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ABSTRACT

DT (Distance Transformation) has been
widely used for image matching and shape
analysis. In this paper, a parallel algorithm
for computing distance transformation is
presented. It is shown that the algorithm has
an execution time of 6N-4 cycles, for an N X
N image using a parallel architecture which

requires P;-} parallel processors. In

addition, the algorithm proposed can be used
with various distance functions and its
execution time is independent of the image
content. Furthermore, we shall propose a
partition method to process an image when
the parallel architecture has a less number of
PEs (Processing Elements). However, the
total execution time is better than the four-
pass algorithm with the same number of PEs.

1. INTRODUCTION

The DT (Distance Transformation) is
very useful in many applications such as
thinning [1], medial axis transformation (2],
convex hull extraction [3], robot path finding
[4], skeletonization [S], Voronoi diagram
extraction [3], planar tessellation [3], robot
aerial image registration [4], and pattern
matching [6, 7]. DT is defined by the local
operation based on a central pixel and the
pixels in its neighborhood. The local
operations are iterated until the distance
values converge. Thus the operation
produces a distance map for a given binary
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image containing object pixels and
background pixels. For each object pixel in
the image, its distance value is equal to the
distance from it to a nearest background
pixel.

The distance value depends on the type
of the distance function used. There are three
major types of distance functions : octagonal
[8], weighted (chamfer) [9], and Euclidean
[10]. Four main approaches are available for
computation of DTs. The first commonly
used approach is the 2-pass sequential raster
scan method using chamfer distances [11].
This method is not dependent on image
content. The second approach is a pipelining
version of the 2-pass method [10]. The third
approach is the "bucket-sort” method, where
the pixels in the distance propagation edge is
stored treated in order of size. Finally, the
fourth approach is the massively parallel
method | [12], which can be extremely
efficient if enough PEs (Processing Elements)
are available [13].

The distance transformation operation
can be implemented in either a sequential or
a parallel manner. From the viewpoint of
real-time application, most of the existing
sequential algorithms for computing the
distance transformations do not meet the real
time requirement. Hence, the use of a parallel
algorithm is indispensable. Yamada [14],
Borgrgors [15], Zhao and Daut [16], and
Piper and Granum [17] developed a series of
parallel algorithms based on the wave
propagation scheme. Their algorithms
perform the identical computation at all
pixels simultaneously and iterate until no
change in the distance values occurs. But,
these algorithms (also called iteratively
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parallel local algorithm) require an
architecture that allocates one processor to
each pixel and end up with a total of N
processor elements. Besides, the number of
iterations required is determined by the
largest distance transformation value that can
be obtained in the given image. Paglieroni
[18] introduced a radically different
algorithm that contains two scan operations:
one parallel row scanning and one parallel
column scanning. Typically, this type of
parallel algorithm has a time complexity of
order O(N) for an image of size N XN, but
the execution time is dependent on the image
content. This is a serious disadvantage for
the real applications. '

On the other hand, the image size, N XN,
becomes very large if N > 128, so most
parallel architectures for computing distance
transformation need a huge number of PEs.
Recently, Shih, King, and Pu [19] developed
a systolic array using the sequential two-pass
raster scan algorithm [20]. In their designs,
the total execution time for two scans of the
whole image is 12N-4 cycles. Chen and
Yang [21] introduced a systolic array using
the four-pass algorithm. The total execution
time is SN with N being the number of the

PEs. If image is divided into m’ subimages,

) N _ N
whose size are — X —, the total number of
m m

) N
clocks increase to 4mN +-—.
m

In this paper, a parallel algorithm for
computing distance transformation is
presented. It will be shown that this
algorithm has an execution time of 6N-4

cycles for an N X N image using a

architecture  containing Pzi] parallel

processors. In addition, the algorithm
developed can work with various existing
distance functions and its execution time is
independent of the image content; thus it is
quite flexible. Furthermore, we shall propose
a partition method to process an image when
the parallel architecture has a less number of
processing elements (PEs). The total
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execution time is better than [21] with the
same number of PEs.

The organization of the paper is as
follows: In Section II, a parallel distance
transformation algorithm based on two
scanning passes is presented. The
corresponding linear array architecture is
proposed and the time complexity of the
approach is analyzed in Section III. In
Section IV, a partition method is introduced
to process a large size image when the
architecture has a less number of PEs.
Section V gives conclusions.

II. BASIC IDEAS AND THE
PARALLEL ALGORITHM

Since the object contour can be in an
arbitrary shape, the distance transformation
is sequential or iterative. Rosenfeld and Kak
[20] proved that the distance transformation
can be completed in two scans of the image.
In the first row-by-row scan (from left to
right and top to bottom) of the N XN image,
the temporary distance value d, (P, j)) for
pixel P(i, j), 1, j € [0, N-1] is computed, based
on P(j, j) and the four adjacent pixels P(i-1, j-
1), P(i-1, j), P(i-1, j+1), and P(j, j-1) (refer to
Fig. 1). Similarly, the temporary distance
value d, (P(i, j)) is computed based on P(i, j)
and P(i, j+1), P(it], j-1), P(i+], j), and P(i+l,
j*) during the second row-by-row scan
(from right to left and bottom to top). The
final distance value of P(3, j) in the distance
map is given by a minimum operation :

d(P(i, j)) =Min (d, (PG, 1)), d, (PG, )

P(i-1,j-1) P(i-1,j) P(i-1,j+1)
P(i, 1) P(i,j)

(a)

P(i,j) P(i,j+1)
P(i+1,j-1) P(i+1,j) P(i+1,j+1)

(b)

Fig. 1 The adjacent pixels of pixel P(j, j)
(a) 1in the forward pass and,
(b) in the backward pass.



Based on the above concept mentioned,
we shall propose a parallel distance
transformation algorithm. In this algorithm,
we use one PE for the pipeline operations
performed on the pixels in one row. Thus,
the required number of PEs is N. The
algorithm is divided into two passes: forward
and backward. In the forward pass all image
rows are scanned and processed in parallel.
Each row is scanned from left to right.
However, the distance values of the
preceding neighboring pixels in the row must
be ready for use by the current pixel. Also,
the input data flow of the preceding row
must be two cycles ahead of the current row.

In this scanning fashion, the d,(P(, j))
value for pixel P(i, j) is computed in PE,
after it receives d, (P(i-, j-1)), d,(PG-1,))),
and d,(PG-1, j*1)) computed in PE;,
during the last three cycles and d, (P(i, j-1))
computed in PE; during the last cycle.
Similarly, in the backward pass d, (P(, j)) is
computed in PE__,. Right after d, (P(, }))

is obtained, d(P(i, j)) 1s computed in PE_,.
In Fig. 2, the time-space diagram for a 4x 4
image is shown. The forward pass is
executed at time instants 0 to 9; the
backward pass is executed at time instants 10
to 19. Thus, the distance values of the
required adjacent pixels are always ready
before computing the distance value of the
current pixel. The algorithm is given below

Distance Transformation algorithm
Input: AnNX N binary image {P(3, ))}.
Output : AnN X Ndistance map {d(P(i, j))}.
Procedure:
/Initialization/
fori=-1,0,1..,N, j=-1,0,1,..,N
if (i=-lorj=-lori=Norj=N)
then d(P(i,j))= o (alarge number)
elseif P(,j)=1 then d(P@1,j))=0
else  d(P(i,j)) =
forall PE;,i=0,1,...,N-1, j=0,1,..,N-1
begin
step 1: forward pass
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TD = Min(d(P(i-1,3-1)) +d,, , dBG-1, j)) +d,,,
d(PG-1,jH) +d,,, AP (5, j-1)) +d,;),

d(P(, j)) = Min(TD, d(P(, j))),

output d(P(, j))to PE,,,.

step 2: backward pass

TD = Min(d(P(N-i, j+1)) +d,,, , dB®N-4, j)) +d,,,
d(P(N-1,j-D) +d,,, dPN-i-1, j+1)) +d ),

d(P(N-i-1, j)) = Min(TD, d(P(N-i-1, j))),

output d(P(N-i-1,j)) to PE,,,.

end
(] 1 2 3
4 s ] 7
a 9 10 1M
12 13 14 15
(a)
PE
t—oeee— Forward Pass 4 Backward Pasy ———————
PE | 12 1,1":*.’1(4}:15 2} &o;
PE v8:)9: 1014 7] 8
PE, 4l e Apeie | 8
PE o'}f{f 2}y 514113012
L A B I T T A I I I Y A - B L S A B I

(b)
Fig. 2 (a) A 4Xx 4 image. (b) The time-space
diagram of the forward and backward passes.

The neighborhood distances d , k =0,

1, 2, and 3, are defined according to the
selected distance function, as shown in Fig. 3.
For example, in the city block function, the

values of the neighborhood distances d,,
dnl’ an’ dn3 are 2, 1, 2, and 1,
respectively; in the chessboard function, the
values of the neighborhood distances d,
dnl’ an’
respectively.

dy are 1, 1, 1, and 1,

III. THE LINEAR ARRAY

ARCHITECTURE
For the above parallel distance
transformation  algorithm, it can be

implemented by a linear array architecture to
meet the real time requirement. The linear
array consists of N PEs to process a binary
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image with N X N pixels, as shown in Fig. 4.
The PE's are indexed from left to right,
beginning with PE;. Initially, the image
buffer stores the input binary image. As the
process goes om, the buffer stores distance
map or d, (P(i, j))- In general, PE; receives
data from PE;_, and computes d,(P(i, j)) in
row i in every cycle. Due to the fact that the
data flow is shifted one pixel per cycle and
that the distance values of four adjacent

pixels must be completed beforehand, the
input image in the image buffer is skewed so

that the clock cycle of PE; is at two cycles
after that of PE;_ ;. This is achieved by
inputting the data in eachrow (1=0, 1,2, ...,
N-1) through a delay line with a length of
2 x i. Hence, for the pixel P(i, j) at time t, the

distance values of d, (P(i-1, j-1)), d,(P(-1,
j)), and d,(P@-1, j+1)) are calculated and
passed from PE; ; to PE; in the forward
pass at time instants t-3, t-2, and t-1,
respectively. The distance value of d, (P(i, j-
1)) is obtained and stored in PE; at time t-1.
Similarly, PEy.;-; Treceives the distance
values of d,(P(+l, j+1)), d, (PG+L, j)),
d, P+l j-1)), and d, (P(i, j+1)) before it
computes d, (P(i, j)) and d(P(i, j)) during the
backward pass.

(4)The Processing Element:
Based on the parallel algorithm, the

operations performed in PE, include:

(1) Comparing the distance values of four
adjacent pixels in the forward or
backward pass.

(2) Outputing the distance value of P(j, j) to

PE,,, and image buffer.
After taking all the necessary operations into
consideration, the structure of PE; shown in

Fig. 5 is proposed. Two input ports are
required to receive the distance values from

PE,_, and the image buffer. Since the initial

value of d(P(i, j)) in the image buffer is
decided by the binary value of P(j, j) in the

d n0 d nl d n2
dn3 - P(},j) <—>dn3
d n2 d nl d n0
(a)
distance|
action| City block | Chessboard) Chamfer | Chamfer | Chamfer
. distance | distance |2-3 distance| 34 distance| 5-7 distance|
dm 2 1 3 4 7
dnl 1 1 2 3 5
ddz 2 1 3 4 7
1 1
dn3 2 3 5
(b)

Fig. 3 (a) The notations of the neighboring
distance constants, (b) the values of the
distance constants of the various distance
functions.

Image buffer

Row 1 Row | i Rew i Row N-|
dats input | + data data inpul data input
inpul
delay line delay line of delay line of
Tlength length 2(i-1) length 2(N-1)

% Hil Py p— PEi '"HPEN—I
Distance

=S N | ]
Fig. 4 The linear array architecture.

initialization phase, the input data of port 1 is
connected to the image buffer in the forward

pass. The Output value of d,(P(i, j)) from
PEi will be sent back to image buffer. In the
backward pass, the input data of PE; needs
d; (P(N-i-1, J)), thus the input data of port 1

is also connected to the image buffer. For
computing the distance value d(P(i, j)) the

data path from PE,_; is also needed so that
the distance values of three adjacent pixels in
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row i-1 are obtained in sequence through the
port 2. These input distance values are
inputted with two delay units. As a result, the
needed input data from row i-1 are ready
before starting to calculate the distance value
of d(P(i, j)) in the comparator and arithmetic
unit(CAU). On the other hand, a feedback
loop is connected from the output of CAU
through a delay unit to the input of CAU.
The path provides the distance value of d(P(,
j-1)) to CAU. Finally, the output is sent to

PE,,, and the distance map memory.
Dau inpul rF
(fom in’:z;c—{: Fortt ! W
bufler)
Data input Port D D A
(ot o] e
from PE:1) c Arillhmc(ic
Unit TOPEi« and
b {(CAU) | image buffer
i mE
. i
funcrion ]
oreyls J
PE;
Fig. 5 The organization of a PE.
(B) The CAU

To find the minimum value of the four
adjacent distance values and the value of
d(P(i, j)) itself, a comparator is used in CAU,
as shown in Fig. 6. The comparator
determines the minimum of the distance
values at the four adjacent pixels that depend
on the distance function chosen, and the
current distance value d(P(i, j)). The output
of the comparator is defined as the distance
value d(P(i, j)) which is also passed to

PEi+l "

The various distance functions can be
selected by control signals. The distance
values at adjacent pixels are stored in a look-
up table, and are sent to the inputs of four
adders. For example, in the city block
function, the distance value at P(i-1, j-1), P(i-
1, ), P(-1, j+1), and P(,j-1) are 2, 1,2, 1,
respectively. So the input operand is 2 for
adder A, 1 for B, 2 for C, and 1 for D.

Using the space-time diagram of the
input image, the time complexity of the
algorithm can be easily analyzed. If the input
data rate is one pixel per cycle, the distance
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map will be obtained for either pass in 3N-2
cycles where
3N-2 = ( the length of the first row )

x ( the execution cycle per pixel )

+ ( the skewed delay per row )

X ( the row number of image - 1 )

=Nx1+2xX(N-1).
Hence the total execution time for both
forward and backward passed is 6N-4 cycles,
so it is of order O(N). Hence it meets the
requirements for real-time applications.

Data input
from image
buffer /— ~

A ———{adm |

a0

B ____@————- Comparator Min.
d value

al
¢ dda [
dyy
D " Adder

a3

look-up
Distance table
function———" y,

selection

Fig. 6 The structure of a CAU unit.
1V. THE PARTITIONING METHOD

To make the linear array suitable for
VLSI implementation, the number of PEs
must be a reasonable number. This means
that the number of PE, denoted as M, must
be fixed and usually smaller than the image
size¢ N (N2>512) in practical applications.
When N>M, the same parallel architecture
presented previously will be used, but some
extra hardware is needed to handle the image
partition problem.

Assume an image whose size is NXN,
and a linear array that has M PEs. Let N> M.
In the first place, the image must be divided

into a number of subimages m ="%‘| each

with M rows or less. This row partitioning
starts from top to bottom (refer to Fig. 8.(2)),

hence subimage S; includes the part of
image from row M Xj to row M X (j+1) - 1,

where j = 0, 1, ..., L%J—l and S__;

includes the part of image from row M X (m-
1) to row N-1. These subimages are executed
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in an increasing order of the index j from 0 to
m-1. The parallel architecture presented
above will require an extra programmable

delay line between the data output of PE,,
and the input port 2 of PE (refer to Fig. 7).

Delay line
Fig. 7 The linear array architecture for
executing the partitioned image.

According to the values of N and M, the
execution model :

(1) Case 1: (M<N<2M)
In this case, the element PE, executes

the first row of the subimage S,, but it must
wait until the corresponding output result of

PE,, , belonging to subimage S, is arrived.
Therefore, the subimage S, must be delayed
2M-N clocks before it is inputted to the port
1 of PE,. The programming delay line will
be set to zero. The time-space diagram is
shown as Fig. 8.(b) and the total execution
time are 2 (3N-2). For comparision, the time-
space diagram for the two-pass algorithm [19]
is shown as Fig. 9.(b), and the total execution
time are 2 [4N + 2 (N-1)].

Based on the analysis mentioned above,
we compute the distance map of the image of

) N
size NXN using [?-l PEs, and total

execution time is the same if we use N PEs.
In the case N=2M, its speed is respectively
about 2 and 1.4 times faster than the two-

pass and four-pass algorithms using the same
number of PEs.

So M
i M
N
S
Ll M
S
[k N-~M(m-1)

Time

4 —I:l-M(nH)

— Time
(m-1)N-1 mN-1

(c)
Fig. 8 The time-space diagram of the
distance computation by our method for the
case N>M, ( a ) an image is divided into
subimages, ( b ) the diagram for M<N<2M,
( ¢ ) the diagram for N2> 2M.

(2) Case 2: (N22M)
Since the output results of the last row of

S; produced from PE,, are N-2M clocks
ahead the input data of the first row of §;,;

to PE,, the output of PE,_ , must be
inputted through an N-2M delay line. Thus,
the side effect between S; and S;,,, can be
reduced through the timing delay. The time-
space diagram for this case is shown in Fig.
8.(c) and the total execution time are 2 { N m
+2[N-M(m-1)-1]}. The time-space
diagram of the two-pass algorithm is given in
Fig. 9.(c) and the total execution time are 2
{(2m + 4) N - (m-1) 4M - 2}. The time-space
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diagram of the four-pass algorithm is given
in Fig. 10.(b), and the total execution time

are4mN+N—.
m

Consider that an image has a size of
1024 x 1024 and a linear array has M PEs
with M < 1024. When we compare the two-
pass algorithm, the four-pass algorithm and
our method, all using same number of PEs,
the number of clock cycles required are
different, as shown in Fig. 11. If N>>2M, our
speed is nearly 2 times faster than the other
two methods.

s, M
N
s
[f M
S[%]_. N-M(m-1)
N
(a)

i
!
|
M
|

Time

< P
4M+2N+1 4N+2(N-1)

(b)

0 2N+ 4M
4

(M-1)

N ; ‘{:(-M(m-l)

V:AZ(ln-l)NH ln;ld»l Time

(¢)

Fig. 9 The time-space diagram of the
distance computation by the two-pass
algorithm for the case N> M, ( a ) an image
is divided into subimages, ( b ) the diagram
for MSN<2M, ( c ) the diagram for
N2>2M.

0 N+t AN+
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N
N/m N/m N/m N/m
N/m| 1 2 m-1{ m M
N/m | m+1 | m+2 2m-1| 2m | M
N . N
N/m m-m M
N/m m-1 nf | M

1
1
I
|
1
i
]

Time
0 mN-1 2mN-1 3mN-t 4mN-1

(b)
Fig. 10 The time-space diagram of the
distance computation by the four-pass
algorithm for the case N2M, ( a ) an
image is divided into subimages, ( b ) the
diagram for N> M.

4mN + N/m

250

200 p,

our method

Cyeles 10 F- N e four-Pass algorithm [21]
Y

(X 10000) \
100 AN — — — two-Pass algorithm {19

50

0

2 4 3 16 32 64 128 256 512 1024/
PEs

Fig. 11 Time comparison between two-pass
algorithm, four-pass algorithm and our
method. :

V. CONCLUSIONS

In this paper, a parallel algorithm and its
hardware architecture for computing the
distance transformation have been described.
With our proposed architecture, the distance
map of an NXN binary image can be
obtained within 6N-4 cycles using an
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