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Abstract

The greyness values at a pixel can also be repre-
sented by an integral as the mean of continuous grey-
ness functions over a small pixel region. Based on
such an idea, the discrete images can be produced by
numerical integration; several efficient algorithms are
developed to convert images under transformations.
Among these algorithms, the combination of splitting-
shooting-integrating methods (CSIM) is most promis-
ing because no solutions of nonlinear equations are re-
quired for the inverse transformation. The CSIM is
proposed in [5] to facilitate images and patterns under
a cycle transformations T-1T, where T is a nonlinear
transformation. When a pixel region in two dimen-
sions is split into IV 2 subpixels, convergence rates of
pixel greyness by CSIM are proven in {7] to be only
O(1/N). In (8], the convergence rates Op(1/N*?) in
probability and O,(1 /N?) in probability using a local
partition are discovered. In this paper, a partition tech-
nique for numerical integration is proposed to evaluate
carefully any overlaps between the transformed sub-
pixel regions and the standard square pixel regions.
This technique is employed to evolve the CSIM such
that the convergence rate O(1/N?) of greyness solu-
tions can be achieved. The computational figures for
real images of 256 x 256 with 256 greyness levels dis-
play that N = 4 is good enough for real applications.
This clearly shows validity and effectiveness of the new
algorithms in this paper.

Keywords: Numerical integration, digital images. im-
age transformation, pattern recognition

1 Introduction

Usually, the approaches studying the discrete and con-
tinuous topics are quite different due to different na-
tures, such as those in discrete and analytic mathemat-
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ics. This paper demonstrates an example how to study
discrete images by integrals and their numerical ap-
proximation. The key idea is as follows. Based on such
an idea, the discrete images can be produced by numer-
ical techniques. However, It is due to special nature of
the integration from images transformations that ren-
ovation of the existing integration rules is necessary.
Consequently, new discrete algorithms have been de-
veloped. In our past research on image transformation
in 5] - [9], the study on discrete algorithms is, indeed,
the study of numerical integration for the integrand
without uniform smoothness. This paper also reveals
how to employ numerical methods and error analysis to
discrete topics effectively. Note that our research pro-
cess looks pass a long, cycle road: from the discrete to
the continuous, and then from the continuous back to
the discrete, our destination. But a number of amaz-
ing results have been found, see {5] - [9]; one of them is
reported in this paper. Several combined methods are
proposed in {5] to facilitate restoration of digital im-
ages and patterns under T~! T, where T is a nonlinear
transformation defined by

T:(&n) = (z,9), z=z(&n) yv=y(n), (1.1)

and zoy and {on are two Cartesian coordinate systems.
To bypass solving nonlinear equations, the combina-
tion CSIM is proposed in [5], in which we employ the
splitting-shooting method for T given and the splitting-
integrating method for T~! given. An error analysis
is made in (7] for estimating consecutive errors of pixel
greyness solutions, to show that only a low convergence
rate O(1/N) can be obtained, where a pixel is split into
N? subpixels.

The question asked here is: can we raise the conver-
gence rates of pixel greyness solutions by CSIM? Paper
[8] responds to this question. In [9], we employ proba-
bilistic analysis, to discover that the convergence rates,
O,(1/N*3) in probability, can be obtained. Moreover,
the high convergence rate, O,(1/N?) in probability, can
be achieved, if using a local partition. When NV > 32
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good figures of images are produced.

In this paper, the new technique is adopted in CSIM
to lead to two new combinations CSIM and CSIM,
where the notations ‘S’ and ‘T’ denote the renovated
splitting-shooting method and the renovated splitting-
integrating method, respectively. Both CSIM and
CSIM can grant the pixel image greyness under T~!'T
to have the convergence rate O(1/N?), based on strict
error analysis without probability. The new combina-
tions are simple and easy to carry out because no so-
lutions of nonlinear equations are needed, either. Sur-
prisingly, when the division number is chosen to be
N = 4, good image pictures are produced.

Below, we describe and analyze the combination
CSIM in Section 2, propose the new partition technique
in Section 3, to lead to the new combinations CSIM and
CSIM , then derive error bounds of transformed images
by CSIM and CSIM in Section 4, and finally in Section
5 provide numerical and graphical results to verify the
convergence rate O(1/N?). Some real images of 256 x
256 pixels with 256 greyness levels display significance
of the new algorithms in this paper.

2 Numerical Algorithms

Let a given standard image undergo a cycle conversion
(see [5]).

-~ ~ -1 =3 7 T > >
17,74 _I) VA I—-—) W, W= {I/VU} Z = {ZIJ}a (21)

where the pixels W}j and Z 17 are located at the points
(i,5) and (I, J) respectively,

(i,7) = {(&n) €=1iH, n=jH}
(I,J) = {(z,y), v =1H, y=JH}, (2.2)

and H is the mesh resolution in an optical scanner.
We will apply numerical approaches to perform (2.1),
illustrated in Figure 1 with eight steps. In Steps 1 and
5, we convert image pixels and their greyness to each
other. For the sake of simplicity, we assume the binary
images, and choose

1 if Wij, Z]J:‘*’,

i) Bif:{ 0 i Wy (Zi)=* >, @3

Furthermore, if the values of greyness <i>i,~ and By, have
been obtained, in Steps 4 and 8 we may obtain image
pixels by

“*° when &, Biy>1L,
¢ 4+ when % < &y, Brs < f;

Wij, Zry = z . (24)

¢.’  when 0.1<®y, B[J < l,

¢ 7 when @y, By <01,

In Step 2, the following simplest piecewise constant and
bilinear interpolatory functions are adopted. 1. The
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Figure 1: Schematic steps in digital images under
transformations by numerical approaches

piecewise constant interpolation (u = 0)

J)O(é’n) = ‘iij in O, where (2.5)
C_f&m, G-HHLSE<E+DHH,
s { G-DHE<n<(G+hH } ,(2.6)

and the total domain Q of the standard image W in £on
isfl= U 8;; . II. The piecewise bilinear interpolation
iy

(b=1)
Biiem) = (@G DH -G+ DH —n)
+ Q16 -iHNG+1)H - 1) (2.7)
+ @;n(E+1DH - -jH)
+ S —iH)(n - jH)] in Oy,
where
ni (6)77)’ 1HS§<('L+1)H7
S { JH<n<(j+1)H }
and Q= U Oy . (2.8)

ij
A pixel can be viewed as the representation of the mean
greyness over 0;;, given by

1
o = g5 [ [ stemasin. 29)

Similarly, we have

B} = 7{1—2//D b(z, y)dady, (2.10)
where
(& m) = b(z(&,m),y(&:m), (2.11)

and the standard square pixel region

{ (z,y), U-H<z<{I+1HH

O = (J—%)HSZJ<(J+5)H }(2.12)



Note that the representation of image as the integrals in
(2.9) and (2.10) is a key idea that enable us to develop
new discrete algorithms by numerical approximation
and to evaluate greyness errors by numerical analysis.
The diagram of Figure 1 also illustrates our research
process how to deal with discrete topics by continuous
treatments and how to solicit numerical methods. We
assume that the Jacobian determinants J(£,7) always
satisfy

0< T <JEm SIm, (2.13)

where Jp and Jas are two bounded constants indepen-
dent of &, n, = and y. For the inverse transformation
T-1, the integral (2.10) is reduced to

1 .
Bi=1p [[ sememisay, 219
H? Qrs
under
D[JT;Q[J, 1.€. Q[J'-I—)D[J. (2.15)

Let the pixel region O;; in £on of W’,-]- be split into N?
small subregions O;j ¢, 1.e., Oi = Uﬁe:x Oij ke, where

(&m), (i-3H+(k-Dh<
< (i—3)H +kh,
(-3H+{E-Dh<
n<(i-3$H+h

Oij ke = (2.16)

and h is the boundary length of Oj; s, given by h = &
The splitting-shooting-method given in {5] collects the
contribution of such subpixels O;; ¢ that whose trans-
formed centroid by T falls into the identifying pixel
region Oy;. As a result, we have

5= 55 2 oo, 867

(& m)d€ dy (2.17)

ikt
Denote
Oijike L O ke Gijbe L Gkt (2.18)
where G’ij,kg is the centroid of Oy ¢, we can see
Qijee N Qg L O ke NGrs. (2.19)

The following approximate integration can be obtained

S(N
Bu~ B

Z ¢;L "L] LE

v(2.22)

J(Gijxe), p=0,1,(2.20)

where ¢ and é; are given in (2.5) and (2.7): and
#(G) = d(E(G), n(G)). The coordinates of G = (j ke

are given by

£(C) = (i - %)H (k- %)h.
o(C) = (- %)H (0 é)h, (2.21)
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When the transformed centroid G* = G ke falls into
the standard square pixel region O;; defined in (2.12),
the values of (I, J) can be computed by

I=1=(E 5], T=b@E)+5l. @)

where |z] is the floor function, and

2(G*) = z(§(G),n(G)), y(G") = y(€(G),n(G)) {2:23)

Based on the greyness Bj; obtained, we also con-
struct the constant and bilinear functions b,(z,y) on
the analogy of (2.5) and (2.7) , where bo(z,y) in Oy
and 131($,y) in 07y and

{ (z,y), TH<z<({I+1H

Qo= JH<y<(J+1)H } - (229

The restored greyness {2.9) can be evaluated by the
simplest centroid rule [1, 12].

Boog o o o
=(g)® 2_ #EG),n(G)), (225)

k,£=1

~ oM o 2N
By = &5 = ¢y

where Q’S(E,T)) = 5;1.(2:73/) ’

The evaluations (2.20) and (2.25) for pixel greyness
are called the splitting-shooting method (SIM) and the
splitting-integrating method (SIM) respectively. The
combination of SSM and SIM is referred to CSIM,
which will be discussed in the following two cases (see
Figure 1). Case II consists of steps 1-8; Case I con-
sists of Steps 1-4 and 6-8. In Case I, the greyness By,
after Step 3 will be used directly for T~! without any
changes. The distorted image {Z} may be obtained
from {B”} in Step 4, but no feedback (i.e., from Z;;
to By as in Step 5) is carried out.

p=01

3 Numerical Integration Using
Partition Technique

We now intend to improve the integration approxima-
tions in (2.20) and (2.25) by using new partition tech-
niques, to provide more accurate images. Denote

T
Oijke — O ke (3.1)

A drawback of (2.20) is that all the contribution of the
entire subpixel Q;; x¢ with G* € Op; is counted no mat-
ter how large a portion( e,g., even near a half) of OF; 1,
is located outside Uyy. Also the effect of O;; s with
G* ¢ Oy, is ignored even though 03 ke falls partially
into Oyy. This drawback results in a low convergence
rate O(1/N) of image greyness under transformations.
In order to obtain a better approximation of the inte-
gration. we have to distinguish carefully the parts of
O3, k¢ that are located inside and outside the standard
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Figure 2: A transformation of a triangle Aabc I—) A
ABC

square pixel region Oy, that is, to evaluate the over-
laps of

O ke N COry 05, N B #7 0. (3.2)

There exist two different cases. Case A. The entire
0% ke falls into Oy

Ofike G O (3.3)
Case B. A part of 07 ;, falls into Oj

|05 ke N Org| <105 kel (3.4)
where |0| denotes the area of O.

For Case A, the centroid rules is still employcd for
{2.17), to get

/ / B(€,m)T (€, m)d€ dn

CaseA

= // &(f»ﬁ)j(f»ﬂ)df dn = }12(;3“(@)\7(@)(3_5)

For Case B, however, the following new refined tech-
nique is proposed. We have from (2.17) and (3.1)

/A,,k,m,u $(€,m)T (€,m)dE dn

CaseB

= // b(z,y)dz dy, (3.6)
D;J._MnD,J

where the portion (3.2) can be carefully evaluated
through three steps described below. Step I. Choice of
N to simplify the partition situation. We choose N so
that any OF; ., is located, at most within the following
four pixel regions:

Of ke S (Org U010 U841 U041 541) -(3.7)

Step II. Partitions of Squares. Divide a subregion,
Oj.k¢ in o by a diagonal into two triangular elements
(see Figure 2)

Oijke = U Dijret- (3.8)
1=1,2
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Figure 3: Three cases of dividing AABC by the hori-
zontal line y = (J + 3)H

Denote

—

T A *
Dijres D5 pe e = DY ges (3.9)
which is also represented as in Figure 2 by

T

Aabe =34 ABC ~ AABC, (3.10)

with a L A, ab l)AB, etc. where A;; 4, in zoy
has three vertices A, B and C, and three curved bound-
aries under the relations(see Figure 2): Consequently,
the overlaps (3.2) lead to

05eN0 &~ | (A3 N 01

t=1,2

(3.11)

Step III. Partitions of triangles. Based on the chosen
N in Step I, for any Aj; ., there exists, at most, one
boundary line of
1 1

along z or y that can pass through its middle. More-
over, let A B, and C denote the top, middle, and bot-
tom vertices of AABC. For instance, we partition
AABC by a horizontal boundary line,

y=7=(J+H (3.13)
such that
AABCN(y>7) or AABCN(y <7).  (3.14)

For simplicity, we may partition AABC into sub-
triangles such a way that each sub-triangle is located
either above or under the boundary line (3.13). The
following three situations will occur that lead to dif-
ferent partitions of triangles, due to different locations
of the boundary line (3.13) as illustrated in Figure 3.
1. When the middle vertex B is just on line (3.13), we
may split AABC into two triangles,

AABC = ATABDUATBCD, (3.15)

where AT and A~ denote the upper triangle and the
lower triangle respectively, with respect to (3.13). IL
When line (3.13) is located between the vertices A and
B, AABC is split into three triangles:

AABC = ATAEDUAYDEC U AYEBC, (3.16)



where E is the intersection point of AB and line (3.13),
with the coordinates,

—ya
=Y, TE=7ZTaT . (

YB — YA
II1. When line (3.13) is located between the vertices B
and C, then

AABC = A-ABDUA~BDEUAYDEC. (3.18)

z5 —z4). (3.17)

By (3.15), (3.16) and (3.18), we split AABC into the
sub-triangles which are no longer traversed by the hor-
izontal boundary line (3.13). Furthermore, some of
these sub-triangles may still be traversed by a verti-
cal boundary coordinate lines

1 §
S)H. (3.19)

By means of the same technique as in Steps I-1II, we
can split such a sub-triangle into smaller sub-triangles
again so that none of the sub-triangles is crossed by
all the boundary lines, (3.12), of OQr;. Let us sum-
marize the partition of triangle A;‘j‘kl_t by Steps I-III.
If regarding A:j,ke,t as AABC in zoy in Figure 3, we
obtain

A * A *
Az‘j,kl,t = U Aij,kf,l,mv m S gv
m

z==(I+

(3.20)

where all the sub-triangles will fall into just one of the
following pixel regions.

AZj,k(,t,'m g DI+IO,J+J0 ’ IO)']O =0or 1l (521)

Applying the above technique, we can improve evalu-
ation of integration. First we have from (2.17), (3.5)

and (3.6)
Z / / oren, 2T

17,k¢€

2> $(G)

ijke
Casen

P> //
ikt ke

CaseB

B} (&,m)dé

I

(3.22)

Q

(&, mT (§,m)dé dn.

Next, we obtain from (3.6) and (3.20) for Case B,

JL . sengicmdsdn

/ / b(z,y)dz dy
. D?, ﬁD,J

= z// b(z,y)dz dy
O ke N0y

>/l

tm JLlcu

b(G Z |AL] thml

V(.’!.L’-!)

b(z,y)dz dy

QR

(3.23)

X
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where G* denotes the center of gravity of Al i kLtm in
zoy, satisfying
A geem © 01 (3.24)

The area of a triangle in (3.23) can be computed by
the formula (see [9]). Consequently, the renovated
splitting-shooting method ( called SSM) using the par-
tition technique from (3.22) and (3.23) yields greyness
B;j under T by

~(N)

Bry = B = _) Z $(G)T(G)
duvea
+ H) Z bG*) Z lAz]kltm| (325)
'czoksis v(a 24)

As to the splitting-integrating method (SIM) for 7!
, the convergence rates of pixel greyness solutions can
reach O(1/N?) only when g = 1. When using the
piecewise constant interpolation (1 = 0), the low con-
vergence rate O(1/N) still occurs. Therefore in this
case, the partition technique should also be adopted to
modify SIM as well. In fact, the greyness (2.9) leads to

D) //  demazn

CaseA

Q
|

1 -
- BT / / o, Bemdn. 320

CaseB
For Case A, the centroid rule is also valid, yielding

// $(¢,m)dE dn =

CuseA

h23(G) . (3.27)

On the other hand, for Case B as p = 0, we have from
(3.8) and (3.20)

//E']ij‘km” (€, m)dé dn
[, o, blama=asey

= ],

t,m ikt t,m
v(3.24)

Q

JYdzdy,

where J is the Jacobian determinant. Since

’Az] thi h2

J m =5 T A kel s (3.28)
we have
// Jtdrdy ~ W 18 hseeml (3.29)
A:,,ku,m 2 |Az],kl,t|
Consequently, from (3.26)—(3.29) the

splitting-integrating method (S IM) using the partition
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technique seeks image greyness under T~ when it =0, C*(Q). Then when N — oo, the image greyness under
by T-1T by CSIM in Case I has the asymptotic relations
s ) 1_1)2 3G E(®*) = 0(—1—) + O(1/N#th)
ij N‘I’i]' = ; (H ] ) H? ’
Casen AE(®*) = O(1/N**Y), u=0,1. (4.4)
+ Z Z 1( h )2 By LA_HM_I. (3.30) Also when 4 = 0 end N — oo, the image greyness
'~ [A” ke.t) under T™YT by CSIM as u = 0 in Case I has the
CaseB VI3.24) asymptotic relations
Combining (3.25) and (2.20) leads to CSIM, and com- ot

bining (3.25) and (3.30) leads to C5IM as = 0. Note E(2 ) =0(g3 =)+ 0(1/N?),

that both CSIM and CSIM do not require solutions of : .
nonlinear equations either. AE(CI’ ) = O(1/N¥). (4.5)
The new combinations CSIM as u = 1 and CSIM as
p = 0 can produce the images under T~!T with the

4 Error Bounds of Integra-’ better convergence rate O(1/N?).

tion Approximation and im-

age Greyness 5 Numerical and Graphical Ex-

It is clear that the discrete algorithms in Section 3 are perlments

of numerical integration, basically. However, the in-

tegration approximations, (3.25), and (3.30), are not We may also define the pixel error under T-1T
the same as the traditional methods in [1, 12]. Such

a distinctness results from different regularities of the AT éN"’) (W) = Z Ng g(VV-(.N”) - Wi(fv “)),
integrand in different subregions due to piecewise bi-

linear interpolation. Therefore, error analysis on new (Np (Ny)
algorithms is necessary and important. Wg will define L W) Z Na I(Wij - W),
some error norms to measure the approximation degree

of greyness solutions. Choose the division number where

1 if (Wh # Wa)A
Ny (W) = Ws) = (W1 =G v (W2 =Gy)), (5.1)
0 otherwise,

N = N, =27, where p=pq, po + 1, integer pg > 0.(4.1)

Define the consecutive errors of image greyness under

1 e o )
fl]\"r (?r T-1T with the two division numbers N, and and Gy ='*’,Gy="+",Gy="-" Let the standard
Pl image W be given in Figure 4, and T be a bi-quadratic
! F) _ &’(-]-V’_l)l transformation in [6]. The pixel greyness under T7'T
AEWM(§) = Z 2 , is evaluated by CSIM and CS IM. Their error curves of
P Imax (W) AE are depicted in Figures 5 and 6. It can be seen
(Np) (Np=1)y2 that
(@) — §4-1))
AE) (8 = * (4.2) ~ .
=1 Z o) P AE™M(B) = O(1/N?)
) by SSM as u=0,1; (5.2)
where Imax(7) is the total number of nonempty pixels,

defined by AEWM(@*) = O(1/N*T1,

Toma( Z Ny( W(N by CSIM as u=0,1.in Case I; (5.3)
1 i Wy : NME) = 2
Ny (W) = { 0 i W z . (4.3) AETHE ) = OU/NT),

Y ’ by CSIM as p=01in Case [. (5.4)
T.he det'ails of analysisncan be found in [13]; we only All the experimental results (5.2)-(5.4) confirm the
give an important corolary. analysis in Section 4. We provide some images un-
der trausformation by CSIM and CSIM in Figures 7
Corollary 4.1 Let (4.1) and all conditions in Theo- - 8. Furthermore, Figure 8 indicates that Combina-
rems 4.1 - 4.3 in [15] ahold true; also assume ¢(&. 1) € tion CSIM is also well suited to the transformation
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Figure 4: A standard image

of curve images, which often cause troubles by many
other approaches. Next, consider the different divi-
sion numbers Ny,rq and Npack used for T' and 7™} in
CSIM respectwely We choose Nforqg = 8 in SSM; and
Noacr = 1,2,4,---,32 in SIM. Denote S(Nford, Niack)
as the greyness solution using Nyorq for T and Nyacr
for T~!. We list in Table 3 in [13] the errors between
5(32,32) and S(8, Nyack) and the absolute errors be-
tween S(8, Nyac) and the true solutions. Table 3 in
[13] indicates the optimal division number is about
Niack = 8 . We then conclude that an equal num-
ber, Noack = Njora = IV, is a good choice. As a con-
sequence, we always choose the same division number
for both T and T—! in CSIM and their renovation. We
collect in Table 4 in [13] all the errors by different com-
binations CSIM, CSIM and CSIM when N = 8. The
absolute errors E obtained from both CSIM (as p = 1)
and CSIM (as u = 0) are significantly smaller than
those obtained from CSIM (as p = 0, 1) cited from [7].
For example, the ratios of restoring greyness errors un-
der T™1T are

AE|cgny _ 0.04054 ) _
= = = 20.55 : — 1’ 55
AE|CSIM 0001073 0K (5.5)
AB|cgny 006865 _

SIM = 581.8 = 0.(5.6
AE|CSIM ~ 0.1180%107° as p = 0.(5.6)

This clearly displays a significant advantage of CSIM
and CSIM over CSIM in [5, 8]. The above examples are
all binary images; we now apply CSIM and CSIM to
real images of 256 x 256 pixels with 256 grayness levels.
Choosing N = 4, the computer images are produced
under transformations, and illustrated in Figures 9-11.
The original and restored girl-images are shown on the
left and right sides of the top in the figures respectively.
For Figure 9 using CSIM the distorted image has about
124000 nonempty pixels. Compared with the images
by CSIM as N = 8, the average levels of sequential
errors are only 0.02, which are very small, indeed, in
256 levels counted. As to the restored image of Figure
9, the sequential and absolute pixel errors are only 0.03
and 4.3 respectively. For Figure 10 using CSIM as
u = 0, the distorted image has 0.08 greyness levels of
sequential errors; and the restored image has 0.03 and
9.1 greyness levels of sequential and absolute errors,
respectively.
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Figure 5: Error curves of
AFE versus N by CSIM in
Caselaspu=1

Figure 6: Error curves of
AE versus N by CSIM
and CSIM in Case I as

Figure 7. Ima.ges under T IT by CSIVI in Case I as
u=1, a)as N=4, b) as N=8.

(a) Curves of images (b) Images of curves

Figure &: IVe
under T~'T by CSIM in Case las N =4 and p =0.
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Figure 9: The girl-images of 256 x 256 pixels with 256
greyness levels under 777 by CSIM in Caselas = 1
and N = 4.

4

Figure 10: The girl-images of 256 x 256 pixels with
256 greyness levels under 77T by CSIM in Case I as
p=0and N =4.

Figure 11: The girl-images of 256 x 256 pixels with
256 greyness levels under 77T by CSIM in Case I as
4 =0 and N = 4 for the perspective transformation.
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