1998 international Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

Boundary Analysis for Buddy Systems

Chia-Tien Dan Lo, Witawas Srisa-an, and J. Morris Chang
Department of Computer Science
Illinois Institute of Technology
Chicago, IL, 60616-3793, USA
) (lochiat | sriswit | chang @charlie.iit.edu)

Abstract

For the past 3 decades, the buddy system has been the
method of choice for memory allocation because of its speed
and simplicity. However, the software realization indicates
that the buddy system incurs the overhead of internal
fragmentation, external fragmentation, and memory traffic
due to splitting and coalescing memory blocks. This paper
presents a thorough analysis of the buddy system. All
problems associating with buddy system will be extensively
investigated. These problems include internal fragmentation,
boundary and size blind spots which are the major causes for
external fragmentation, and lastly splitting and coalescing
overhead that can slow down the system performance.

In 1996, Chang and Gehringer introduced the modified
buddy system. This system eliminates two major drawbacks
in the buddy system. First, the modified buddy system
eliminates the splitting and coalescing overhead associated
with the buddy system. Second, this system also eliminates
the internal fragmentation by using the new marking
algorithm that only allocates the requested size. However,
the severity of external fragmentation resulted from
boundary and size blind spot remains to be studied.

Two solutions that can solve the issues of size and
boundary blind spots is proposed. These solutions involve
bit shifting to solve the boundary blind spot and multiple
buddy system to solve the size blind spot. We also present
the simulation results of the proposed solutions. These
results clearly indicate that the both shifting and mualtiple
buddy system yield minimal improvement over modified
buddy system.

Index Terms: buddy system, internal fragmentation,
external fragmentation, boundary, boundary blind spot, size
blind spot, splitting, coalescing, bit-map, multiple buddy
system.

1. Introduction

In this paper, the analysis of the problems that have
degraded the memory utilization of the buddy systems is
presented. While it is true that buddy systems can perform
memory allocation and deallocation at exceptional speed,
they suffer from both internal and external fragmentations.
At the same time, the processes of splitting and coalescing

memory blocks dominate the cost of buddy system in its
software realization. Since buddy systems have been used in
hardware implemented dynamic memory allocators [6][2], it
is imperative that considerable amount of research should be
performed on analyzing and proposing solutions to solve
some of the existing problems.

Over the last two decades, the dynamic memory
management has been investigated and designed; however,
problems such as internal fragmentation, external
fragmentation, data structure overhead, and non-
deterministic turnaround time, can not be effectively solved.
Puttkamer proposed a hardware buddy memory allocator
based on shifter mechanism [6]. However, his system
suffered from the internal fragmentation, external
fragmentation, and non-deterministic turnaround time
because the shifting time is proportional to the number of
allocating blocks.

Another promising hardware memory allocator was
proposed by Chang and Gehringer [2]. In their proposed
solution, the utilization of binary buddy system and bit-map
helps eliminated the splitting and coalescing overhead.
Moreover, they also eliminate the internal fragmentation by
introducing a new marking algorithm that can relinquish the
unused portion at the end of the block. While this allocator
improves the memory utilization by eliminating the internal
fragmentation, it still suffers from external fragmentation. In
the buddy system, the external fragmentation is caused by
the boundary and size blind spots. These blind spots often
forbid the system from recognizing certain contiguous
blocks of memory.

This paper introduces a new approach in identifying the
blind spot problems by using boundary analysis. This
analysis can be applied to any buddy system to identify the
potential boundary problems that may exist. Once the
problems are identified, we propose a boundary shifting as a
solution that can eliminate some of the boundary blind spots
existing in the system. We also analyze the size blind spot
issue. In any buddy system, there exists a size set that the
system can only work with, This size set often limits the
flexibility in memory allocation and thus, causes external
fragmentation. We propose a multiple buddy system as a
way to eliminate some of the existing size blind spots.

96

We will also present the simulation results of the
proposed solutions. These results are the reflection of the
memory utilization of various buddy systems such as
modified buddy system, binary buddy system, and multiple
buddy system. The simulations are performed utilizing the
bit map approach and the results are very conclusive. These
results clearly indicate that the multiple buddy system (the
modified buddy system with multiple size sets) consistently
outperforms the binary buddy and modified buddy systems.

The remainder of this paper is organized as follows.
Section 2 presents boundary analysis. Section 3 presents the
proposed solutions to improve the memory utilization of
buddy systems. Section 4 introduces the bit-map approach
that is used in modified buddy system. Section 5 illustrates
the simulation results. The last section presents the
conclusion of this paper.

2. The boundary analysis

In a binary buddy system [7], when a block of a given
size is to be allocated, it locates a block that is at least as
large as the allocation request, and whose size is a power of
two. The block is split in half as many times as possible,
until it can no longer be split while still satisfy the memory
request. When a block is split, its two halves are known as
buddies. At the time a block is freed, if the block's buddy is
also free, the buddy system coalesces the two buddies
immediately, making available a larger piece of memory that
can be used later. The operations of splitting and coalescing
memory dominate the cost of the binary buddy system using
software implementation. However, in hardware solution [6,
2], a bit-map or bit-vector is used to keep the corresponding
memory allocation status; therefore, coalescing of two
buddies is done automatically. Since both splitting and
coalescing are the two most important elements in any buddy
system, considerable amount of research should be spent on
analyzing these two mechanisms.

2.1 Splitting and coalescing mechanisms

Basically, the splitting mechanism is used for finding a
suitable free memory blocks in a buddy system whereas the
coalescing mechanism is used to form a larger memory
chunk after freeing memory blocks. Different buddy systems
have different mechanisms for splitting and coalescing
memory chunks. There are several examples for the buddy
system, The binary buddy system is a buddy system with
splitting memory chunk into two half-size child chunks and
splitting its two child chunks in the same way. The Fibonacci
buddy system uses a mechanism based on a Fibonacci series.
The generalized Fibonacci buddy system uses a Fibonacci
series starting from a larger number. The weighted buddy
system and the double buddy system use the same sizes, a
power of two and three times a power of two; however, they
have different splitting and coalescing mechanisms.

97

1998 International Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U,, Tainan,_ Taiwan, R.O.C.

The coalescing mechanism is operated in exactly the
opposite way. Whether two free adjacent memory chunks in
a buddy system can be coalesced into a larger memory chunk
depends on its coalescing mechanism. Usually, the splitting
point of a memory chunk will be the coalescing point of its
two buddies. These points, called boundaries, serve as
guidance in the operations of a buddy system. Some
examples will be shown later in this section.

2.2 Boundary and size set

Definition 1: A boundary B, is a splitting or coalescing
point in a buddy system. The memory chunk of size
x+y can be coalesced from its left buddy with size x
and its right buddy with size y or split into its left
buddy with size x and its right buddy with size y. B,
is used for abbreviation when x=y. Boundaries at the
ends of a memory chunk are called end-boundaries.

There exists a battery of boundaries in a hinary buddy

system such as B 4, B_,,..., Byp. The boundary B, is used
. 2 . A i

to separate its two bg&dmcs of size 2' and a larger memory
chunk with size of 2*! will be regarded as a free memory
chunk if both its two buddies are free. Figure 1a shows the
boundaries in a binary buddy system. Figure 1b shows the
boundaries in a Fibonacci buddy system. Note that a
boundary By or 4B, is put in the ends of the bit-vector for
all possible boundaries.

Definition 2: A size set of a buddy system is an integer set S
such that (x+y | ,B, is a boundary of the buddy

system].

Figure 1. Example of the boundaries with 8 memory blocks

01 2 3 4 5 6 17 Address
tf1f1f{1}1]|1]1]| 1| 2 Binarybuddy
EEEEEE RN
oBs Bi B2 By B, B B, By B
1t1l1t1t1) 1|1} 1| b Fibonaccibuddy
system

B

oBs 1B2 Bp 3Bs By 3Bz By B; 4B,

The size set of the binary buddy system is {1, 2, 4, §,
16,...}. Given a memory allocation request with the length of
the desired blocks, the binary buddy system will answer with
the starting address of a free block of at least that size in the
size set or an error if there is "no space” of at least that size
left. For example, when asking memory blocks of size 9, the
binary buddy system will look for a free memory chunk with

1998 International Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

size 16. If the allocation failed, there could be three
implications. First, there is no 16 contiguous block in the
system. Second, there are /6 contiguous blocks of memory
but the boundary blind spots forbid the system from
recognizing them. Lastly, there are contiguous blocks with
sizes ranging from 9 - 15; however, the size set does not
allow the system to look up for those specific sizes except
2", On the other hand, if a memory chunk of size 16 is found,
the binary buddy system will allocated entire chunk even
though only 9 blocks are needed. Apparently, system such as
binary buddy suffers from internal fragmentation. As the
requested size becomes larger, so does the internal
fragmentation.

2.3 Internal Fragmentation

The internal fragmentation plays a very important role in
the buddy system memory utilization. For example, in a
binary buddy system, we can only allocate memory within
the size set /2V). If we request 5 blocks of memory, a binary
buddy system would allocate 8 blocks, and thus, we lost
three useful memory blocks to internal fragmentation. As a
matter of fact, as the request size become larger, the internal
fragmentation becomes more severe as well. In the previous
example, for a 5 blocks request, 3 blocks would be lost to
internal fragmentation. On the other hand, for a 65 blocks
request, 63 blocks would be lost to internal fragmentation.

As state earlier, the size set of the binary buddy system is
{1, 2, 4, 8, 16, 32....}. If we want to improve the memory
utilization of the buddy system, different size set or multiple
size set can be deployed. Other size set such as Fibonacci
series narrows the gap between each member of size set. In
Fibonacci buddy system, the size set follows the Fibonacci
series {1, 2, 3, 5, 8, 13...}. Other variation such as weighted
buddy system or double buddy system which have the two
size sets of {27, 3%2M}, can be used to greatly improve the
memory utilization. The splitting mechanisms of the two
buddy system are different. In the weighted buddy system,
sizes of {ZN] can only be split evenly in two, as in the binary
buddy system and sizes of {3 #2N) may be split evenly in two
or unevenly into two sizes that are one third and two thirds of
the original size. In a double buddy system, blocks may only
be split in half, as in a binary buddy system.

The improvement is quite substantial. By allowing more
options for sizes, the Fibonacci buddy system has 10% to
15% lower internal fragmentation than the binary buddy
system [5]. Generally, the internal fragmentation for
requesting a memory chunk of size 2*+1 in binary buddy
system is s By the same token, the internal
fragmentation for requesting a memory chunk of size 2"y
in double buddy system is 2"2.]. The double buddy system
improves the internal fragmentation by 2*%42%-1). In [5),
the simulation results shows that the double buddy system
reduces the internal fragmentation by about half.

2.4 Blind spot issues

Even though a buddy system may contain a large enough
free memory chunk for an allocation request, blind spots
forbid the system to acknowledge the existence of that
memory chunk due to the wrong positions in its boundaries
or wrong size set. In [3], the study of blind spot issue has
been performed in 2 dimensional modified buddy system;
however, in that study, only the size blind spot were
addressed. In this paper, we find that there are conclusively
two types of blind spot in the buddy systems, boundary blind
spots and size blind spots.

Corollary 1: Given a buddy system, a contiguous free
memory chunk of y blocks and two end-boundaries
By Baof it, a free memory chunk with size y can be
allocated suchthatb=yorc=y.

Corollary 2: (Blind Spots) Given a buddy system, a unique
contiguous free memory chunk Y of y blocks and
boundaries , B, Byres 4By, free memory

o+ 5
chunk with size y can not be allocated such that
bo<>y, ay, <>y and a;+b; <> y for all i, O<i<y. If
there exists a boundary By, in the system not
associated with Y such that a+b =y, then Y is called
boundary blind spot. If there does not exist a
boundary By in the system, Y is called size blind
spot.

Corollary 1 shows a halt mechanism when a system is
activated to search for the first suitable free memory blocks.
In other words, the system needs to traverse these boundaries
to decide whether a free available memory chunk is
available. Corollary 2 distinguishes between the two types of
blind spot issues, boundary blind spot and size blind spot.

2.4.1 Boundary blind spots

Boundary arrangement is subjected to different splitting
and coalescing mechanism for a buddy system. Figure 2a
shows an example that at least a free memory chunk of size 4
in a buddy system (block 1-4). Note that the free memory
chunk can be used by examining the B, boundary not Bg
boundary. The boundary Bg is used to examine a free
memory chunk of size 8. Figure 2b shows that a buddy
system fails to allocate a free memory chunk of size 4 which
is a unique 4-block free memory chunk in the system. By
Corollary 2, all the boundaries for this 4-block free memory
chunk satisfy all the listing conditions. Consequently, the
memory chunk can not be allocated and will be a blind spot.
Only memory chunks with size 1, 2 and 3 can be allocated.

98

Figure 2. An example of boundary blind spot issue.

1998 International Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0.C.

Figure 4. Example of size blind spot in a binary buddy system

Address

01 2 3
a) 4 contiguous block
1101000 1)1]1 is available in a buddy

(T T T T G et
By By from 1-4).

4 5 6 7

b) 4 contiguous block

110[{0]O0(O0]| 1)1} 14 available; however,
if the request is 4, the
T T f T T T T f T system cannot allocate
due to boundary blind
B, ,B; /B, B ary
1 2Bs 1B2 B sBs spot.

Theorem 1: Given a request for a memory chunk of size y
in a buddy system, the memory allocation succeeds if
one of the following conditions holds. (1) There
exists a free memory chunk of size y with end-
boundaries By, and B, such thatb =y orc = y. (2)
There exists a free memory chunk of size y with
boundaries B, B, such that

aoBbo » al 1 ,Il.’ a’

aq+b;=y for some i, 0<i<y.

Figure 3a illustrates successful allocation of size 4
because the end-boundary satisfies condition 1 of Theorem
1. Figure 3b also demonstrates successful allocation because
B, satisfies condition 2 of Theorem 1.

Figure 3. Example of successful allocation of size 4.

a) End-boundary B,
P10 {010 0] 1] 1| i cedtosearch for

bt It t 4 l § 4 memory block of

1lolojofo] 1| 1] 1}|b) BoundaryB,
is used to search for

bt fo b4 4 4 4 memory blockof

size 4.
B,

2.4.2 Size blind spots

Size blind spot refers to the buddy system’s limitation
on the option of sizes available. For example, binary buddy
allows sizes from 2 - 2”. This implies that sizes such as 3, 5,
6, 7, 9, etc. can not be precisely allocated. In general, if a
system requests 5 blocks of memory, the binary buddy
system would allocate 8 contiguous blocks. If the system
requests 9 blocks, then the system would allocate 16 blocks,
and so on. Figure 4 illustrates an example of size blind spot.

gg

In Figure 4, the system has 3 contiguous blocks of
memory available (block 2, 3, and 4); however, the
allocation would fail because the binary buddy system can
only allocate 2" blocks (4 blocks in this case).

Up to now, the boundaries in a buddy system have been
investigated and some properties have been studied such as
splitting/coalescing mechanisms and blind spot problems. In
the next section, we will suggest solutions to the blind spot
issues.

3. Solution to the blind spot issues

Corollary 2 implies that there are two types of blind spot
issues, boundary and size blind spots. If the buddy system
have a large enough contiguous memory space but cannot
satisfy the allocation request, blind spots exist in such
system. The blind spots are considered as omne type of
external fragmentation and in order for the buddy systems to
improve the memory utilization, the severity of these blind
spot issues must be reduced.

3.1 Solving boundary blind spot by shifting

In modified buddy system [2], the internal fragmentation
problem had been solved by using a marking algorithm
which could only mark exact number of request memory
blocks. However, finding a large enough free memory chunk
is still dominated by the boundaries themselves. If the
boundaries change, some of the blind spots will be
eliminated. Figure 5 shows an example that a blind spot will
be eliminated by shifting the boundaries left by 1.

Figure 5.An example that a blind spot will be eliminated
by shifting the boundaries left by 1.

01 2 3 4 5 6 7 Address

Theorem 2: Given a buddy system, a free memory chunk
with size n and a non-end boundary B, where
a+b=n and 2n is in its size set, the buddy system can
allocate it by left shifting its boundaries no more
than n-1 times.

1998 intemnational Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C K.U., Tainan, Taiwan, R.0.C.

In Theorem 2, a free memory chunk may or may not be a
blind spot. If it is not a blind spot, the system can use that
memory chunk immediately without any boundary shifting.
Suppose that such memory chunk is a blind spot and one of
its boundary satisfies the condition, the blind spot will be
eliminated by left shifting no more than n-1 times. Theorem
2 would eliminate many boundary blind spot problems.
However, there is another kind of blind spot is not eliminated
by theorem 2. This type of blind spot exists in the size set
itself. For example, a Fibonacci buddy can not allocate
exactly 4 memory blocks for a memory request whenever
there is only a 4-block free memory chunk in the system.
The same situation occurs in a binary buddy with memory
block of size 6. Although some of the blind spot problems
can be solved by Theorem 2, multiple size sets may need to

"be provided in order to solve size blind spot problem.

3.2 Solving size blind spot using multiple buddy

It is obvious that size blind spot cannot be solved by
Theorem 2. For example, a memory request of size 6 always
fails no matter how many times the boundaries shift in a
binary buddy system if it contains only one free memory
chunk of size 6. The reason is that binary buddy system
always rounds the requested size up to 2" (i.e.8). It is the
reason that causes the binary buddy system to have severe
internal fragmentation [5]. Several variants of buddy system
emerge as the solution to alleviate this problem. -

Definition 3: A multiple buddy system is a buddy system
with more than one size set.

In general, a memory management system can contain
more than two buddy systems. Every buddy system deals
with a memory area in the heap space. They cooperate with
cach other but do not interfere with one to another {S]. The
splitting and coalescing operations only occur in a memory
area by using its own mechanisms. On the contrary, the
multiple buddy system allows different splitting and
coalescing mechanisms to operate in the same memory area.

Figure 6. The boundarics of a multiple weighted buddy
system.

2B4 B, 182
B2 By By B, By Bg B, B

BERERERR

110{0 1010 111|1

Prrrer e

o8, B B, B By By B, B B,

An example for multiple buddy system is the multiple
weighted buddy system with size set {2V, 3%2N) Its

-100-

boundaries are shown in Figure 6. Between the address 1 and
the address 2, there are boundaries ,B,, B; and B,. Between
the address 3 and the address 4, there are boundaries ;B,, B,
and B, The more boundaries a buddy system has, the more
time its splitting and coalescing algorithm needs. Those
different coalescing size boundaries can provide more
different size of memory blocks for a memory request. The
more choice of memory size a buddy system has, the lower
internal fragmentation it has. Henceforth, this promotes
more memory utilization. Unfortunately, the time spent. in
splitting and coalescing processes also increases.

Definition 4: A multiple buddy system is complete if and
only if it contains no blind spots.

In a complete multiple buddy system, there does not
exist a free memory chunk of size n whenever a memory
chunk of size # is fail to be allocated.

Theorem 3: A multiple buddy system with n memory blocks
is complete if it satisfies the following conditions.
The boundary set between address k-1 and address k
is {,B, | x<=k and y<=n-k, x, y are positive integers)
where n is the size of total memory blocks and k=1,
2,..., n. Note that the starting end-boundary and
ending end-boundary are always set to be 4B, and

nBo

Theorem 3 provides a solution to eliminate all the blind
spots in a buddy system. However, it is too costly to be
implemented. It is also too time consuming to manipulate all
the free lists of sizes from 1 to n. Nevertheless, it depends on
the system designers that how many boundaries should be
added in to the system. For example, if a system mostly
requires memory with sizes of /3*27), then these boundaries
which generate the size set should be added into a binary
buddy system. As a result, this becomes a double buddy
system. By adding more boundaries, the multiple buddy
system can allocate more different sizes of memory but the
maintenance of splitting and coalescing operations among
these two size sets can be very difficult. Next section will
propose an algorithm for the multiple buddy system with bit-
map approach.

4. The bit-map approach

The most difficult problem in a multiple buddy system is
dealing with splitting and coalescing operations among
different size sets. There may be multiple phases for splitting
and coalescing. Each phase manipulates one type of buddy

. system. In [2], the modified buddy system eliminates the

need for splitting and coalescing operations by using bit-map
approach. Splitting becomes unnecessary because allocation
is done using a hardware-maintained binary tree that
allocates free memory blocks using combinational logic. The

bit-vector forms the base of the binary tree. During the
deallocation process, the hardware approach requires no
coalescing at all. The freed bits are, in effect, "combined”
immediately with adjacent bits. Because the hardware can be
realized in pure combinational logic, the time needed for
memory management is greatly reduced.

Figure 7 shows an example of a hardware implemented
multiple buddy system. Let ,B, denote a boundary, T;;
denote a circle node, n denote the total levels and R; jdenote
a square node in the multiple double system as shown in
Figure 7. T;; =1 denotes a block starting j*2™1 with size 2™
is in use. R;; =1 denotes a block starting j*3* -2 with size
3#*2"2 is in wse. T;; =0 or R;j =0 represents its
corresponding memory chunk is free.

Figure 7. An example of multiple buddy system

available size

D 30N

O:ZN 6
B) 4

3

@ [& @ (B)Tuts
:gzc]:ﬂ‘mlolollll[OlOIlll[llllbil-vecmt

0o 1t 2 3 4 S5 6 7 8 9 address

In [6], 2 binary tree had been used to represent the
memory allocation status for a binary buddy system. Finding
a free memory with size 2"k means looking for T,;=0inthe
binary tree at level A Similarly, finding a free memory with
size 3*2%2 means looking for R), ;j =0 in the square binary
tree at level . If Ty, j= 0 or Ry ;= 0 does not exist, a memory
allocation fault s1gnal must be reported. When a free block
has been allocated, the corresponding node T}, ; or Ry, ; and its
predecessors and progeny must be marked. The square
binary tree has special connections in its leaves. The R, 2
node has two child of T, ; 3 and T}, 23x41) The Rz ¢4
node has two child of Tn ')(Zk_,_l)_'_l and T,l 1,3k+2- When a free
memory chunk of size 25 allocated, some values of the
nodes in the binary trees need to be marked as follows.

T_Mark (h,j)
Step 1: Ty =1
Step 2: For i = 0 to n-h do (mark progeny)
for k = 2% to 2/%(j+1) -1 do
Thaik=1
Step 3: For i = h down to I do (mark predecessors)
Ty, gy = 1 J= 121
Step 4: For k = 2™ * j o 27" * (j+1) -1 do (mark
square binary tree)

1998 International Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

Jifk =2(3r+1)or T, ; 3 = 1 then
j=2r
fori = n-Idownto Ito
Rit 1= 1i=1072]
ifk=2(3r+1)+1 or T,,] 342 = I then
j=2r+l
fori=n-1downto Ito
Rit pry=1:=1072]

Another mark algorithm, R_Mark used to marking the
square binary tree when there is a memory request of size
{3*2"}, is similar to the T_Mark and is not shown. The step 4
in this algorithm may do a lot of duplicated efforts in
marking the predecessors. However, this can be done in
parallel by using an or-gate tree [2].

Even though the hardware complexity of multiple buddy
system is O(n), it requires more hardware components in the
implementation. The additional hardware overhead can be
calculated as follow:

For example, if the bit-vector size is 8, we need 15 circle
nodes and 4 square nodes. Therefore the percent overhead is
4/19 or 21%.

5. Simulation Results

We create a simulator based on the bit-map approach and
the following systems: first fit, modified buddy, binary
buddy, and multiple buddy. The multiple buddy system is
based on the modified buddy system with multiple size sets.
We use trace files which monitor memory allocation and
deallocation patterns from various C programs. These
programs are drawn from different application areas,
including language interpreter (gawk), compiler (gcc),
graphic (xsnow), and our own synthetic pattern (zest3). We
use first fit as the benchmark because according to [5], first
fit yields the best memory utilization. In order to investigate
our proposed solutions, we study the memory overhead
between different buddy systems and first fit. We also study
the effect of shifting on boundary blind spot.

5.1 Solving boundary blind spot by shifting

'We have performed extensive study on the effect of blind
spots on the modified buddy system. In our simulation
results, the Scatter Factor (SF) reveals the average hole size
in the bit-map, and the Average Malloc Size (AMS) provides
the average requested size. For example, if a simulation is
performed and the SF yields the value of 8.5 blocks, then the
average unoccupied hole size is 8.5 blocks. The simulation

-101-

1998 International Computer Symposium

Workshop on Computer Architecture

December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

results appear in Table 1. Note: Watermark is defined as
the highest address allocated for each simulation.

Table 1 Simulation results with Scatter Factor (SF)

Table 3 illustrated the percent overhead between
various buddy systems compared to first fit.

Table 3 Percent overhead compared to first fit

ho Avg‘ LS A u W u ! . .
ok | Maloe | S5 | “no | (oint | (Shfi10 | (Keep pomae Modified | Binary Buddy Multiple
size) Size Factor biy) bit) bit) Shifting) (blocgk size) Buddy System System Buddy Systern
Overhead (%) | Overhead (%) | Overhead (%)
2oc(8) | 14334 | 049 | 44,540 | 44,540 | 44,540 | 44,540
gawk(s) | 147.62 | 1775 | 5119 | 5119 | 5119 | 5119 2oct®) 070 ™ 000
xsnow(8) | 29.50 | 1371 | 57471 | 57471 | 57471 | S1471
tes3(8)* | 6.34 347 | 215724 | 215,724 | 215,654 | 215,654* gawk(®) 9.79 17.99 9.79
xsnow(8) 0.10 0.55 0.10
*Achieves some improvement but very minimal (70/215,724).
P ey @) test3(8) 22.90 24.53 19.15

The correlation between SF and AMS can clearly be
seen. In all cases, the SF's are smaller than the AMSs which
implies that shifting may not improve the memory
utilization. We also use synthetic trace (Test3) in which we
limit the allocation size from 1 to 13 blocks. The
simulation result indicates that the improvement can be
achieved with shifting but very minimal. The result from
Table 1 also indicates that boundary blind spot is not a
major issue in the buddy systems.

5.2 Simulation of multiple buddy system

To investigate the significance of the size blind spot
issue, we simulate various types of buddy systems with
bit-map approach. These systems include modified buddy,
binary buddy, and multiple buddy. According to [S], first
fit yields the best memory utilization; therefore, we
simulate the first fit algorithm and use it as the benchmark
for memory utilization of each buddy system. During each
simulation run, the watermark is recorded. Table 2
demonstrates the simulation results.

Table 2 The watermarks among different algorithms

Modified Binary Muttiple

Trace First Fit Buddy Buddy Buddy
Programs | watermark in system system System

(block size) blocks watermark in | watermark in | watermark in

(FFW) blocks blocks blocks

MBW) (BBW) (MuBW)

gec(8) 44,225 44,540 45,052 44,540
gawk(B) 4,618 5119 5,631 5,119
xsnow(8) 57411 57,471 57,727 57471
test3(8) 166,323 215,724 220,396 205,740

The memory overhead associating with different
algorithms can be measured by calculating the differences
in watermark betwcen the investigated buddy system and
first fit. From there, we can derive at the overhead
percentage of each algorithm as compared to first-fit. For
example, the percentage of overhead for modified buddy
system can be calculated as follow:

Overheadyps = (MBW - FFW)/MBW

* shows small improvement over modified buddy system.

Test3 also shows high memory overhead compared to
first fit (22.90%) because we confine the memory request
size to be uniformly distributed from 1 to 13 blocks. This
confinement creates more fragmented small memory
chunks which raise the memory overhead.

Table 3 indicates that the multiple buddy system while
performs much better than the binary buddy system, does
not significantly improve the memory utilization
compared to the modified buddy system. These results
indicate that both size and boundaryblind spots may not
play a significant role in memory utilization of buddy
system.

6. Conclusion

The most important benefit of buddy systems is the
speed in locating suvitable free memory chunk. However,
the buddy systems suffer from three major drawbacks.
First, the splitting and coalescing overhead can degrade
the system performance because of high memory traffic.
Second, the internal fragmentation can be very severe in
the buddy system. As a matter of fact, as the requested size
become larger, the internal fragmentation becomes more
severe as well. Third, the external fragmentation of the
buddy system can be represented in two forms of blind
spot, boundary and size.

In [2], Chang and Gehringer proposed the modified
buddy system, which totally eliminates the splitting/
coalescing overhead and the internal fragmentation. The
extensive study of blind spot issues in modified buddy
system is presented. First, the boundary blind spot can
easily be identified using the proposed boundary analysis.
Once the problem is identified, we propose a boundary
shifting, which is a solution that can be applied to any
buddy systems to enhance their performances. At this
time, the preliminary simulation results show that
boundary blind spots do not occur very frequently and
thus, shifting is not very effective in improving memory
utilization. Second, we analyze the size blind spot problem

-102-

and propose the multiple buddy systems as the solution.
However, the preliminary result using two size set multiple
buddy system indicates that size blind spot does not occur
very frequently; therefore, two size sets may not be effective
in improving memory utilization. Larger size sets need to be
further investigated according to different memory
allocation patterns. Additionally, block size issue needs to be
studied as well.

7. References

[1]-A.D. Applegate, "Rethinking Memory Management,” Dr.
Dobb’s Journal, pp. 52-55, June 1994,

2] IM. Chang and E.F. Gehringer, "A High-Performance
Memory Allocator for Object-Oriented Systems," IEEE
Transactions on Computers, Vol. 45, No. 3, pp. 357-
366, March 1996.

[3] J. M. Chang, "Design and Evaluation of A Submesh Al-
location Scheme for Two-Dimensional Mesh-Connected
Parallel Computers,” Proceedings of 1997 International
Symposium on Parallel Architectures, Algorithms and
Networks (I-SPAN), Taipei, Taiwan, December 18-20,
1997. pp. 303-309

[4] N. Lethaby, K. Black, "Memory Management Strategics
for C++," Embedded Systems Programming, pp. 28-34,
July 1993.

{51 PR. Wilson, M.S. Johnstone, M. Neely, and D. Boles,
"Dynamic Storage Allocation: A Survey and Critical
Review," Proc. 1995 Intl. Workshop on Memory Man-
agement, KinRoss, Scotland, UK, Sept. 27-29, 1995,
Springer Verlag LNCS.

[6] E.V. Puttkamer, "A Simple Hardware Buddy System
Memory Allocator,” IEEE Transactions on Computers,
Vol. ¢-24, No. 10, pp. 953-957, Oct. 1975.

[7} Kenneth C. Knowlton. "A fast storage allocator,” Com-
munications of the ACM, 8(10): 623-625, October 1965.

=103-

1998 International Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.KU.. Tainan, Taiwan, R.0.C.

	
	96
	97
	98
	99
	100
	101
	102
	103

