severe limits on the types of edge maps that
can be processed. For example, in [2], it is assumed
that the minimum number of pixels on a true curve is
several times the maximum number of pixels on a false
positive. In our experience, this assumption may not be
valid in a noisy edge map and the detection method can
deliver unpredictable (and usually incorrect) results.

In this paper, we propose to define a random sample
to be a set of collinear edge pixels which is retrieved
from the edge map by throwing a random straight line
and collecting the edge pixels on its path. Specifically,
if the random straight line intersects a true curve with
probability p, then a number of pixels on the true curve
are inside the random sample with probability p. De-
pending on the detection method, pixels from one or
more random samples are then enumerated system-
atically to.generate hypotheses. With the proposed
method, the number of random samples can be deter-
mined based on the probability p so that at least one
hypothesis corresponding to a true curve is generated
with high confidence; moreover, no edge map charac-
teristics are used. ‘

In the rest of this paper, Section 2 presents the pro-
posed sampling method and its comparison to some
existing methods. Section 3 presents experimental re-
sults to demonstrate its robustness with respect to in-
completeness of the curve under detection and different
noise levels. In Section 4, possible generalizations of
the proposed method with nonlinear sampling agents
are discussed.

2 The sampling method

We propose to define a random sample as follows: a
random sample is a collinear set of edge pixels that
are collected from the path of a random straight line
thrown into the edge map. Let the probability that a
random straight line intersects a degree-d curve under
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detection in the general position be p, then the random
sample contains d edges of the curve with probability
p. Notice that it may take edges from more than one
sample to generate a hypothesis; in this case s ran-
dom samples are taken in a batch, where s is minimum
number so that sd is at least as large as the number
of constraints required to generate a hypothesis. Thus,
if ks samples are taken in k batches, a hypothesis cor-
responding to a true curve can be generated with a
confidence no less than 1 — (1 — p*)*. In what follows,
we shall illustrate how the proposed method can be
applied in randomized curve detection.

Example 1: Circle detection where a hypothesis
is generated from three non-collinear edges [5]. Two
random samples are needed: one will provide a pair
and the other will provide a singleton. The confidence
is no less than 1 — (1 — p?)* if k pairs of random
samples are taken.

Example 2: Circle detection where a hypothesis is
generated by coazal transform [6]. If coaxal transform
is employed, it suffices to generate a hypothesis from
one random sample because two edges can be used
to construct a coaxal system. The confidence is no
less than 1—(1-p)* if kK random samples are taken. | |

Example 3: Ellipse detection where a hypothesis is
generated from five edges. Three random samples are
needed: two will each provide a pair and the other one
will provide the singleton. The confidence is no less
than 1 — (1 — p®)* if k triplets of random samples are
taken. M

Example 4: Ellipse detection where a hypothesis
is generated from four edges with the pencil-of-conics
construction [4]. Two random samples each providing
a pair are needed. The confidence is no less than
1—(1—p?)* if k pairs of random samples are taken. |

In the above examples, if edge gradients are also
used, it is possible to cut the number of random sam-
ples by half with appropriate change to the hypothesis
generation method.

The probability p that a random line intersects a
curve under detection depends on the geometry of the
curve under detection and how the random line is
thrown. We shall illustrates how p can be determined
based on Example 2.

2.1 Applying the method for circle de-
tection

Let the pair of random variables (X,Y’) and the ran-
dom variable R denote the center and the radius of
a circle in the real plane, respectively. It is assumed
that (X,Y) and R are independently distributed over
[0,¢] x [0, ¢} with ¢ > 0 and [r1,72], with 72 > 71 > 0.
respectively. Let y = = tan © + B be a random straight
line that intersects the edge map, where the random
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variable © denotes the angle between the line and the
X-axis, and the random variable B is the Y-intercept.
The random variables © and B are chosen according
to uniform distributions over [0, 2x] and [0, ], respec-
tively. We would like to calculate the probability that a
random straight line y = z tan © 4+ B intersects a circle
with center (X,Y) and radius R.

First, consider a fixed circle with (X,Y) = (z.,¥.)
and R = r. The distance from (z.,y.) to the random
liney=ztan® + B is

|Zesin® + (B — y.) cos O].

The probability that the circle is intersected by the
random straight line is :

p=Pr(lz.sin® + (B —y.)cosO} < ). (1)

Thus, the probability that n independent random
straight lines fail to intersect the circle is

(1-p)"=(Q1-Pr(jzcsin® + (B — y.) cos O] < r))™.

(2)
Finally, the probability that n independent random
lines fail to intersect the random circle under detection
is the weighted average of (2) over all possible (z.,y.)
and r,

/: /OC /06(1 —p)" fxv(z,y) fr(r)dzdydr, (3)

where fxy(z,y) and fr(r) are the probability density
functions of the center (X,Y’) and the radius R of the
circle under detection, respectively.

In the following examples we shall consider three dif-
ferent models of the circle under detection.

Example 5: Both (X,Y’) and R are uniformly dis-
tributed with ¢ = 256 and r1 = 12,ry = 64. This
uniformly distributed model can be used in the
case where very little information of the location
and size of the circle under detection is available
except their limits.

Example 6: (X,Y) is uniformly distributed with
¢ = 256 and R is a random variable with probabil-
ity density fr(r) = 751-;; exp{—%‘i)—z}/(QQ(B) -
1) if 12 € r < 64 and 0 otherwise, where u = 36,
o = 24/3, and &(z) = [°_ 712;exp{'7x2}da: [7].
This is the case where radius of the circle under
detection is likely to be close to p; the larger the
radius deviates from u, the less likely it is for such
a circle to be present. This model corresponds to
the case where some information about the size of
the circle is available.

Example 7: X and Y are identical and inde-

pendent random variables with probability density
RY ]

fx(2) = fr(2) = i exp{- 580 }/(28(3) - 1)

if 0 < z < 256 and 0 otherwise, where u = 128, and
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o = 128/3. R is a random variable with probabil-
ity density function as in Example 6. This model
is applicable to the case where some information
about the location and the size of the circle under
detection is available.

Notice that a random line intersects the circle at two
points that are independent of each other. Thus, if the
circle is 100w% complete, 0 € w < 1, the probability
that none of the n independent random straight lines
intersect the incomplete circle in two points is

/rz /c /oc{l —pw?}* fxy(z,y)fr(r)dz dy dr. (4)
T1 0

Fig. 1 shows this probability for complete circles and

semi-complete circles in the three models above. It

is evident from the figure that for a given confidence,

fewer random lines are thrown if more information

about the circle under detection is available. Notice

that the failure probabilities can be computed off-line
" before executing the detection program.

2.2 A comparison with existing method

The way that the number of random samples to take
is determined in the proposed method is a significant
improvement over several existing sampling methods.
To see this, we shall review three existing methods.
Probabilistic Hough transform [1]. In order to ap-
proximate the Hough transform with confidence (1-9),
Bergen and Shvaytser propose to set the number of ran-
dom samples to take to be
. ln% 1—pum
n = Ty Gae)s ®)

where r is the sample size, ¢ is the error bound, and

he B Tt
Let m be the number of edge pixels in the edge map,
mhy is the minimum number of pixels on a true curve
and mh, is the maximum number of pixels on a false
positive, and 0 < hy < hp £ 1.

Randomized Hough transform (RHT) {2]. RHT con-
ducts detection in epochs, and at most one curve is
detected in each epoch. With the assumption that the
minimum number of pixels on a true curve nmi, is much
larger than the maximum number of pixels on a false
positive nP? ., Xu and Oja propose to set the number
of random samples to take in each epoch to be

d

N
Kmaz & (10 ~ 100) = (6)

Nmin
where d the the degree of freedom of the curve under
detection and N is the number of edge pixels in the
edge map.
K random sample consensus [4]. To achieve a confl-
dence 1 — ;U% that a hypothesis corresponding to a true

curve is generated, the number of random samples to
take is set to be

Kd=1(1 4+
_l%_'w) ™

where d is the sample size, k is the number of curves
under detection, and y is the ratio of signal edge pixels
to the total number of edge pixels in the edge map.

Clearly, each of the three methods above relies on
edge map characteristics that may not be easy to obtain
in general. In contrast, the proposed method does not
rely on such information.

3 Anexperiment on circle detec-
tion

We use edge maps with uniformly distributed noise to
test the robustness of the proposed method. The fol-
lowing definition of signal-to-noise ratio (SNR) is used
[8]: given an edge map E1 of resolution W x H, an edge
map E2 is said to be E1l’s z-dB edge map if

W x H g
R ' ()

SNR =z = 20log

where R is the number of pixel reversals in obtaining
E2 from El. Figure 2 shows a 256 x 256 edge map
at various SNR levels. The input edge maps are cre-
ated as follows. The 256 x 256 edge map contains a
single (complete or semi-complete) circle which has the
distributions of Example 5, Section 2. The circle is
generated with the Bresenham’s algorithm[9], and the
semi-complete circle is obtained by randomly remov-
ing one half of edge pixels from the full circle. Noisy
edge mapé at SNR levels of 40 dB, 30 dB, and 20
dB are then generated from the noise-free edge map.
The number of random samples taken are set to be
5,10,---,100 for the complete circle and 5,10, ---, 200
for the semi-complete circle. The robustness of the
proposed method is measured by PE(n), the proba-
bility that none of n random samples contain at least
two edge pixels of a true curve. The failure rate PE
is obtained by taking the average over 1000 experi-
ments. Figure 3 shows the curves of the failure rates
PE against the number of random samples taken at
the given SNR levels. It is evident that the probabili-
ties PE are both behaviorally and numerically similar
to the theoretical fail-to-intersect probabilities PT.

It is interesting to note that noise does not seem to
have an effect on the failure probabilities. However, it
should be pointed that noise does have an definite ef-
fect on the hypothesis generation and verification; high
levels of noise implies that more hypotheses are gener-
ated and that verification is more difficult. This effect
has been observed from the experiments in reference

[6].
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Figure 1: The probabilities that n random lines fail to intersect the complete circles (w = 1.0) and the semi-complete

circles (w = 0.5) in Examples 5, 6, and 7.

4 Concluding remarks

The present paper proposes a new sampling method
for randomized curve detection. By defining a random
sample to be a set of collinear edge pixels, the num-
ber of random samples to take can be determined eas-
ily and reliably and without using edge map specific
characteristics. This is a significant improvement over
the way number of random samples are determined in
some existing works, where edge map characteristics
are required. Robustness of the sampling method is
demonstrated using circle detection as an example.

It should be noticed that the proposed sampling
method is only responsible for providing edges for
hypothesis generation. Thus, although it is robust,
the processes of hypothesis generation and verification
must also be robust for the overall detection to be ro-
bust. The proposed method can be extended to use an
alternative type of sampling set (for example, random
samples in which the edge pixels are cocyclic) provided
that the probability can be calculated.
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Figure 2: A 256 x 256 edge map containing a circle with center (127,127) and radius 25 (a) with no noise, (b) at
SNR noise levels of 40 dB, (c) 30 dB, and (d) 20 dB.
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Figure 3: Experimental results on the robustness of the proposed method applied to circle detection under various
noise levels.
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