1998 Intemnational Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

A New Scheme to Reducing Data Stall with
Data Prefetching Table and History Table

Lung-Hsiung Wang, Yen-Hsin Wang, and Jih-Fu Tu

Department of Computer Science and Engineering,
Tatung Institute of Technology, Taipei, Taiwan, R.O.C.
Email: {lhwang, yhwang,d8506002}@cseserv.cse.ttit.edu.tw

ABSTRACT

Large scale programs have been developed that has more
frequent data access from memory, thus incurring data
hazard and data access latency. This ofien degrades CPU
performance, and more seriously, the system may stall. This
paper proposes a new scheme to solve the data dependence
and to avoid the data hazard. Two tables are added into the
DLX pipeline architecture: one is Data Prefetching Table
(DPT), and the other is History Table (HT). The HT is used
to process the instruction recognition for data dependency
detection. If data dependency occurs, the system will
immediately send a "reusing” signal to DPT, noticing DPT to
deliver the deeded data to ALU. This eliminates the data
access latency and expedites CPU. Based on this, the Data
Prefetching Processor (DPP), ie., the pipeline CPU with
DPT and HT, is modeled and simulated using the
SES/workbench object-oriented graphical modeling and
simulation software. Performance comparison between the
enhanced structure and traditional pipeline architecture is
done to verify the suitability of our proposed scheme.

Keywords: data prefetching, Data Prefetching Processor
(DPP), pipeline architecture, SES/workbench,
and data stall.

1. INTRODUCTION

Upon to date, CPU is still the most important element of
all kind of computers. Whereas, how to speed up a CPU and
improve the cost/performance rate is still the major concern
of computer designers and all users. Basically a powerful
CPU requires higher hit ratio, lower miss penalty, lower data
access stall, higher speed, lower cost, etc.

Penalty or stall in pipeline architecture is the result of non-
optimal hardware/software designs of architecture. Recently,
large-scale programs have been developed that need larger
memory space and have more frequent operation access from
memory. These programs are highly data dependent that

could cause data hazard and access latency, or degrade
CPU’s performance, or even worse make system stall.

The following techniques may be used to improve CPU’s
speed and performance: (1) improving CPU’s internal
structure, (2) expanding memory bandwidth and memory
size, (3) increasing cache size. Many researches have
discussed these in great detail. CPU structure improvement
had been discussed in [1], memory issues had been talked in
[2,3], and cache performance improvement had been
discussed in [4,5]. A great majority of articles only dealt
with improvement of some features of the processor and
aimed at the instruction prefetch. Although data dependence
had been discussed in [6,7,8], it didn’t go very far in
discussing data prefetch. Moreover, only a few of them
discussed reasons of the data penalty. Thus, there still has
space for improvement in processor design.

A number of techniques exist to improve CPU’s
performances that are doing cache prefetching. The idea of
prefetching is to predict data access needs in advance so that
a specific piece of data is loaded from the main memory
before it is actually needed by the application. Many papers
have been issued for data prefetching study, such as [9]
focuses on instruction prefetching to reduce the memory
access penalty during instruction phase. [10] Uses the victim
cache to reduce the data stalls. Some hardware prefetching
works use one-block-lookahead(OBL) scheme for
prefetching cache lines, stream buffers, stream cache, or
stride predication table (SPT). A number of techniques also
exist that did software. A technique for prefetching certain
types of array data was proposed by [11]. The most practical
software prefetch scheme is available in [12].

Many early reszarches have devoted to raising CPU’s
performance using techniques such as scoreboard, VLIW or
reservation table. Those schemes cannot effectively solve the
access penalty, and are often complex and costly. In reality,
two consecutive instructions may have data dependency and
the CPI accrue.

Our purpose in this study is to provide a new scheme to
solve the data dependence and to reduce the access latency.
We will add two tables into the DLX pipeline architecture:

1998 Intemational Computer Symposium)
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0O.C.

2

Fi

1

TR

11

lv»i;g

iy

Fig. 1. The DPP architecture.

One is Data Prefetching Table it has a 64-entry register
used to store the previous execution result, the other is
History Table, a 16-entry FIFO buffer used to store the target
address from DPT. When two instructions have data
dependency, i.e., the successive instruction and one of the
previous 15 instructions use the same data, the system uses
HT to verify and sends a "reusing" signal to DPT. The
successive instruction needed data has been stored in DPT,
and to be delivered from DPT to ALU’s.

By adding few hardware into the DLX pipeline CPU, we
attempt using HT and DPT to reduce the latency and speed
up CPU, and to improve the system performance. We
assemble the DLX pipeline processor, DPT and HT to form a
Data Prefetching Processor (DPP). The DPP’s has five
pipeline stages: Instruction Fetch (IF), Instruction Decode
(ID), Execute (EXE), Memory (MEM), and Write Back
(WB). Note that the original DLX pipeline and our DPP have
the same data and instruction flow path. In this paper, it is
our intention to use the data prefetch scheme to reduce data
latency. In this paper we uses the R-type instruction to verify
our new scheme. Simulation of DPP is done in
SES/workbench [13], an object-orient graphical simulation
environment.

The rest of this paper is organized as follows. Section II
presents the organization of DPP and dedicates an illustration
of how data prefetching process on a pipeline system can be
achieved. Section III further describes the HT and DPT.
Section IV defines our simulation model and discusses the
simulation result. Finally, the conclusion is made in Section
V.

Fig. 2. The relative of HT and DPT.

2. DATA PREFETCHING PROGRAM AND
DATA PREFETCHING SCHEME

Fig. 1 illustrates the architecture of Data Prefetching
Processor (DPP) evolved from DLX pipeline. As can be seen,
we use hardware technique to achieve the data prefetcher.
Fig. 2 illustrates the HT and DPT is placed in the ID and
EXE stage respectively. We now proceed to describe the data
prefetching control scheme, the details of HT and DPT
structure leaf to the next section.

From Fig, 1, an instruction feed to IR then divides into two
ports: the Opcode (the highest 6 bits) and operand stream
(the other 26 bits). The Opcode stream flows to the decoder
which can be decoded to several control signals to control
ALU write, ALU_read, DPT write, Register Write and
Register Read, etc. The source operand (10 bits) of the
operand stream goes to HT. We use HT to recognize and
compare the source address of new instruction and the target
address of previously instruction. If they match, a “reusing”
signal will be sent from HT to DPT. Upon receiving the
“reusing” signal, DPT immediately delivers previous store
data to ALU.

For an I-type instruction, or called reference memory
instruction such as LOAD/STORE instruction, if it is
decoded, the decoder will send a “DPT_write” signal to DPT
and store the immediate value into DPT’s target value field.
If one of the two source operands is equal to DPT’s target
address field data. Then, a “reusing” signal will be sent to
DPT from HT to complete the data prefetching process. The
DPT will send the assigned entry data to data register of
ALU in the ID stage .The reusing process in sum has two
steps:

10

Toll cache

_ Tuge A N

fim !
{_.__,-g___. 8
fe

daa forwardig
Fig. 3. Data and Control Flow Between HT and DPT.

.1) The control signal path (involving reusing
signal):
DPT,,, ¢« History Table, i.e., a one bit reusing signal
is transferred from HT to DPT busy field

2) The prefetch data path:
ALUp0 < DPT 00 vaiue » 1-€., DPTs target value is
transferred to the ALU’s input port

3. THE HT AND DPT STRUCTION

Fig. 3 shows the relationship between HT and DPT. The
comparison unit (HT) can detect and predict whether the
successor instruction reuses the same data of predecessor
instruction. If this is true, it will send a “reusing” signal to
DPT. This procedure not only achieves data prefetching but
also delivers correct data to ALU.

3.1 The History Table (HT)

The HT acts as a recognizing and comparison unit,
illustrating in. Fig. 4. It is a 16-entry buffer that can record
16 instructions to recognize the target address of previous
instruction and the source address of the new instruction data
address. Here, we separate the instruction into two main
parts, and define them as follows:

1) Each Opcode uses 6 bits, which is located at the
significant positions (bit 26~ bit 31).

2) The other 26 bits (bit 0 ~ bit 25) are used for operands;
they are first source, second source, target address, shift

and ALUop.

1998 Intemational Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

From DPTI[16..20]
{target address ficld)

15 109 8 54 I [}

resarved | valid| counter [previous result

16 entries

No u:
es
To Data “reusing” Y

Reginter signal 10 Gmpairos.
DFT o he16.201

Yes

Ins[21.25]

From Instruction
Memory
Ins(16..25)

To Data
Register “redsing”
signal to
DPT

Fig. 4. The structure of HT.

Thus, we can use HT to separate the Opcode and
operand of each instruction. The Opcode of
instruction streaming from HT delivers to the
controller unit. When the instruction streams to HT,
the data stream may send to Data Register
concurrently, the Opcode and operand can
concurrently deliver in the same phase of CPU.
Before delivered to ALU, the source operand of
new instruction is compare with the previous target
operand reserved in HT. If they match a “reusing”
signal will be sent to DPT, and the previously
executed result from DPT transport to ALU for
reuse; otherwise, the new source data is directly

delivered to data register.

For an R-type instruction the source 1 field is located in
Ins[25.21], the source 2 field is located in Ins[20..16], the
target field is located in Ins[11..15]. When a new R-type
instruction is accessed, the HT will compare the target field
of previous instruction with the two source fields of new
instruction. The successive instruction and the previous one,
both use the same operand that results in the data
dependency.

3.2 Data Prefetching Table(DPT)

Fig. 5 illustrate the DPT, It similar a data cache, in that
data may come from data register if it is a new load data or,
come from data memory if it updates or modifies a
executable operand. If the new instruction and prior
instruction both use the same address, the data is obtained
from DPT in the EXE to complete the data prefetching.

]1

1998 Intemational Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

TABLE I
DPT ENTRY BIT DEFINITION.
Field name |Bits number Description
Reserved | 3 (29-31) |No using
Busy 1(28) busy = “1” means the data has
been reused
Valid 127) valid="1" means counter
value is less than 64
Counter 6 (21-26) |Each instruction can stay in
DPT 64 clocks long
Target 5(16-20) [To storing the address,
address parameter, Or register name
Target 16 (0-15) [The latest results reused by a
value new instruction

If an operand is reused more than two times, the reusing
signal has to flash again. The counter may be reset to zero
and the busy bit will remain “1”. If an operand stays in DPT
over 64 clocks and no reusing occurs, it means the data are
not valid. Then it’s occupied entry may be replaced by over-
write method for a latter instruction’s result. The result of
any instruction after executed by ALU would be store in L1
cache and also DPT concurrently. If the count value of DPT
exceed 64, the result data will be overwritten by a successive
result data. The DPT is similar to a cache storage, which has
64-entry. Each entry has 32 bits to record the operation result
and status of an instruction. Table I show each entry’s bit
definition of the DPT.

4, SIMULATION MODEL AND RESULT
ANALYSIS

For a quantitative analysis, we use an object-orient
graphical simulations software SES/workbench, for model
construction and simulation. Figure 6 shows the model of
the data prefeching system in SES/workbench modeling. It is
a hierarchical directed graphical model with eight sub-
models they are reference models to PC ALU, HT,
DPT, ...,and Register. Each reference model, i.e., sub-model,
has similar from of such hierarchical directed graph and can
be travailed down once it is called (i.e. reference) and
returned when process is done. Here, each sub-model is
carefully,. We are simulations in SES/workbench. The
simulation period is 10 (from 0 to 10), number of events
since last reset is 112. The metric has: With/without DPP,
category performance comparison for six parameters
(MEAN, minimum, maximum, variance, stdev, ending
value),

Fig. 7 shows the variance value of each category under
different SD and MD, the x-axis indicate the execution
time by exponent numerical, the y-axis indicate category
variance. ,

Fig. 7(a) shows the reusing and Ins_0_25 category has the
highly Maximum value, it means reusing and

fromDats From Data
Register Mcmory

foom HT from chck
DeT
e
PO T
= -
>
M Wem WX 21220 16t3 °
resorvme | Besy[vaat P etk taruct_val.

64 entries

ToHT

o e———— F—:v

10 ALU iopm

Fig. 5. The Structure of DPT.

Ins_0 25 category with high utilization, because HT is a
instruction recognize unit. Fig. 7(b) shows the prefeching
category has highly execution time DPT sub-model, it means
a data prefetch operation in DPT sub-model frequency, and
the prefetching function is available. Fig. 7 (¢) shows the
ALU sub-model execution results for different replication,
when a category related to HT or DPT, example Ins 0 25,
prefetching, reusing, it will has highly execution time.

We also compare the throughput of DPP and tradition
pipeline architecture. Both of they are running in the same
condition, example, 10 replications 1 batch, and processor
execution time of each sub-model. Fig. 8(a) shows the DPP
architecture has higher total through about 90% utilization of
HT and ALU, either the DPT has 50%. We compare to
traditional pipeline architecture, to see Figure 8(b). We
compare Fig. 8(a) and Fig. 8(b), the enhanced architecture
has high throughput to traditional pipeline, for HT is 20%,
and for ALU about 90%.

From Fig. 8, we understand the throughput in lower
replication the tradition pipe architecture may prior to the
DPP architecture, this reason due to no more reuse require,
and in more times replicate cycle, the system may occur
highly reuse require.

5. CONCLUSION

How to design a powerful CPU architecture is decided to
your initialization idea. Whether the system utilizes or not, to
progress simulation before you want implement is very
import.

12

1998 International Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

noduies TN TERENE.

Aunmodelr

new_pc

pretecch 3jobs

ranino_a jidadannd Teo addez_szero obrr_vesce A
eeesns to decoderx "" e 4
3 ary_con o~ prececening
EIZ]
Fig. 6. The Simulation model of SES/workbench.
g] £ Yooesol .
§ 5 8.00E+00 i EIMEAN
2 5 6.00E+00 il N variance
. & Soer00 g | OMaximun
4 0.00E+00 alialalle Bminimum
F) @3‘ & 939 v\y > .z,/”(F » ls!cd'cv
N A)e} & EJEnding value
d Category
Fig. 7(a). In SD=HT utilization. Fig. 7 (b). InSD = DPT utilization.
4]
24
-% 0 Bergry
50 — 8025
s —e—HT g& Oins 2631
2 a9 s s
o1 AP i — i —
SR pedt
—a—ALU |l 1 2 3 4 5 6 - 7 SAL
Fig. 8(a). DPP organize throughput. Fig. 7(¢). InSD=ALU utilization.
TABLE II
0
n — THE SUB-MODEL OF SIMULATION.
g® p— —e—HT :
EE) — — s DPT Name Describe
? . e AL PC Program Computer
S /’_'/ Adder-zero New PC calculate
P P DPT Date Prefetching Table
ot HT History Table
Decoder Operand decode unit
ALU ALU unit of CPU
. o Register Data register
Fig. 8(b). Traditional pipeline throughput. Memory-system L1 data cache has 512 k

13

1998 International Computer Symposium
Workshop on Computer Architecture
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

We only add little hardware to the tradition of pipeline
architecture to complete our assumption. Modeling a
system to architects evaluate its performance for a set of
design assumptions when chosen workload, the system
bottlenecks are easy resolute.

We apply this DPP scheme to reduce data access stall,
and through modeling simulationv method created in
SES/workbench to prove our assumption. We compare
the new scheme processor and tradition one via the
simulation result, and provide our assumption is
executive. The enhanced architecture has speed up the
ALU unit of CPU compare to tradition pipeline

architecture.
REFERENCES

[1] J. L. Hennessy and D. A. Paterson, Computer
Architecture - A Quantitative Approach, Morgan
Kanfman, Ver.2, 1995.

[2] Stephan Olariu, and Albert Y. Zomaya, “ A Time- and
Cost- Optimal Algorithm for Interlocking Sets-With
Applications,” IEEE Transactions on Parallel and
Distribute System, Vol. 7, No. 10, Oct. 1996,
pp.1009-1025.

K}
stream buffers as a secondary cache replacement,” In
proc. of the 21" annual International Symposium on
Computer Architecture, April 1994, pp. 24-33.

[4] Pei.Cao and Edward W. Feleten Kai Lij,
“Implementation and Performance of Integrated
Application-Controlled File Caching, Prefetching,
and Disk Scheduling,” JEEE Micro, Vol. 14, No. 4,
Nov. 1996, pp.124-135.

[5] James E. Bennett, Michael J. Flynn, “Reducing Cache
Miss Rates Using Prediction Caches, ¥ Technical
Report No. CSL-TR-96-707, pp.1-18.

[6] John W.C. Fu and Janak H. Patel, “Data prefetching in

Multiprocessor vector cache memories,” In Proc. of

Subbarao Palacharla and R.E.Kessler, “Evaluating

..‘|4_

18"
Computer Architecture, May 1991, pp. 54-63.

the Annual International Symposium on

[7]1 T. Mowry, M.Lam, and A. Gupta, ”Desigh and

of Computer Algorithm
prefetching,” In SIGPLAN Notices, September 1992,
pp. 62-73,

[8] Shlomit S. Pinter and Adi Yoaz, “Tango: A Hardware-

Evaluation a for

based Data Prefetching Technique For Superscalar
Processors,” In Proc. of the 25" Annual International
Symposium on Computer Architecture, May 1997,
p-p-214-225.

{9] A K. Porterfield, “Software Methods for Improvement
of Cache Supersomputer

Applications,” Technical Report COMP TR 89-93,

Performance on
Rice University, May 1989.

[10] Dimtrios Stiliadis and Anujan Varma, “Selective
Victim Caching: A Method to Improve the
Performance of Direct-Mapped Caches,” IEEE
Transactions on Computers, Vol. 46, No. 5, May
1997, pp. 603 — 609.

[11] Tse-Yu and Yale N. Patt, “Alternative
Implementations of Two level Adaptive Branch
Predictions,” In proceedings of the 19" Annual
International Symposium of Computer Architecture,
Gold Coast, Australia, May 1992, pp. 124-134.

[12] Tse-Yu and Yale N. Patt, “A Comparison of Dynamic
Branch Predictors that use Two Levels of Branch
History,” In proceedings of the 20" Annual

International Symposium of Computer Architecture,

San Diego, CA, May 1993, pp. 257-266.

Scientific

[13]

and Engineering Software,

SES/workbench User’s

inc.,

Manual, Release 2.1
Scientific and Engineering Software Austin, TX,

USA, February 1992.

	
	9
	10
	11
	12
	13
	14

