
A Tight Bound on Time Complexity of Mutual

Exclusion∗

Sheng-Hsiung Chen and Ting-Lu Huang

Dept. Comp. Sci. & Info. Engr.

National Chiao Tung University

Hsinchu, Taiwan, R.O.C.

{chenss,tlhuang}@csie.nctu.edu.tw

Abstract

In distributed shared memory multiprocessors,
remote memory accesses generate processor-to-
memory traffic which may result in a bottleneck.
It is therefore important to design algorithms that
minimize the number of remote memory accesses.
We establish a lower bound of 3 on remote access
time complexity for mutual exclusion algorithms in
a model where processes communicate by means of a
general read-modify-write primitive. Since a general
read-modify-write primitive is a generalization of all
atomic primitives that access at most one shared
variable, our lower bound holds for any set of such
primitives. Furthermore, this lower bound is tight
because it matches the upper bound of Huang’s al-
gorithm proposed in 1999.

Keywords: mutual exclusion, atomic instructions,
shared-memory systems, time complexity, tight
bounds

1 Introduction

The mutual exclusion problem is fundamental in
asynchronous shared-memory systems for managing
accesses to a single indivisible resource. The prob-
lem is to design an algorithm guaranteeing that at
most one process at a time is permitted to access
the resource within a distinct part of code called its
critical region.

A mutual exclusion algorithm may produce large
amount of processor-to-memory traffic in shared-
memory systems, heavily degrading the system per-
formance. Since all processes communicate through
the shared memory, each competing process may test
certain shared variables repeatedly while it is waiting
to enter its critical region. This problem is not in-
herent in multiprocessor systems in which each pro-
cessor has a local portion of shared memory (i.e.,
distributed shared-memory systems (DSM)) or has
a local cache (i.e., cache coherent systems (CC)) [14].

∗This work is supported by National Science Council, Re-
public of China, under Grant NSC 93-2213-E-009-116.

In DSM systems, a memory access step to a shared
variable will not cause interconnect traffic if the vari-
able is stored in the local portion of shared mem-
ory. In CC systems, whether a memory access step
causes interconnect traffic depends on the various
cache protocols. Generally speaking, the first ac-
cess (be it read, write, or both) to a shared variable
will cause interconnect traffic and establish a cached
copy. But the subsequent reads will not cause traffic
unless the cached copy of the shared variable is inval-
idated. In general, a memory access step is described
as local if it doesn’t cause any interconnect traffic;
otherwise, it is remote. Recent work on the mutual
exclusion problem has focused on the design of local-

spin algorithms that reduce the number of remote
memory access (RMA) steps by busy waiting only
on locally-accessible shared variables. A number of
performance studies [14, 15, 1, 11] have shown that
synchronization algorithms minimizing the number
of RMA steps have the best performance.

Since the number of RMA steps accurately re-
flects the performance of an algorithm, Anderson
and Yang [2] first defined this number as the time
complexity measure. To be more specific, the time
complexity of a mutual exclusion algorithm is the
maximum number of RMA steps required by one
process to go through its critical region once. Based
on this definition, a mutual exclusion algorithm is
local-spin if its time complexity is bounded [11].

Many local-spin mutual exclusion algorithms have
been proposed in the literature. Using some read-
modify-write primitives in addition to atomic read

and write, many mutual exclusion algorithms are
of constant time complexity. For example, Mellor-
Crummey and Scott [14] proposed two constant time
algorithms (referred to as MCS lock in the liter-
ature) for both CC and DSM systems, one using
fetch-and-store and compare-and-swap and the other
using fetch-and-store only. Craig [6], Magnusson et
al. [13], and Huang and Lin [9] independently pro-
posed the same constant time algorithm with fetch-

and-store. Craig presented variants of the algorithm
for both CC and DSM systems; while the other two
considered only CC systems.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1352

Even though there are several mutual exclusion
algorithms of constant time complexity, some other
researchers aimed to minimize the number of RMA
steps. For instance, Fu and Tzeng [7, 10] improved
MCS lock by using circular waiting list to eliminate
RMA steps needed in MCS lock to re-direct an ad-
dress link for each privilege passing during resource
busy period. Unfortunately, the algorithm of Fu
and Tzeng suffers from blocking in its exit region,
the code fragment after executing its critical region.
Then, Huang [8] presented algorithms that follow the
line of the algorithm of Fu and Tzeng but eliminate
the above drawback.

Although improving algorithms of constant time
yields no asymptotic improvement in performance,
we consider it worthwhile to reduce the number of
RMA steps as many as possible. Mutual exclusion
is a basic synchronization facility frequently used
in multiprocessor systems both in operating system
kernel level and in users’ application level [14]. Thus,
minimizing the number of RMA steps yields consid-
erable performance improvement, as shown in the
simulation results of Fu and Tzeng [7].

The main focus of this paper is to investigate
what is the exact lower bound on time complex-
ity. Huang’s algorithm [8] is of time complexity 3
in DSM systems using fetch-and-store and compare-

and-swap. An intriguing question is that whether
there is any possible algorithm with fewer time com-
plexity than 3.

Contribution. We prove 3 is a lower bound on time
complexity in DSM systems for mutual exclusion al-
gorithms using a general read-modify-write (RMW)
primitive. A general RMW primitive atomically ac-
cesses one shared variable, reading the value of the
variable and writing back a new value according to
the submitted function. It is a generalization of most
commonly-available primitives which access at most
one shared variable in shared memory systems. For
instance, a read primitive is a special case of a gen-
eral RMW primitive such that the submitted func-
tion must be the identical function. Hence, our lower
bound holds for any set of primitives that involve at
most one shared variable atomically. Formally, a
general RMW primitive is defined below, where v is
the shared variable it involved, and f is any function
mapping the value set of v into the same set.

RMW (variable v, function f)
previous := v

v := f(v)
return previous

Our lower bound matches Huang’s algorithm and
therefore is tight in DSM systems.

The rest of the paper is organized as follows. Sec-
tion 2 provides the system model and definitions.
Section 3 presents the lower bound on time com-
plexity. Section 4 is the conclusion.

2 System model and Defini-

tions

First, we will describe a model of asynchronous dis-
tributed shared memory system. The salient fea-
tures of our model are that:

1. shared memory is distributed to each process,
and

2. processes communicate by means of read-
modify-write operations which atomically ac-
cess one shared variable.

We adopt the definition of a remote memory access
step proposed by Anderson and Yang [2], and also
define the number of remote memory access steps as
the time complexity measurement. Next, we give a
formal definition of mutual exclusion which is similar
to the definition in [5].

2.1 Distributed Read-Modify-Write

Shared Memory Model

An algorithm in a distributed read-modify-write
shared memory system is modelled as a triple
(P,V, δ), where P is a nonempty finite set of pro-
cesses, V is a nonempty finite set of shared variables,
and δ is a transition relation for the entire system.

V is the set of all shared variables every process
can access. V is partitioned into disjoint nonempty
subsets Vi for each i ∈ P. Intuitively, each shared
variable v is located at a unique process, capturing
the essence of a distributed shared memory system.
Vi denotes the set of all shared variables located at
process i. For a process i, a shared variable v is
remote if v 6∈ Vi; otherwise, it is local. In addition,
let Iv, a subset of the value set of shared variable v,
denote the possible initial values of shared variable
v.

Each process i ∈ P is associated with a kind
of state machine consisting of the following compo-
nents:

• Σi: a (possibly infinite) set of states;

• Ii: a subset of Σi, indicating the initial states;

• Πi : {(v, f)i | v ∈ V and f is a function mapping
from the value set of v to the same set}. Infor-
mally, Πi specifies the steps that i may execute.
Each step (v, f)i is a read-modify-write oper-
ation which atomically reads a value old from
variable v and writes back f(old) to the same
variable v.

For a step (v, f)i ∈ Πi, we say that this step ac-
cesses the shared variable v. It is a remote mem-
ory access (RMA) step if v 6∈ Vi. That is, the step
accesses a shared variable located at some other pro-
cess. An RMA step to j is an RMA step that ac-
cesses a share variable v ∈ Vj .

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1353

A system state s is a tuple consisting of the state
of each process in P and the value of each shared
variable in V. For a system state s, we write s(i),
i ∈ P, to denote the state of process i in s, and
s(v), v ∈ V, to denote the value of shared variable v.
An initial system state is a system state s in which
s(i) ∈ Ii for each process i ∈ P, and s(v) ∈ Iv for
each shared variable v ∈ V.

The transition relation δ is a set of (s, e, s′) triples,
where s and s′ are system states, and e is a step of
some process. We assume that δ satisfies the follow-
ing assumptions.

Localized update: Suppose (s, (v, f)i, s
′) is a

transition in δ, where (v, f)i is a step of pro-
cess i.

1. Suppose (s1, (v, f)i, s
′

1
) is an arbitrary

transition in δ, with the same step of i.

If s(i) = s1(i) and s(v) = s1(v), then

s′(i) = s′
1
(i).

Informally, the new state of process i de-
pends only on the current state of i and
the value of variable v.

2. s′(v) = f(s(v)).
The new value of v is determined by the
function f and the current value of v.

3. s′(j) = s(j) for all j ∈ P\{i}, and

s′(u) = s(u) for all u ∈ V\{v}.
Only the state of process i and the value
of variable v can be affected.

Localized enabling: If (s, (v, f)i, s
′) ∈ δ, then for

all system state s1 with s1(i) = s(i), there exists

a system state s′
1

such that (s1, (v, f)i, s
′

1
) ∈ δ.

We say that a step e = (v, f)i is locally enabled

in system state s if there exists a system state
s′ such that (s, e, s′) ∈ δ. “Localized enabling”
means that whether a step of a process is locally
enabled in a system state or not depends only
on the process state. If a step of process i is
locally enabled in system state s, then the step
is also locally enabled in any other system state
s1 with s1(i) = s(i). For brevity, we write “en-
abled” instead of “locally enabled” throughout
this paper.

Determinism: For any process in any system

state, there is at most one step enabled.

More precisely, for all i ∈ P, for any two steps
(v1, f1)i, (v2, f2)i ∈ Πi, and for all system state
s, if (v1, f1)i, (v2, f2)i are enabled in s, then
(v1, f1)i = (v2, f2)i.

These three assumptions correspond to normal mod-
els of shared memory systems in the literature [4, 12,
3].

If a step e = (v, f)i is enabled in system state
s, due to the localized update assumption the re-
sulting system state is unique after performing e in

s. (If (s, (v, f)i, s
′) and (s, (v, f)i, s

′′) are in δ, we
have s′ = s′′ according to the localized update as-
sumption.) Therefore, we write e(s) to denote the
resulting system state.

An execution fragment is a finite or infinite se-
quence of steps e1e2 Execution fragment α is a
P -execution fragment if all processes involved in α

are included in P , where P is a subset of P. When
P = {i} we write i-execution fragment instead of
{i}-execution fragment.

An execution fragment e1e2 . . . is enabled in a sys-
tem state s if for all i ≥ 1, ei is enabled in si−1 where
s0 = s and si = ei(si−1). If α is a finite execution
fragment enabled in s, we use α(s) to denote the sys-
tem state after performing α from s. A system state
s′ is reachable from system state s if there exists a
finite execution fragment α such that α is enabled
in s and α(s) = s′. An execution is an execution
fragment that is enabled in an initial system state.

2.2 Mutual Exclusion Problem

So far, we have described a distributed shared mem-
ory model for all algorithms in general. For mutual
exclusion algorithms in particular, we need to make
some assumptions to capture the desired exclusion
behavior of a set of processes.

Informally, the mutual exclusion problem is to de-
vise algorithms for processes to access a designated
region of code called the critical region. A process
can only occupy its critical region while no other
process is in its own. In order to gain the admission
to its critical region, a process executes the trying

region code, and when a process leaves its critical
region, it executes the exit region code for purposes
of synchronization, and then returns to the rest of
its code, called the remainder region.

For each process i, Σi is partitioned into nonempty
disjoint subsets Ri, Ti, Ci and Ei, indicating that
process i is in the remainder region, trying region,
critical region and exit region, respectively. We as-
sume that each process obeys a loop of life cycle:
remainder region, trying region, critical region and
exit region.

For all steps, we assume that a step in the remain-
der region or critical region never accesses a shared
variable that may be accessed by a step in the try-
ing region or exit region. More precisely, for any two
transitions (s1, (v1, f1)i, s

′

1
) and (s2, (v2, f2)j , s

′

2
) in

δ, if s1(i) ∈ Ri∪Ci and s2(j) ∈ Tj∪Ej , then v1 6= v2.
In addition, a mutual exclusion algorithm must

meet the conditions below.

Mutual Exclusion: There is no reachable system
state from an initial system state in which more
than one process is in the critical region.

The next condition depends on a fairness assump-
tion for executions. An execution α from initial sys-
tem state s is admissible if for each process i that

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1354

contains only finite steps in α, the state of process
i after performing the last step of i belongs to Ri.
Namely, a process halts in an admissible execution
only if it is in its remainder region.

Progress: Let α be an admissible execution from
an initial system state s and α1 be any finite
prefix of α. In system state α1(s),

• if at least one process is in the trying re-
gion and no process is in the critical region,
then there exists a finite prefix α2 of α,
|α2| > |α1|, such that some process enters
the critical region in α2(s);

• if at least one process is in the exit region,
then there exists a finite prefix α2 of α,
|α2| > |α1|, such that some process enters
the remainder region in α2(s).

Time Complexity. The time complexity of a mu-
tual exclusion algorithm is the maximum number of
RMA steps required by one process in its trying re-
gion and the following exit region to go through the
critical region once.

Then, a local-spin mutual exclusion algorithm can
be formally defined. A mutual exclusion algorithm
is local-spin if its time complexity is bounded, that
is, a constant c exists so that its time complexity
≤ c.

3 Lower Bound on Time Com-

plexity

In this section, we show that the time complexity of
any mutual exclusion algorithm is at least 3.

Theorem 1 Suppose that an algorithm A solves the

mutual exclusion problem for n > 3 processes. Then

the time complexity of A must be greater than or

equal to 3.

For each mutual exclusion algorithm, our objective
is to show that there exists an execution such that
some process performs at least 3 RMA steps in its
trying region and exit region to go through its criti-
cal region once.

We first make a simplifying restriction on the mu-
tual exclusion algorithms. Next, we propose several
properties of local-spin algorithms. These proper-
ties show that starting from certain reachable sys-
tem states, at least one RMA step must be taken to
wake up a process that is waiting to enter its critical
region. We will use these properties to construct a
desired execution in our lower bound proof. Finally,
we present the outline of our lower bound proof. Due
to the space limitation, the detail proof of the lower
bound is given in the full version of this paper.1

1The full version of this paper can be found at
http://www.csie.nctu.edu.tw/∼chenss/papers/ICS2004Full.pdf.

For simplicity, and without loss of generality, we
make the following assumption on the mutual exclu-
sion algorithms. We consider only local-spin mutual
exclusion algorithms because the time complexity of
a non-local-spin algorithm is unbounded and must
be greater than 3.

3.1 Basic Properties of Local-spin Al-

gorithms

Two lemmas of local-spin algorithms are presented.
Since these lemmas are somewhat intuitive, we skip
the proofs of these lemmas here and leave them in
the full paper.

First, we need a definition. Since our model is
asynchronous, a process can be in the critical re-
gion for arbitrarily long time. Thus, for a local-spin
mutual exclusion algorithm, because the time com-
plexity is bounded, a process will not enable RMA
steps anymore after some point in the trying region
while some other process is in its critical region. We
say that the process is locally spinning in its trying
region.

Definition 1 In a system state s, a process i in T is

locally spinning if for all finite i-execution fragment

α enabled in s, α contains no RMA step and i is still

in T at α(s).

Informally, a process i locally spinning in T means
that process i is busy waiting at certain local shared
variables. For any local-spin mutual exclusion al-
gorithm, we can easily construct an execution such
that some competing process is locally spinning in
T . As the following lemma shows, starting from a
state in which some process i is in C and running
another process j alone to enter the trying region,
there must be a reachable system state such that j is
locally spinning in T , otherwise the number of RMA
steps executed by j is unbounded, violating the local
spin condition.

Lemma 2 Suppose A is a local-spin mutual exclu-

sion algorithm for n > 1 processes. Let s be a system

state reachable from an initial system state such that

process i is in C and process j is in R. Then there

exists a finite j-execution fragment α enabled in s

such that j is locally spinning in T at system state

α(s).

Intuitively, if process j is locally spinning at some
point and enters its critical region at later point,
then there exists at least one RMA step by some
other process to wake up j. As shown in the inherent
cost lemma below, if there is no RMA step to j, then
j will continue to wait in its trying region.

Lemma 3 (inherent cost) Suppose A is a local-

spin mutual exclusion algorithm for n > 1 processes.

Let s be a system state in which process i is in C

and process j is locally spinning in T . Suppose that

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1355

process j reaches C in a finite {i, j}-execution frag-

ment α enabled in s. Then, α must contain at least

one RMA step from i to j.

3.2 Proof Outline

To prove this lower bound, it suffices to show that
for any local-spin mutual exclusion algorithm there
exists an execution such that some process takes
at least 3 remote memory accesses. Suppose A =
(P,V, δ) is a local-spin mutual exclusion algorithm
for n processes. We will construct a desired exe-
cution of A in which some process takes at least 3
RMA steps in its trying and exit regions. Let s be
any initial system state of A. To construct a desired
execution, we start by defining n solo executions of
A, one per process, each starting from the initial sys-
tem state s and involving its steps only until it has
just reached its critical region. Then, with a case
analysis on the number of RMA steps taken by ev-
ery process in its solo execution, the proof proceeds
by extending a solo execution for each case until the
desired lower bound is attained.

For each process i ∈ P, let αi denote the solo ex-
ecution of process i. The progress condition implies
that αi exists and is finite. Since A is deterministic,
αi is unique.

Consider each solo execution of A from s. We get
a desired execution for the following two cases.

Case 1. There exists some αi such that i takes
at least 2 RMA steps in its trying region.

Case 2. There exists no αi such that i takes at
least 2 RMA steps in its trying region. That
is, for each solo execution αi, process i takes
at most one RMA step in its trying region.

Case 1.
Assume that A is in this case. Let αi be a solo

execution in which process i takes at least 2 RMA
steps in its trying region. If we extend αi to ob-
tain an extension such that i takes at least one
RMA step in its exit region, we get a desired exe-
cution since i totally takes at least 3 RMA steps.
The inherent cost lemma shows that to wake up
a process that is locally spinning in T , at least
one RMA step to the process must be enabled by
some other process. Thus, at the end of αi, we
let another process j enter its trying region and
take its steps only until j is locally spinning in T .
(Lemma 2 implies that j will eventually locally
spin.) Then, let i leave its critical region first and
run steps of i and j only until j enters its crit-
ical region. In the resulting execution, process i

takes at least one RMA step to j in its exit region,
according to the inherent cost lemma.

Case 2.
Before constructing a desired execution, we in-

troduce a property (Property 1 in Section 3.3 of

the full paper) among these solo executions if A is
in this case: there is one shared variable, say vari-
able v, that is accessed in every αi. Since every
process takes at most one RMA step, this prop-
erty shows that, except one process, say process
m, at which variable v is located, each process i

takes exactly one RMA step in αi and this step is
to access v.

We now continue to construct a desired execu-
tion. For each αi and each process j such that
i 6= j, we extend αi to αij by running j only un-
til j has just entered a state in which j is locally
spinning. We consider all αij , i, j ∈ P and i 6= j.
With a case analysis on the number of RMA steps
taken by process j in each αij , we get a desired
execution extended from some αij for each case:

Case 2.1. There exists a αij in which j takes
at least 2 RMA steps.

Case 2.2. There exists no αij in which j takes
at least 2 RMA steps, i.e., for each αij ,
process j takes at most one RMA step in
αij .

Case 2.1.
By a similar way in Case 1, we can obtain

a desired execution in which j takes at least 1
RMA step to wake up some other process that
is locally spinning in T , and therefore j totally
takes at least 3 RMA steps.

Case 2.2.
This case is the heart of the lower bound

proof.
In this case, not only i but also j take at most

one RMA step in each αij . Except process m,
we have known that each process i takes exactly
one RMA step and this RMA step is to access v

in αi. Furthermore, we will show that for each
αij such that i and j are different to m, process
j also takes exactly one RMA step and this step
is also to access v (Property 2 in Section 3.3
of the full paper). Now, fix a αij such that
i and j are different to m. We know that i

and j take exactly one RMA step and this step
is to access v in αij , respectively. It follows
that communication between i and j in αij is
through shared variable v which is remote for
both i and j. Hence, starting from system state
αij(s), i does not know that j is locally spinning
before executing any RMA steps. Based on this,
we show that i will perform at least 2 RMA
steps in its exit region, i.e, totally at least 3
RMA steps, in some extension from αij .

Such extension from αij is easily constructed
as follows. We extend αij by letting process i

leave its critical region first and then running
processes i and j only until j reaches its critical
region. Informally, process i must take at least
2 RMA steps in its exit region. Since process

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1356

j is locally spinning at the end of αij , process
i must take at least one RMA step to wake up
process j. In addition, since i does not know
that j is locally spinning, i must take at least
one RMA step to check which process (if has
one) it should wake up before waking up j. As
a result, process i takes at least 2 RMA steps in
its exit region. The proof of the lower bound is
completed.

4 Conclusion

We have shown that the remote access time complex-
ity of any mutual exclusion algorithm is at least 3 in
distributed shared memory systems. In the course
of proving the lower bound, we need to formalize the
notion of a process “entering a local-spin loop.” As
a minor contribution, the notion is given a definition
in a formal model for the first time.

Our lower bound holds for any set of atomic prim-
itives that access at most one shared variable. Es-
sentially, we showed that, for any mutual exclusion
algorithm, there exists an execution of the algorithm
such that at least one process takes at least 3 RMA
steps to go through its critical region once. As a
byproduct of the execution construction in the lower
bound proof, we found that even if the atomic prim-
itive being considered accesses more than one local
shared variable (but at most one remote variable)
the lower bound result still holds.

Our result improves the tight bound of mutual ex-
clusion algorithms on time complexity from Θ(1) to
3. From the theoretical point of view, it may not
be so surprising. But, our result is of importance
for algorithm designers. Focus of mutual exclusion
algorithms for shared memory systems for the last
15 years has been on minimizing the number of re-
mote memory accesses [14, 6, 7, 10, 8]. Our tight
bound shows that it is impossible to obtain better
algorithms than Huang’s [8] in terms of minimizing
the number.

References

[1] J. H. Anderson and M. Moir. Using local-spin k-
exclusion algorithms to improve wait-free object
implementations. Distributed Computing, 11:1–
20, 1997.

[2] J. H. Anderson and J.-H. Yang.
Time/contention trade-offs for multipro-
cessor synchronization. Information and

Computation, 124(1):68–84, January 1996.

[3] H. Attiya and J. Welch. Distributed Comput-

ing: Fundamentals, Simulations and Advanced

Topics. McGraw-Hill, 1998.

[4] J. A. Burns and N. A. Lynch. Bounds on shared
memory for mutual exclusion. Information and

Computation, 107(2):171–184, December 1993.

[5] J. E. Burns, P. Jackson, N. A. Lynch, M. J.
Fischer, and G. L. Peterson. Data requirements
for implementation of n-process mutual exclu-
sion using a single shared variable. Journal of

the ACM, 29(1):183–205, January 1982.

[6] T. S. Craig. Queuing spin lock algorithms to
support timing predictability. In Proceedings of

the 14th IEEE Real-Time Systems Symposium,
pages 148–156, December 1993.

[7] S. S. Fu and N.-F. Tzeng. A circular list-
based mutual exclusion scheme for large shared-
memory multiprocessors. IEEE Transactions

on Parallel and Distributed Systems, 6(6):628–
639, June 1997.

[8] T.-L. Huang. Fast and fair mutual exclusion
for shared memory systems. In Proceedings

of the 19th IEEE International Conference on

Distributed Computing Systems, pages 224–231,
June 1999.

[9] T.-L. Huang and J.-H. Lin. An assertional
proof of a lock synchronization algorithm us-
ing fetch and store atomic instructions. In Pro-

ceedings of the 1994 International Conference

on Parallel and Distributed Systems, pages 759–
768. IEEE, 1994.

[10] T.-L. Huang and C.-H. Shann. A comment on
A circular list-based mutual exclusion scheme
for large shared-memory multiprocessors. IEEE

Transactions on Parallel and Distributed Sys-

tems, 9(4):414–415, April 1998.

[11] P. Keane and M. Moir. A simple local-spin
group mutual exclusion algorithm. IEEE Trans-

actions on Parallel and Distributed Systems,
12(7):673–685, July 2001.

[12] N. A. Lynch. Distributed Algorithm. Morgan
Kaufmann, 1996.

[13] P. Magnusson, A. Landin, and E. Hagersten.
Oueue locks on cache coherebt multiprocessors.
In Proceedings of the 8th International Sym-

posium on Parallel Processing, pages 165–171.
IEEE, April 1994.

[14] J. M. Mellor-Crummey and M. L. Scott. Algo-
rithms for scalable synchronization on shared-
memory multiprocessors. ACM Transactions on

Computer Systems, 9(1):21–65, February 1991.

[15] J.-H Yang and J. H. Anderson. A fast, scalable
mutual exclusion algorithm. Distributed Com-

puting, 9(1):51–60, August 1995.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1357

