1998 International Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.O.C.

Performance Evaluation of Intelligent I/O
on File Servers

Chih-Yung Peng®*, Kuo-Pao Fan', and Chung-Ta King®, Yuan-Bin Tsai’

*National Tsing-Hua University, Hsinchu, Taiwan, R.0.C

'Communication Research Laboratories Industrial Technology Research Institute,
Chutung, Hsinchu, Taiwan, R.O.C.

ABSTRACT

The intelligent Input/Output (I,0) architecture is a standard
to develop protable device drivers that offloads the host
CPU for I/O operations. In this paper, we study the effec-
tiveness of 1,0 on file servers using the NetBench bench-
mark. We compare the total throughput of the file server
with and without I,O supports. The evaluation results show

that 1,0 indeed improves throughput of the file server, and -

allows the server to handle more number of clients. Our
evaluation also shows that 1,0 is especially useful when the
server CPU load is heavy.

1. INTRODUCTION

In recent years, the Internet is growing at an exponential
rate. The rapid growth has enabled numerous Internet-
based applications. Many applications follow the cli-
ent/server paradigm, in which clients in different parts of
the Internet send requests to various servers to obtain
services. Example services include video-on-demand,
world wide web, printing, database, etc. More and more
services will become possible in the future.

The performance of a server depends not only on its proc-
essors, but also on its VO capability. Especially services
over the Internet is that they often involve a lot of I/O op-
erations, e.g., network communication, file accesses, etc.
To do these operations, the processors have to spend a lot
of time serving interrupts and running protocols such as
TCP/IP. These in turn greatly reduce the processor effi-
ciency. How to devise a scalable, efficient I/O subsystem is
thus critical to server systems. The Intelligent /O (I,0) ar-
chitecture [9] was proposed for this purpose.

The 1,0 architecture offers a solution to provide a flexible,
powerful /O subsystem. Adding an extra /O processor
(e.g. Intel i960) to the /O subsystem can offload /O func-
tions from the main CPU, and increase CPU efficiency by
reducing the number of interrupts. The I,O architecture
adopts a split driver model, in which a device driver is par-
titioned into an OS-Specific Module (OSM) and a Ilard-
ware-Specific Module (HDM). The OS vendors provide
OSMs for each different class of devices, e.g., LAN OSM
for network devices. The device vendors on the other hand
concentrate on developing the HDMs. This split device
model thus increases the portability of drivers.

This work was supported by CCL of ITRI under grant G3-87162

.

In 1,0, a device driver can be split more than once, called
stackable drivers. This enables an independent software
vendor to add more functions to an /O subsystem, inde-
pendent of both the OS and the hardware. A typical exam-
ple is to stack a RAID driver on top of a disk driver to in-
crease the reliability of the disk subsystem.

In this paper, we study the effectiveness of 1,0 in improv-

ing the performance of servers. We concentrate on the file

server and use the NetBench [11] to evaluate the server
performance with and without [,O. NetBench 5.0 is a port-
able Ziff-Davis benchmark program that measures the per-
formance of file servers as they handle /O requests from
DOS, Windows 95, Windows for Workgroups, Windows
NT Workstations, or Mac OS clients.

From the evaluation results, we find that file servers with
I,O have a higher throughput. The improvement is more
obvious when the load of the server host CPU is heavy.
Using L,0, the file server can also handle more number of
clients.

The rest of this paper is organized as follows. In Section 2,
we give an overview of the I,O architecture and describe
an L,O development platform. Section 3 introduces our
evaluation environment. In Section 4, we present the
evaluation results and discuss the parameters affecting the
performance of an I,0-based file server. Finally, Section 5

- gives the conclusions and future works..

2. PRELIMINARIES

In this section, we give some background on I,0. Section
2.1 describes briefly the 1,0 architecture. Section 2.2 intro-
duces an I,0 development platform.

2.1 Overview of 1,0 Architecture

The 1,0 Architecture Specification describes an open ar-
chitecture for developing device drivers in networked envi-
ronments. The architecture is independent of the operating
system, processor platform, and system I/O bus. It defines
a standardized development so that portions of the driver
can be offloaded to an embedded processor on the 1,0
adapter card.

2.1.1 Split Driver Model

73

1998 Intemational Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

In 1,0, a device driver is split into several modules, as
shown in Figure 1. The OS-Specific Module (OSM)
provides the interface to the operating system. Typically,
the OS vendor supplies this module. The Hardware Device

Module (HDM) on the other hand provides the interface to OiASO%"‘-iiﬁc
the /O adapter and its devices. The hardware vendor sup- (05;1; OSM

_plies this module, which contains no OS-specific code. A
third component, the Intermediate Service Module (ISM),

further splits the driver and adds more functionalities be- Hardware SV 1i
tween the OSM and HDM. An independent software ven- aeo‘é‘? o8 | oM '
dor can supply ISMs. HDMs and ISMs are often referred (I-ﬂ)ll:/l; i lj
collectively as the Device Driver Modules (DDMs). : L
I,O provides a software framework to integrate different @ 5 E
drivers from muitiple vendors, and an arbitration mecha- Devices Devices

nism to let them share processing resources. The frame-
work also allows the /O processing system to bypass the
main CPU altogether for peripheral-to-peripheral commu-
nications, e.g., loading multimedia files off the disk di-
rectly to the network, without causing any interruption to
the main processor.

2.1.2 Message Passing Interface

In L,O architecture, communications between different
modules are carried out by passing messages. The 1,0 in-
terfaces include shell interface and core interface, as shown
in Figure 2.

The shell specification defines the interface that an IO
subsystem presents to the host. It specifies the behavior of
both the system and subsystem when initializing and man-

aging intelligent /O subsystems. The shell interface
provides both OS and I/O subsystem independence.

F igt_xre 1: The split driver model [9]

[
OS Class Specific _]

Driver Module

OS Messenger

Shell Interface

The core specification defines the interface between a o ‘";‘:‘gfy"s':;zo o ‘";‘ﬂ{jf;s':;go
loadable device driver and the /O platform. It provides an L :

operating environment for device drivers that, like the shell + (core Intertace)+ (__Core Interface D
interface, is independent of both the OS and the /O plat- ‘ cadable ' Loadable

form. This enables any real-time operating system to host ponver il

device drivers produced by third-party hardware vendors.
2.2 Overview of [,O Development Platform

An LO development platform facilitates the development
of L,O drivers. In the following, we describe briefly a de-
velopment platform based on the IxWorks real-time op-
erating system from the Wind River System [12]. The
standard configuration for developing 1,0 drivers with Ix-
Works includes: a development system, an [0 host, and an
1,0-conforming 1/0 processor. The configuration is shown
in Figure 3.

The development system is a PC running a visual devel-
opment environment called Tornado. Tornado is executed
on top of Windows NT or 95. Its collection of integrated
host-resident tools allow developers of intelligent peripher-
als to:

(1) build L,O drivers
(2) test and debug 1,0 drivers

74

Shcll Specification

(3) package and deliver 1,0 drivers and products
(4) monitor and optimize I,O driver performance.

One dedicated serial port is required to connect the Tor-
nado development system to the IOP. Also, since the com-
ponents of the Tornado environment communicate using
TCP/IP, the development system must have TCP/IP in-
stalled with an assigned IP address.

An LO host is a PC hosting the /O device. Its operating
system, e.g., Windows 4.0 or Novell Netware, must have
suitable OS Service Modules (OSMs) installed for the class
of drivers under development.

An L,0-conforming I/O processor (IOP) executes ISMs and
HDMs through the IxWorks operating system. It controls
the adapter card that plugs into the PCI bus in the 1,0 host.
Of course the adapter cards for development must be sup-
plied with a serial cable and connectors to connect to the
development system.

As mentioned IxWorks is a real-time operating system con-
forming to the I,0O architecture. It provides a multi-
threaded, prioritized framework that allows drivers from
multiple vendors to coexist safely. It is fully scalable across
all LO configurations, from dedicated on-card i960RP
processors to open “on-motherboard” implementations to
complex distributed 1/O systems that service multiple
CPUs. IxWorks also includes a number of features for ad-
vanced /O subsystems. It supports peer-to-peer communi-
cations, enabling two IxWorks-based systems to talk to one
another without host-CPU intervention. It also manages
ISMs, which are appropriate for applications like network
management or RAID control algorithms that are a step or
two on top of the hardware.

3. EVALUATION ENVIRONMENT

In this section, we describe our evaluation environment.
We first give an overview of the NetBench in Section 3.1.
Then in Section 3.2, we describe our configuration for
evaluation.)

3.1 Overview of the NetBench

NetBench® 5.0 [11] is a portable Ziff-Davis benchmark
program that measures the performance of file servers as
they handle /O requests from DOS, Windows 95, Win-
dows for Workgroups, Windows NT Workstations, and
Mac OS clients. To run NetBench, at least three machines
are needed, the file server, the controller, and the client, as

shown in Figure 4.

File Server: File server provides the shared file storage
facilities to the clients and on which the clients create files
used in the NetBench tests. It is also the machine on which
the NetBench controller and client programs are installed.
When NetBench is executed, each client sends requests to
the server for network file operations on files that exist on
the server. NetBench's results reflect the server's perfor-
mance as a whole, including the server operating system
and everything from the disk controller to the network in-

75

1998 International Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

RS232 line
A ntly \
Development PC Cyclone 90 RPRD
(WinT or Wir3) 120 Hos (Works)
(Tornado) (WiNT)

Figure 3: The IxWorks 1,0 development platform

The Network
any network that allows the
server, controlley, and clients to

communicate with each other. -]
= =

==

L__J

= K=
The Server

Any server that can communicale with
the controller and the clients

Ll

The Controtler

Figure 4: Configuration of NetBench test environment

[1].

1998 International Computer Symposium
‘Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

terface card to the number of processors to the network
protocol.

Controller: The controller is a PC running Windows 95 or
Windows for Workgroups 3.11. NetBench does not run
tests on the controller nor does it count the controller as a
test client in the tests. Instead, the controller controls which
tests NetBench runs, monitors how the tests are going, and
views the test results.

Clients: These are PCs and Mac OS systems that actually
request the network file operations of the server during the
NetBench tests. NetBench can accept up to 1,000 clients;
but to get meaningful results from NetBench, only a few
clients are needed to stress the server. This can be deter-
mined by checking the result curves.

The NetBench test suites include several tests. They are
summarized as follows:

The Disk Mix: The Disk Mix is a synthetic application
that mirrors the way leading PC applications perform net-
work file operations on a file server. The Disk Mix uses
multiple files, different request sizes, and different network
file operations to place a diverse load on the server. The
Disk Mix was obtained by first profiling applications to
determine what sort of file requests they performed and
how frequently they performed them. A list of the applica-
tions profiled for each client type is shown in Table 1. Af-
ter profiling the applications, scripts were created to mimic
the network file operations of those applications and were
turned into the Disk Mix test. When Disk Mix is executed,
NetBench tallies the scores for all the individual clients and
compiles the overall score for the server.

The I/O Throughput Tests: NetBench includes five /O
Throughput Tests: Sequential Read, Sequential Write,
Random Read, Random Write, and Random Read/Write.
For each test, each NetBench client creates its own private
test data file. It then reads from and writes to the file based
on the test type and parameters. Each of these tests in-
cludes a think time. Think time is a parameter which tells a
client how long to wait after performing one chunk of work
before it performs the next. In general, the smaller the val-
ue for think time, the more the test stresses the server.

The NIC (Network Interface Card) Test: NetBench uses
the NIC Test to measure the peak throughput of network
interface cards in both servers and clients. This test at-
tempts to isolate NIC performance by having all the clients
sequentially read data from a shared file that fits into cache
on the server. In this way, the server does not access the
disk but handles all the sequential read requests from
memory. Thus, each client throughput reflects the through-
put capability of the network interface cards and the net-
work physical layer.

3.2 Our Evaluation Configuration

Our evaluation was conducted on a NetBench platform as
follows. The client machine(s) had a Pentium Pro-200 CPU
and 64M RAM, running Windows 95. The controller ma-

Table 1. The applications profiled for each client type in Disk Mix

DOS Clients 32-bit 16-bit Mac OS
Borland® Adobe® Adobe™ Claris

® PageMaker® pageMaker™ ~ Works™
DBase IV 6.0 5.0 30
Borland Borland® Claris® FileMaker
Paradox®DOS Paradox® 7.0 FileMaker® Pro 2.1v2

Pro 2.12
Harvard CorelDRAW! Lotus 1-2-3 Finder™
Graphics® 6.0 Release 4.01
Lotus® 1-2.3® Lotus® Word Microsoft Ex- Microsoft
for DOS Pro™ 96 cel 5.0 Excel 5.0
Lotus Microsoft Microsoft Microsoft
cc:Mail™ for Access 7.0 Word 6.0a for Word 6.0
DOS Windows
Microsof® ¢ Microsoft Windows File ~ WordPer-
compiler Excel 7.0 Manager fect 5.0
Microsoft Microsoft® WordPerfect
MAIL for DOS PowerPoint® 6.0a
7.0

WordPerfect® Microsoft
for DOS Word 7.0

’

chine had a Pentium-233 CPU, 64M RAM, and Windows
95. The server machine had a Pentium-90 CPU, 32M RAM,
and Windows NT 4.0. It was configured following the
IxWorks 1,0 development platform as shown in Figure 3.
The I/O adapter was Cyclone i960 RD with two 10 Mbs
Intel 82557 controllers and two Symbios SCSI controllers.
The NetBench was running off an IBM ultra-wide 2.1G
SCSI HD.

In our configuration, the 82557 HDM and Symbios HDM

were running on the IOP. The other file access procedures

were running on the host. The LAN OSM and block stora-

ge OSM were from Microsoft. In the experiments, the

server ran in two different loading conditions. A lightly- -
loaded server did not run any other programs except serv-

ing file requests. A heavily-loaded server, on the other

hand, ran a MPEG decompression program for the duration

of the experiment, which induced a heavy loading on the

server CPU.

4. EVALUATION RESULTS

In this section, we present the results of our performance
evaluation. Note that the parameters affecting the perfor-
mance of a file server include the total number of client
machines, the number of client programs in each client
machine, the test suites, the load of the server host CPU,
and the think time. We use the total throughput on the file
server as the performance metric. In each experiment, we
compare the obtained throughput on a file server with and
without 1,0.

76

4.1 Effects of Think Time

In this subsection, we study the effect of think time on the
throughput of the file server. The think time is the time in-
terval between each request to the file server. In this ex-
periment, there is only one client machine, and in the client
machine, only one client program is activated. The test
suite used is the Disk Mix, performing only one iteration.
Figure 5 shows the result when the load of the server CPU
is light, while Figure 6 shows the result for a heavily-
loaded server.

From Figure 5 we find that when there is no think time, the
throughput is the highest. A longer think time reduces the
total throughput, because when the think time is longer, the
total number of requests to the server becomes smaller.
Thus, the total throughput is reduced even though the host
CPU still has extra capacity to process more requests.
Comparing the file server with and without I,O, we can see
that the one with I,O can obtain a higher throughput, be-
cause the I/O processor can reduce the number of interrupts
to the host CPU.

From Figure 6, we find that when the server load is heavy,
increasing the think time does not change the total
throughput much. This is because a heavily-loaded server
has reached the upper limit of its throughput, which is thus
independent of the think time. Again, the throughput of the
one with 1,0 is higher than the one without I,0.

4.2 Effects of Varying Clients

In this subsection, we study the effects of increasing the
number of clients on the total throughput. In this set of ex-
periments, we used the Disk Mix test suite, set the think
time of each mix to zero, and ran one iteration of disk mix
in each client program. The results shown in Figures 7 and
8 are based on a lightly-loaded and a heavily-loaded server,
respectively. Intuitively with a modest increase in the num-
ber of clients, a lightly-loaded server should have enough
processing capability to handle the increased file re-
quests.The resultant throughput should increase also.

However, from Figure 7 we can see that this is not the case
-- when the number of client programs increases, through-
put of the server drops. Note that the client programs are
running on the same client computer. Thus one explanation
is that the client programs compete with each other for the
resources on the client computer, especially at the receiving
side. As a result, the rate at which the client computer can
move data in and out becomes the limiting factor to the
overall throughput. When the server is equipped with 120,
requested data will be replied to the client computer sooner,
which in turn intensify the contention among the client

programs. This explains why the throughput in the 120
case drops faster than the one without 120.

On the other hand, when the number of client programs in-
creases to a certain degree, the excessive file I/O requests
sent to the server increase the server overhead in handling
the /O operations and make the latter a bottleneck of

1998 International Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0C.C.

throughput. The overall throughput become flattened.

3
% —&—with 120
€
% ~—&— without
H 120
£
g
1.096
041
[25 5 10
think time (sec)
Figure 5: Effects of think time on a lightly-loaded server for a
single client machine with a single client program
018
016
¥ am
122
2 an
S w
1| ~—with I0
2 i "
& o
3 ——without
2 |
om
0
0 5 10
think time (sec)

Figure 6: Effects of think time on a heavily-loaded server for a
single client machine with a ringle client program

Figure 8 shows the resultant throughput when the server is
heavily-loaded. Again, since the server is now the bottle-
neck and 120 can off-load the main CPU with reduced in-
terrupts, the server with 120 can achieve a higher through-
put. Note however that no matter whether 120 is used, the
heavily-loaded server can handle at most two client pro-
grams. If more client programs are added, the server cannot
keep up with the requests and may drop packets to cause
faults.

4.3 Performance under Random Reads

In this subsection, we study the file server throughput un-
der random reads. Each client program performed the re-
quests 150 seconds using a chunk size of 1024 byes. The
results are shown in Figures 9 and 10. From the figures, we
find that the file server with 120 performs worse than the
one without 120, This is perhaps because the ¢hunk size
was too small and the initialization overhead in the server
CPU dominated the whole performance. In this case 120

77

1998 International Computer Symposium
Workshop on Computer Architecture
‘December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

did not help but added extra overhead to the datapath,
which resulted in a degraded performance. Another possi-
ble cause for the performance degradation in 120 is the ac-
cess patterns of random reads. We are still investigating
this cause.

Note that when the CPU load is light, the curves in Figure
9 are quite flat. This means that the server had enough
computing capability to handle requests, which is another
indication of the light workload exercised by the random
read test suite. Apparently, 120 is not most efficient when
operating under such a loading condition.

Pad
o

——vwith i20

—#— witbout i20

total throughput (Mbits/Sec)
= W e oo
o o & b b &

=4
o

mumber of client:

Fgure 7: Perfarmance of a lightly-loaded server for asingle
client machine

total throughput (Mbits/Sec)

muber of client:

Figure 8: Perfommance of a heavily-loaded server for a single
client machine

5. CONCLUSIONS AND FUTURE WORKS

In this paper, we study the performance of a file server
with and without ,O. We used NetBench to perform the
evaluation. From the evaluation results, we find that when
the load of the host CPU on the file server is heavy, the
system with IO obtains a higher throughput. In addition,
the number of clients that the file server can handle in-
creases when I,O is used. This indicates that the /O proc-
essor can effectively reduce the interrupts to the host CPU.
In the future, we will conduct more experiments to evalu-
ate the performance of ,O and identify its bottlenecks.
Then we will develop some ISMs to see if these bottle-
necks can be eliminated.

g

2

-l

£

g

] .

2 —&— with i20
=

H —®— yithout i20

1 2 3 4 5 6 7 8 9 10
number of client:

Figure 9: Performance of a lightly-loaded server under random
reads by a single client manchine

mumber of client:

Figure 10: Performance of a heavily-loaded server under random
reads by a single client machine

78

(1]
(2]

(3]

(4]

(5]
(6]

(7]

(8]
(9]

6. REFERENCES

Intel Corp., Multiprocessor Specification, version 1.4,
July 1995.

S.S. Mukherjee and M.D.Hill, "A Survey of User-
Level Network Interface for System Area Networks,"
Tech. Report, University of Wisconsin-Madison.

N.J. Boden and et al, "Myrinet-A Gigabit-per-second
Local Area Network," IEEE Micro, vol. 15, pp. 29-
36, Feb. , 1995.

David H.C. Du and et al, "Performance Study of
Emerging Serial Storage Interfaces: Serial Storage
Architecture(SSA) and Fibre Channel-Arbitrated
Loop(FC-AL)", Tech. Report, University of Minne-
sota.

Yuan-Bin Tsai, "Trends in Cluster Computer System
Architectures,” CCL. Confidential.

Byon Gillespie and Mark Bronn, "Implementing In-
telligent /O in the PC Cluster Server,” Proc. of the
Symposium on High Performance Interconnects(Hot
Interconnects'96), Aug. 15-17. 1996.

SSA Industry Association, Serial Storage Architec-
ture: A Technology Overview, version 3.0, 1995.

“I,O Beats /O Bottienecks”, Byte, Aug. 1997.
Intelligent I/O Specification, version 1.5, Mar. 1997.

[10] Byron Gillwspie, “PCI Intelligent I/O Design for High

Performance Servers,” Intel

[11] NetBench documents
[12] http://www.wrx.com

79

1998 International Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U,, Tainan, Taiwan, R.0.C.

	
	73
	74
	75
	76
	77
	78
	79

