1998 International Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

CPSS: AN INTEGRATED SIMULATOR FOR
PARALLEL SYSTEMS

Lizin Tao
Computer Science Department
Concordia University
1455 De Maisonneuve Blvd. West
Montreal, Quebec, Canada H3G 1M8

lixin@cs.concordia.ca

Abstract

In this paper, we present the design and implemen-
tation of the Concordia Parallel Systems Simulator
(CPSS). The ultimate purpose of the CPSS is to pro-
vide a parallel programming environment which allows
users to study impacts of system and software factors
on program performance and to locate performance
bottlenecks in parallel programs.

CPSS uses functional simulation technique, and can
accurately simulate most multicomputers and multi-
processors based on various communication networks
and routing techniques. It also supports reconfigurable
and partionable systems. Its unique features include an
integrated network simulator, run-time adjustment of
simulator parameters, support of virtual-architecture
programming, load-time specification of program map-
ping, and accurate performance information for various
components of a parallel system during the execution
of a user application.
key words: parallel system simulation, functional
simulation, performance evaluation

1 Introduction

The performance of a parallel program depends on var-
ious components including hardware architecture, algo-
rithm, programming model, compiling technique, data
and task mapping, data routing technique, operating
system, and run-time support. Experience shows the
interaction among these components also plays an im-
portant role in the performance of a program. It is very
helpful for programmers to have an efficient perfor-
mance debugger with which they can collect execution
statistics of their programs, identify the performance
bottlenecks, fine-tune their source code, and play with
system parameters to observe the impact of different
system components on their programs.

Since 1994 we focused on the design and implemen-
tation of a compact performance debugger prototype,
called Concordia Parallel Programming Environment
(CPPE) (see Figure 1), which includes a compiler fron-

Parallel
program
CPCC
Commands,
Intermediate parameters from
code user

CPSS

Application outputs
Debugging information
Performance statistics

Figure 1: General structure of the CPPE

tend transforming code in our Concordia Parallel C
(CPC) to an abstract syntax tree; a code generator
to generate intermediate code for our Concordia Par-
allel Systems Simulator (CPSS); and CPSS which per-
forms simulation of various parallel systems and their
communications subsystems. In addition to being a
useful tool to identify performance bottlenecks of par-
allel code and study the interaction of various system
components of a parallel system, CPPE is also a self-
contained programming environment in which students
can learn and practice parallel programming. CPPE
contains about 500K well documented C source code
and runs on most platforms including PCs and work-
stations. On Unix and NT it can simulate more than
4000 parallel processors.

88

2 Current Status

Several simulation systems for parallel computers have
been developed [1, 2, 5, 3, 4]. Existing simulation tech-
niques can be classified into three categories.

1. Direct execution. A parallel program is first com-
piled into object code which is in the assembly
language of the host. During compilation, the
compiler identifies two kinds of instruction for the
purpose of simulation: local instructions and non-
local instructions. An instruction is local if it has
effects on only the local processor. Examples of
local instructions are register-to-register instruc-
tions or memory accesses to a local variable re-
siding in the local memory. Non-local instruc-
tions, in contrast, impact another part of the sys-
tem such as a remote processor or the network.
In particular, non-local instructions perform par-
allel tasks such as process creation/termination,
message sends/receives or process synchronization.
Each non-local instruction will be simulated via
a procedure call which interprets the instruction
at the functional level. Local instructions, on the
other hand, are executed directly by host processes
and timed with the host’s clock. This simulation
technique is fast but not accurate since the simu-
lation is timed with the host’s clock and not the
clock of the target architecture.

2. Direct execution with code augmentation. This
approach enhances the pure direct execution tech-
nique by adding cycle counts of local instructions
to the object code during the compilation phase.
The cycle count of an instruction is the time it
would take to execute this instruction on the real
machine. The simulation of local instructions is
no longer timed with the host’s clock but accumu-
lated using cycle counts added to the object code.
This approach thus results in a more accurate sim-
ulation than the pure direct execution technique.

3. Functional simulation. A parallel program is first
translated into intermediate code of a virtual par-
allel machine. The set of intermediate code in-
structions is definable and can be different from
the host’s assembly language. At run time, the
intermediate code instructions are interpreted at
the functional level as if they were being executed

on the target machine. Functional simulation in-

general takes more simulating time than the other
two techniques, but its simulation results are the
most accurate.

2.1 Proteus

The pure direct execution technique correctly simulates
the functionality of local instructions but ignores the
exact calculation of the actual execution time. Pro-
teus [1] (developed at MIT in 1991) uses code aug-

1998 International Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

mentation to count the cycles required by the target
machine to execute local instructions.

The application program is first compiled into the
host’s assembly language. A code-augmenting program
will then add cycle counts to local instructions of the
object code. The compiled code is first divided into
basic blocks of local instructions. A basic block is the
smallest block of code delimited by a non-local instruc-
tion or an instruction where the execution can branch
(e.g. ajump, a function call). Each instruction of a ba-
sic block is then matched with a cycle count by looking
up a table. The cycle counts of all the instructions in
that basic block are then summed and an instruction
updating a global cycle counter is added at the end of
the block. The cost of each basic block is thus a fixed
number and determined at compile time.

Each application process of the target is simulated
by a light-weight process (thread) of the host. Con-
text switching on the host is required to interleave ex-
ecution of threads which run local instruction blocks.
Each thread context switching takes 3 microseconds.
Non-local instructions are implemented by procedures
and interpreted by the simulation engine as in the pure
direct execution approach. During program execution,
the simulation engine also manages simulating threads:
when a simulating thread finishes execution of a basic
block, it updates the cycle counter of its simulated pro-
cessor and gives control to the engine. The engine then
selects the next available block for execution and passes
control to the corresponding simulating thread. The
engine also handles interprocessor communications.

A specific engine must be defined for each simulated
MIMD architecture. When the user chooses to simulate
a specific multicomputer system, the user has to modify
the parameters of the engine. The engine is then re-
compiled and linked with the user’s application.

Proteus’ debugging capability depends heavily on the
use of sequential dbz tools. The user is also allowed to
add monitoring code into the simulation engine and
the application. During program execution, monitor-
ing code produces data and event traces, and logs the
traces into an output file. When the program execu-
tion is completed, an graph generator is used to inter-
pret the trace file data and present the results of the
simulation.

Although Proteus simulation is fast, it suffers from
several drawbacks.

¢ The timing results may not be accurate because
the cost of each basic block is determined at com-
pile time and is a fixed number. In reality, the
cost of an instruction depends on other run-time
factors such as the operands (or cache hits if the
target machine is a shared-memory architecture).

¢ The simulator can simulate accurately only a lim-
ited set of architectures whose instruction sets are
similar to that of the host. If the instruction set of
the target machine is quite different from that of

89

1998 International Computer Symposium
‘Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

the host, the assignment of a cycle count to every
local assembly instruction is no longer accurate.

o Simulation performance may be substantially de-
graded if the application involves many processes.
In addition to the simulation engine process, a host
process is created for each application process. If
the number of application processes is large, this
may incur substantial overheads of context switch-
ing among the simulating threads. In practice,
augmentation overhead is an insignificant part of
simulation cost. Simulating non-local instructions

and context switching dominate the cost of simu- .

lation [1].

e The simulator is not flexible from the user’s point
of view. When the architecture is changed, the
engine parameters must be modified. The engine
is then re-compiled and linked with the user ap-
plication. This is not convenient, for example, for
experimenting with program mappings. This ex-
periment would require to run the same program
on different architectures of varied sizes. The sim-
ulator must be modified, re-compiled and linked
with the application code every time the topology
or system size is changed.

¢ Debugging capability relies mainly on software
instrumentation. In-session debugging facility is
very limited and depends on sequential dbz tools.

2.2 Tango

Tango simulator [2] was built at Stanford University
in 1990. Tango and Proteus were developed indepen-
dently but they are quite similar. However Tango sim-
ulates only shared-memory architectures.

Application programs are written in C or Fortran.
Parallel features are provided by macros. For instance,
Lock acquires a binary lock and Unlock releases it. The
compilation process consists of five steps: macro ex-
panston, compilation into assembly language, code aug-
mentation, assembly and linkage. If a parameter needs
to be changed, the simulation engine must be modified
and the compilation process is repeated.

Like Proteus, Tango may produce inaccurate simula-
tion results due to fixed costs of local instruction blocks
calculated at compile time. Similarly, the target sys-
tem is assumed to have a basic instruction set that can
be approximated by the host architecture in order to
obtain accurate simulation.

Novel target machine instructions that do not ex-
ist on the host are implemented in libraries and macro
packages and will be interpreted at run time. How-
ever, if the target machine instruction set differs con-
siderably from the host instruction set, the simulation
would approach functional simulation.

Tango’s performance is not as good as that of Pro-
teus. Tango uses Unix processes to simulate parallel ex-
ecution while Proteus uses faster light-weight processes

managed by the simulation engine. Context switching
time in Tango is 180 to 250 microseconds [2]. If the
application execution involves a large number of pro-
cesses, context switching cost is significant.

Tango does not support any in-session debugging
tools. Debugging and statistics data are provided us-
ing the instrumented software approach. Many kinds
of trace file are generated. System events are recorded
in trace files. Program outputs are logged in an out-
put file. There are also process summary file and event
trace file. This is not a user-friendly debugging envi-
ronment for parallel applications.

Tango was implemented for studying shared-memory
behaviors, shared-memory synchronization and concur-
rency abstractions, and for architectural evaluation [2].
It can also be used for application studies. However
debugging tools are not adequately provided for code
development or performance fine-tuning.

2.3 CPSS Simulation Technique

The CPSS uses the functional simulation approach to
simulate execution of parallel programs on a multicom-
puter system. Applications are written in the CPC
language which enhances the C language with parallel
features to express process creation/termination and
message sends/receives. Parallel operations are defined
at a high level of abstraction and reuse existing syntax
of the C language wherever possible to promote pro-
grammability and ease of learning.

The intermediate instruction set is designed based
on an analysis of common operations of parallel sys-
tems. The objective is to simulate a wide range of
message-passing multicomputers. Every intermediate
code instruction is associated with a configurable cost
which can be adjusted to match a specific target.

The intermediate instruction set can be extended if
it is different from the target’s instruction set. The im-
plementation of the simulator is modular and decou-
pled. So a new intermediate instruction can be added
easily to the simulator as a routine which interprets
the instruction. The addition of a new intermediate
instruction does not affect the simulation of another
target whose instruction set does not contain the new
instruction since this target would not use the added
routine at all.

One of our design goals is to obtain simulation out-
comes fast. We do not go into low level details but
maintain the essential characteristics of instruction be-
haviors on target machines in order to yield program
outputs within reasonable time limits. Also, the in-
termediate instruction set is defined at a high-level of
abstraction. Application processes are run by a sin-
gle host process. So there is no host context switching
during simulation. This helps to simulate applications
with large numbers of processes efficiently.

The CPSS supports virtual architecture program-
ming and run-time mapping to improve programma-
bility of message-passing applications. The burden of

go

program mapping is now shifted from the user to the
simulator. The user writes an application using the
virtual architecture most natural to the application.
At run-time the virtual architecture will be mapped
to the available physical architecture. Moreover, the
same source program can be mapped to different phys-
ical architectures without any changes to the source
code. The simulator provides a library of optimal and
optimized mappings.

The CPSS contains a dynamic network simulator.
The simulated network is wormhole-routed, flit-based
and time-driven. Packets are routed link by link until
completely received. The network simulator offers very
accurate message routing and communication perfor-
mance statistics.

The CPSS provides users with a rich set of debugging
tools. Users can set instruction and time breakpoints,
define trace variables and single-step the source code
of a particular process. As a performance debugger,
the simulator allows users to define system parameters,
examine status of processes, processors and messages,
and view computation and communication statistics.

The CPSS is also very flexible and convenient. Users
can configure most computation and communication
parameters. Values of the parameters can be changed
within the same simulation session as often as needed.
No re-compilation is required: the same intermediate
code of the application and the same simulator code
are always executed. This flexibility is unique to CPSS
among the existing multicomputer simulators.

3 CPSS High-Level Design

This section gives a high-level description of the simula-
tor. The design is based on the multicomputer system
model and the programming model mentioned earlier,
and implemented in a way to meet the proposed objec-
tives.

3.1 General Structure of the CPSS

The CPSS (Concordia Parallel Systems Simulator) is
an integrated part of the CPPE (Concordia Parallel
Programming Environment). In fact, the CPPE con-
sists of two components: the CPCC and the CPSS.

The core of the CPCC is a compiler. After read-
ing a parallel program written in the CPC language,
the CPCC builds a complete abstract syntax tree to
perform syntax and semantic analysis, and produces
object code for a generic virtual machine. Such object
code is called vCode in the CPPE. The vCode instruc-
tion set is defined based on an analysis of common op-
erations of multicomputer systems. To produce vCode,
the compilation process makes use of the virtual archi-
tecture and does not call for the physical architecture.
The advantage of this design is that the CPC parallel
program need not be re-compiled every time the un-
derlying target architecture is changed.

1998 International Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Application output
Debugging information
Performance statistics

Application input
User commands
Parameters

Application l

- output
Cod;ﬂ%xd«i'unon User Interface
uie Icp
Message Debugging information
Informatior| | MAN PSR ICP Performance statistics
PSI
Network Debugging
Module MNI Monitor
MNR

MAN: Message Arrival Notification
MNR : Message/Network Request
MNI : Message/Network Information

ICP: Input/Commands/Parameters
PSR: Process/processor Status Request
PSI : Process/processor Status Information

Figure 2: CPSS structure and operations

The vCode produced by the CPCC will be input to
the CPSS. Other inputs to the CPSS are parameters
and commands from the user.. For example, the user
can specify the physical topology on which the program
will run and the virtual-to-physical-topology mapping.
The CPSS then executes the vCode, using the param-
eters and commands entered by the user. The out-
puts from the CPSS are the application outputs, per-
formance statistics, and debugging information (Fig-
ure 1).

The CPSS itself consists of two major components:
the code execution module (CEM) and the network
module. There are also two other utility modules in-
terworking with the CEM and the network module.
These utilities are the user interface and the debugging
monitor. The interactions between the components of
the CPSS are illustrated in Figure 2. The following
subsections describe the roles and high-level design of
the CPSS components and their interactions.

3.2 The Code Execution Module

The CEM plays the role of processing elements of a
multicomputer system: it executes the parallel code
specified by the parallel program. There is a global
clock for the simulated multicomputer system which is
updated periodically by the CEM. The CEM contains
four main parts:

1. Mapper. The mapper maps the processors of the
virtual architecture specified in the CPC program
onto the processors of the physical architecture.
We provide a library of optimal mappings whose
objective is to minimize the maximum path con-
tention level of the parallel program. Optimized
and random mappings are also available. The
mappings can be one-to-one or many-to-one.

2. Storage Manager. The job of the storage manager
is to allocate simulated local memories to processes
upon process creation and deallocate this space

_g‘l-

1998 International Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

upon process termination. The storage manager
also allocates/deallocates other kinds of dynamic
memory blocks such as activation records upon
function calls/returns, and buffers for messages of
composite types (e.g. array, structure).

3. Process Scheduler. The process scheduler sched-
ules processes for execution and updates their pro-
cess structures according to changes in process and
processor status, local clocks and the global clock.
In the CPSS, parallelism is simulated by time slic-
ing: each application process is given a quantum to
run and processes are scheduled in a round-robin
fashion. During each quantum, the process sched-
uler traverses the list of processes, and schedules
one process at a time for execution. The execution
starts with the instruction specified by the current
value of the program counter of the process. The
local clock of the process is updated after each
instruction. The process runs until its quantum
expires or it is put to sleep by some event. The
process scheduler then schedules the next process
for execution. When every application process has
finished its quantum, the global clock is advanced
to the next quantum.

4. Instruction Interpreting Routines. These routines
interpret vCode instructions. Each instruction is
associated with a cost which the routine will look
up in a cycle-count table to update the local clock
of the current process accordingly.

The CEM contains four major data structures:

e List of parallel processes. Each parallel process
created by the virtual-architecture program is as-
sociated with a structure PROCESS that contains
all the information needed to run this process.
Each process has a local clock that keeps track
of the present time of this process. All PROCESS
structures are placed on a linked list that is main-
tained and processed by the scheduler.

e Table of processors. This is an array where each
element is a structure PROCESSOR. This array
is dynamically allocated at the beginning of each
run when the physical architecture is known. Each
PROCESSOR structure records the status of and
information related to a physical processor.

® Memory pool. This is a big array from which
local memories of processors are allocated. The
array accommodates local memories of all pro-
cessors in use. The memory pool also provides
space for activation records upon function calls,
and buffer space for messages of type array or
structure. Memory blocks (local memories of pro-
cesses, activation records, message buffers) are al-
located upon requests and returned to the common
memory pool when they are no longer used. The
first-fit allocation scheme is used for the manage-
ment of the memory pool.

¢ Message buffers (channel buffers). This is an array
where contents of messages are buffered, waiting to
be read. A message of type array or structure is
too big to be stored in this array. In this case, the
actual contents of the message is stored in a block
of the memory pool, and the pointer to this mem-
ory block is saved in the array of message buffers.

3.3 The Network Module

The network module is under control of the network
manager. The role of the network manager is to

e allocate network resources to messages to be sent,

¢ route messages and deliver them to destination
processors,

e detect and resolve deadlock, if any.

The main features of the wormhole-routed network
manager are the reservation of channels and data paths
for the messages, the pipelined flow of flits, the release
of the reserved resources by tail flits, and the release of
flit buffers associated with each virtual channel. The
network also uses the global clock mentioned above. In
each quantum, all active packets that are not blocked
are advanced by one link.

When a message needs to be sent, the sender pro-
cess writes the message to a message buffer, invokes
routine WH_.CEM_SENDS_MSG to pass message infor-
mation to the network manager, and continues with its
execution (non-blocking send). The network manager
will route the message using the information received
from the sender. In our design, the network simulator
does not route actual contents of messages. It simulates
the movement of flits by advancing their ID numbers.
When a message reaches the destination, the network
manager notifies the CEM of the arrival of the message.
The intended reader can then read the message from
the message buffer.

The main data structures of the network module are:

e List of new messages. New messages which are be-
ing initialized for routing are queued at this list.
The waiting time at this list simulates message
startup overheads. When the startup overhead
time of a new message expires, the message will
be removed from this list and appended to the list
of active messages.

e List of active messages. This is a linked list of
messages which are currently being routed through
the network.

o List of active packets. This linked list contains
packets belonging to active messages.

e Array of physical link structures. Each physical
link structure stores information related to that

_g9-

link such as the link-request queue, number of oc-
cupied virtual channels, an array of LANE struc-

tures (a structure for each virtual channel of the
link).

e Routing table. When a packet arrives at an inter-
mediate node, the router uses the addresses of the
current node and the destination to look up the
routing table for the address of the next node on
the path.

3.4 The User Interface

The user interface enables the user to interactively com-
municate with the simulator. The user interface re-
ceives parameters and commands from the user, vali-
dates the received information, and pass valid param-
eters or commands to the appropriate module (the
CEM, the network module, or the debugging moni-
tor). During execution of a parallel program, the user
interface interacts with the debugging monitor to dis-
play performance statistics and debugging information.
Program outputs are also transfered from the CEM to
the user interface for displaying.

3.5 The Debugging Monitor

The debugging monitor is responsible for handling the
debugging mechanisms. During execution of the paral-
lel program, the CEM and the network manager regu-
larly update the debugging variables. After each break-
point and after the completion of program execution,
the debugging monitor collects and processes the val-
ues of the debugging variables to generate performance
statistics and other information about program execu-
tion.

4 Process Management

In this section we discuss how parallel processes and
their execution are simulated. We also describe data
structures needed to manage and run simulated parallel
processes.

4.1 Data Structures
4.1.1 Process Control Block

Every application process is associated with a process
control block (PCB) that stores various information
needed for its execution. A PCB is dynamically al-
located upon the creation of a new process, and deal-
located when the process terminates.

When a new process is created, a PCB is allocated
and appended to the list of processes. This is a singly-
linked list managed by three pointers: actProcHead
pointing to the first entry of the list, actProcTail
pointing to the last entry of the list and cur Proc point-
ing to the PCB of the process currently running.

93

1998 Intemnational Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

4.2 Parallelism by Time Slicing

Parallel execution of application processes are simu-
lated by time slicing. The execution of a parallel pro-
gram is divided into quanta, each quantum lasting ¢
clock cycles (or time units) where ¢ > 0. During each
quantum, the scheduler traverses the list of processes,
and schedules every process in a round-robin fashion.
If the process is able to run (i.e. it is not blocked or
delayed), it executes until its time slice of ¢ time units
expires or is put to sleep by some event. The scheduler
then gets the next process in the list and schedules this
process. As the scheduler moves downward the list,
the value of pointer curProcess is updated to identify
the process currently running. When the last process
in the list (i.e. the process whose entry is pointed to
by actProcTail) finishes its time slice, the global clock
(globClock) is advanced by g time units to the next
quantum and a new quantum begins. Such a quan-
tum simulates ¢ time units of parallel execution of all
processes on a real parallel machine.

The duration of a quantum is the time for a non-
header flit to move from one node to an adjacent node
(flit latency). For example, if ¢ = 3, the CEM (code ex-
ecution module) runs parallel processes for 3 clock cy-
cles, and then the network simulator moves unblocked
flits forward by one link. The computation quantum
and the communication step are considered to be run-
ning in parallel. The quantum can be a fractional num-
ber. For instance, when ¢ = 0.5, parallel processes run
for one clock cycle every time the network simulator
advances unblocked flits by two hops.

4.3 Process States and Job Scheduling

Possible states of a process p are
e Ready: p can be scheduled for running.
e Running: p is currently executing its code.

e Delayed: p is put to sleep and the wakeup time
is known. The process will be waken up by the
scheduler when the wakeup time expires.

e Blocked: pis put to sleep and the wakeup time is
not known in advance. p will be unblocked by an-
other process (e.g., one of its children) or an event
(e.g., the arrival of a message in the wormhole-
routed network).

o Terminated: p has completed the execution of its
code.

Figure 3 shows the transitions among the states.
Figure 4 shows the process scheduling algorithm.

4.4 fork Processes

Execution of a fork statement will create a new pro-
cess. The parent can specify the virtual processor on
which the child process will run. The parent can also

1998 Intemational Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Figure 3: Process state transitions

assign channel variables to the child so that the child

- will use these channel variables to communicate with
other processes. The child will be the owner of the
assigned channel variables and only it can read from
these channels.

After a parent process spawns a fork child, it can
continue with the instruction following the fork right
away. The parent and the child are then running in
parallel.

When a parent process wants to terminate, it must
wait for all of its children to finish first. The parent will
be blocked until the last child terminates; this child will
wake up the parent and let the parent terminate.

The algorithm for executing a fork is shown in Fig-
ure 5. In the algorithm, the parent process executes
steps 1, 2, 3, 4, and 5b, while the new fork child will ex-
ecute steps 5a and 6. The algorithm of NewForkChild
is summarized in Figure 6.

5 Communication with
Channel Variables

Write/read operations on channel variables in a CPC
program abstract message send/receive in the real mul-
ticomputer. A channel can be considered as an infinite
buffer owned by some process p, where other processes
can deposit messages of the same type for p to read.

To send a message of type msgType to the receiver
process r, the sender s identifies a channel variable v of
type msgType owned by process r. Process s executes
an assignment statement where v is on the left-hand
side (LHS) of the assignment. The message content
is the value of the expression on the right-hand side
(RHS) of the assignment.

Process r must be aware of to which channel s has
written the message (since r may have more than one
channel of type msgType). Process r then executes a
channel read on that channel to get the message from
s. If the message has not arrived at r’s processor, r’s
execution is suspended until the message is available,
at which time r removes the message from the channel
buffer.

Message types and thus channel types can be either

JobScheduler()
{ logic_deadlock = TRUE;
done = FALSE; count = 0;
do {
count++;
if (curProc == actProcHead)

globClock += quantumDuration;
// completed one round, so advance
// global clock to next quantum
p = curProc;
// p points to PCB of process
// currently running
if (p->state == Delayed)
if (p->waketime < globClock)
//time to wake up
{ p->state = Ready;
if (p->waketime > p->time)
//wakeup time exceeds local clock
p—>time = p->waketime;
// update p’s local clock
} else // continue to sleep
{ p—>time = globClock;
// update p’s local clock
logic_deadlock = FALSE;

if (p->state == Running)
{ logic_deadlock = FALSE;
if (p->time < globClock)
done = TRUE;
// p will continue to run
} else if (p->state == Ready)
{ logic_deadlock = FALSE; |
m = pointer to PCB of process
currently running on p’s
processor;
if (m == NULL)
// there is no Running process on
// p’s processor
{ curProc = p; p->state = Running;
// p is scheduled to run
done = TRUE;
} else if (
(m reached contextSwitchLimit) and
(m’s priority <= p’s priority)
) // then context-switch
{ curProc = p; p->state = Running;
m->state = Ready; done = TRUE;
} else p->time = globClock;
// p is not allowed to run
} else if (p->state == Blocked)
// continue to sleep
p->time = globClock;
// update p’s local clock
else if (p->state == Terminated)
// p terminated
remove p’s PCB from the list of processes;
else if (! domne)
// if p gets here, p is not
// allowed to run
P = p->next;
// consider the next process in the list
} while (!(done or
(logic_deadlock and
count > total number of processes)));
if (logic_deadlock and no messages
in network) System_Deadlock();

Figure 4: Process scheduling algorithm

94

1998 Intemational Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

Step 1: Calculate the ID of the virtual
processor on which the child
will run;

Assign the specified channel
variable(s) to the child;
NewForkChild,

/] create a new fork child
ForkJump;

// after creating the child,

// the parent jumps to the next
// instruction following the fork
// (Step 5b)

Child executes the code body of
the fork;

ForkChildEnd;

// the fork child terminates
The parent executes the instruction
following the fork

Step 2 :
Step 3 :

Step 4 :

Step ba:
Step 6 :

Step 5b:

Figure 5: Algorithm for fork process creation (vCode
instructions are in bold face)

basic types (integer, char, float, pointer or enumerate)
or composite types (structure, array).

6 On-Line Network Simulation

The interprocess communications generated by CEM
is carried out by our on-line wormhole routing simula-
tor. Wormbhole routing is the dominant routing tech-
nique in the second generation massively parallel sys-
tems. While some simulation techniques for wormhole
routing have been used before, they are mainly de-
signed as independent off-line tools to study the perfor-
mance of such networks under artificial communication
constraints. The unique feature of our design is on-
line simulation. The execution module of CPSS gener-
ates interprocessor communications on the fly, and our
wormhole routing simulator simulates the data move-
ment in the network in parallel and collects rich set of
information on network performance. The on-line na-
ture enforces harsher constraints on our design, but it
also makes our design a valuable tool to study worm-
hole routing networks under realistic applications. It
can also be used as a tool for designing and testing
new routing strategies and designs.

References

[1] E.A. Brewer, et al, “Proteus: A high perfor-
mance parallel-architecture simulator,” Technical
Report MIT/LCS/TR-516, Massachusetts Insti-
tute of Technology, Laboratory of Computer Sci-
ence, September 1991

NewForkChild()

{

//Precondition:
// ID of child’s virtual processor is on top
// of the parent’s stack.
// childPtr: pointer to the PCB of the
// new fork child.
Allocate a PCB for the new child;
Init_PCB(); // initialize the child’s PCB
Append the new PCB to the list of processes;
Allocate a process frame for the child {
childPtr->base = starting address of
the process frame;
childPtr->T childPtr->base - 1;
childPtr->stackTopLim = childPtr->base +
(size of process frame) - 1; }
Update the descriptor of the child’s processor
{
physProsorTable[childPhysProcID].status
= Used;
physProsorTable[childPhysProcID]
.nbrProcesses++;

X

Pop the top value off the parent’s stack;

// this value is child’s virtual processor

// ID that was used in function Init_PCB()

parentPtr->forkCount++;

// parent has one more fork child

if the child begins with a function call
Prepare_Parm_Eval();
// prepare for parameter evaluation

else // child’s code is a single statement
Send a birth message to the child’s
processor;

}
Figure 6:° Algorithm of vCode instruction
NewForkChild

(2] H. Davis, S.R. Goldschmidt, and J. Hennessy,
“Multiprocessor simulation and tracing using
Tango”, Proceedings of the 1991 International
Conference on Parallel Processing, August 1991,
vol.2, pp.99-107

B.P. Lester, The art of parallel programming,
Prentice Hall, 1993 ’

[4] E. Olk, “PARSE: Simulation of message passing
communication networks,” Proceedings of the 27th

Annual Sitmulation Symposium, 1994, pp.115-124

(5] E. Reiher, H.H.J. Hum, and A. Singh, “Simulating
networks of superscalar processors,” Proceedings
of the Supercomputing Symposium, 1993, pp.125-

133

-95-

	
	88
	89
	90
	91
	92
	93
	94
	95

