Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

Grid Enabled MPI: PACX-MPI Optimization

MingShen Lin
Department of Electrical Engineering
National Tsing Hua University, Taiwan
Email: g913972(@oz.nthu.edu.tw

Abstract— As the power of computer progresses, software gets
increasingly more complex and intelligent. Meanwhile, network
infrastructure has also improved at a high speed. Because of these
advancements, there is a strong interest in sharing computing
resources scattered over many different places. Therefore, the
large-scale resources sharing and management become very
important issues.

At the beginning, the sharing of computational resources is
the primary interest of resource sharing A typical case is the
so-called cluster of cluster (CoC), which consists of a group of
clusters working together to solve a large computation-intensive
application. To facilitate MPI programs to function properly
across clusters, MPI extensions for parallel system, such as
MPICH-Globus2 and MPICH-VMI have been introduced and
are briefly discussed here. We also discuss how these MPI imple-
mentations work across clusters behind firewalls. In addition, an
optimization of PACX-MPI for data transmission between two
clusters has been implemented. Communications between two
clusters are studied and handled with multithreading. System
throughputs are measured by use of NAS Parallel Benchmark
[16] and Persistence of Vision Raytracer [17].

I. INTRODUCTION
A Grid

What 1s Grid? The word “Grid” 1s chosen by analogy with
the electric power grid, which provides pervasive access to
power [1]. In the article authored by lan Foster and Steve
Tuecke [2], it provides a concise statement of Grid problem.

“controlled and coordinated resource sharing and
problem solving in dynamic, multi-institutional vir-
tual organizations”

To achieve the goal, OGS A (Open Grid Service Architecture
standard) and OGSI (Open Grid Service Infrastructure) are
developed. OGSA defines an architecture for Grid and the
architecture is based on Web Service [3]. Each resource is
treated as a Web Service. Each Web Service can interoperate
with each other. OGSI is developed, because of the lack of
Web Service. In summary, Grid services are Web Services
that conform to a set of conventions. OGSI is an enhancement
of Web Services. OGSI defines mechanisms for creating,
managing, and exchanging information among Grid services.
OGSI defines several features listed below.

1) Factory and Instance: When a clhient accesses the service
the first time, it will request the service factory for

This work was supported by National Science Council, ROC under Grants
NSC 93-2752-E-007-PAE and NSC 92-2213-E-007-052

39

Yarsun Hsu
Department of Electrical Engineering
National Tsing Hua Umiversity, Taiwan
Email: yshsu@ee nthu.edu.tw

creating a new instance. Then the client is serviced by
the instance.

Lifetime: Grid service instances are created with a
specified lifetime. An instances will be destroyed au-
tomatically if time-out expires and the client does not
extend the lifecycle of an instance.

State Management: OGSI specifies a framework for
representing these states associated operations. There 1s
a service data agpregator within a factory service for
collecting and managing service data.

Notification: Notification enables Web Services to be
event driven oriented.

GSH and GSR: Grid Service Handle is the identity of
Grnid service and is unique. It acts as Universal Resource
Identity. GSR (Grid Service Reference) consists of infor-
mation about how to communicate with Grid services.
Service Group: There is a Grid service instance that
maintains information about the group relationship
among the other services.

2)

3)

4)

5)

6)

B. Globus Toolkits

Globus Toolkits are developed by Globus Alliance, in-
cluding academia and commercial corporations. The Globus
Alliance’s goal 1s to create fundamental technologies behind
the "Grid". Globus toolkits provide AFIs, protocols, and some
simple services. Hxisting technologies, such as PKI (Public
Key Infrastructure) or FTP (File Transfer Protocol) are com-
bined in Globus toolkits. Globus toolkits include four primary
components, GSI (Globus Security Infrastructure), GRAM
{Globus Resource Allocation Manager), Data management,
and Information management. Globus toolkits version 3 are the
first full-scale implementation of the OGSI standard. Globus
toolkits implement OGSI standard with Java language. GSI
and GRAM can be combined for remote procedure call.

C. MPI

MPIL [7] 1s a library specification for message-passing,
proposed as a standard by a broadly based committee of
vendors, developers, and users. In distributed systems, message
passing is in common use for communication with each other.
Another architecture of distributed systems 1s DSM (Distrib-
uted Share Memory) system that computers use load/store
to communicate with each other. Because only some special
network adaptors support load/store functions and DSM needs

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

OS support, thus distributed virtual share memory architecture
has been developed. The DVSM (Distributed Virtual Share
Memory) 1s a middleware to emulate DSM architecture. The
performance of message passing is better than the perfor-
mance of DVSM. Nowadays, large computational problems
are solved by message passing programming. The most pop-
ular implementations are MPICH and L. AM/MPL

1) MPICH: MPICH [11] is a portable MPI implementation
developed by Argonne National Laboratory (ANL). In order
to be portable, its architecture is hierarchical. MPICH devel-
opment team develops an ADI (Abstract Device Interface)
and a channel nterface for ADI [5]. If developing a different
implementation is needed for special hardware or software
algorithm, only writing a MPICH channel device is needed
instead of rewriting all source codes. Therefore there are
several channel device implementations of specific hardware.
MPICH-Globus2 implements a Globus device in the channel
interface level. MPICH-VMI uses VMI libraries to implement
a device in the channel interface level. PACX-MPI implements
a set of new functions based on MPICH point-to-point level.

D. Motivation

Now, a cluster is a good solution for high performance
computing. For some applications, a cluster can not solve the
problem alone. Therefore CoC(Cluster of Cluster) is devel-
oped. The most important issue of CoC is software. How do
the existing applications support CoC? MPI standard does not
deal with the issue. An MFI implementation which can work
fine in CoC environment should be developed.

II. GRID-ENABLED MPI

What does grid-enabled MPI mean? Grid-enabled MPI
makes several clusters work together toward a final goal like
one cluster Hvery cluster in the environment is treated as
an independent node. There are many researches and issues
in the field of grid enabled MFPI, for example, management,
reliability, heterogeneity, availability, etc.

A MPICH-VMI

Virtual Machine Interface [14](VMI) is a set of message
layer libraries, and MPICH-VMI is a channel implementation
of MPICH using VMI libraries. VMI is a middleware. The
goal of VMI is to develop a library that is suitable for Grid
environment. It focuses on availability, usability, and man-
agement [8]. The MPICH-VMI can support multiple network
interfaces at the same time. That means if there are two clusters
joining the mission, one cluster uses Myrinet, the other uses
infiniband architecture. Communication between two clusters
uses Ethernet network.

B. MPICH-Globus2

MPICH-Globus2 [15]{MPICH-G2) is a channel implemen-
tation of MPICH using Globus libraries. MPICH-G2 uses
Globus service for job startup and security. The startup method
(mpirun) 1s redesigned for Globus toolkits. When a job is
submitted by mpirun, the script transforms job request into Re-
source Specification Language [24] format and uses globusrun

40

Cluster A outgo income Cluster B

sender daemon daﬁ:? o receiver

Application TCP/IP TCP/IP Application
PACX PACX PACX PACX
MPI MPI MPI MPI
Hardware Hardware Hardware Hardware
F Y A g
[

—p TCP/P transmission
— = Vendor MPI transmission in cluster A

Vendor MPI transmission in cluster B

Fig. 1. PACX-MPI transmission

to submit the job. Globusrun is a script for submitting jobs in
Globus toolkits version 2. The Globus channel device could
automatically convert data into TCP/IP packets or vendor MPI
packets.

C. PACX-MPI

PACX-MPI [13] is based on vendor MPI and includes
API library and compile tools. The compile tools consist of
C compiler (pacxce) and FORTRAN compiler (paxcfc). It
doesn’t provide a different mpirun script and thus the start-
up method used before needs not be changed. When MPI
program source codes are compiled, the pacxce is used instead
of the mpice of vendor MPI. Although the pacxcc 1s called C
compiler, it is not a real compiler. When compiling the source
codes, pacxce replaces the original MPI function (MPI_Send)
with the PACX function (PACX_Send). Finally pacxcc links
the object file to the necessary libraries.

As shown in figure 1, communications between two clusters
rely on an outgo daemon and an income daemon. There are
one outgo daemon and one ncome daemon in each cluster.
Notice how a point-to-point communication functions. When
a sender calls the function (MPI Send), the function will
determine where the receiver is. If the recewver is within the
same cluster as the sender, the sender transmits data directly
to the receiver via MPI_Send and MPI_Recv. If the receiver
1s not within the same cluster, the sender transmits data to
the outgo daemon via MPI_Send and MPI_Recv. The detailed
procedure 1s that the sender first generates a command packet
that contains information about the sender, the receiver, data
type, data length, command type, and two magic numbers to
check integrity. After generating a command packet, the sender
sends the command packet to the outgo daemon and then sends
the data packet to the outgo daemon. In this way, a point-to-
point communication is completed.

The PACX_MPI needs a file named “ hostfile” in the home
directory or working directory. The file contains information
about how many clusters are joining the CoC and how many
nodes are in the cluster.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

to: Blues
—_—)
: from: Yellows

to: Tunnel Server B
from: Tunnel Server A

Tunnel
Server A

through internet

To Blues
From Yellows

Tunnel
Server B

to: Blues
from: Yellows

Fig. 2. IP tunneling

D. MPI Programs Across Clusters With Private IP Address

For security issue, a typical cluster architecture uses private
IPs. How can a MPI program communicate between two
nodes in separate clusters. There are two methods making
existing MPI programs support private [P transparently instead
of rewriting source code. One is IP tunneling and the other 1s
port forwarding [9].

1) IP Tunneling: The concept of IP tunneling is illustrated
in figure 2. Tunnel Server A and Tunnel Server B use public
IPs and they are also NAT (network address translation) server.
Both Yellows and Blues are two nodes within two different
clusters. According to the routing table, when Yellows sends a
packet to Blues, the server encapsulates the packet. Therefore
Maximum Transfer Unit of IP tunneling device is 1480 bytes
instead of 1500 bytes. When Yellows sends a packet to another
node whose IP address is not specified in routing table, the
server acts as a NAT server. When Tunnel Server B receives
the packet from Tunnel Server A, it will forward the packet
to Blues. There are two disadvantages. The first is that it is
difficult to configure if there are many clusters joining the
virtual organization. The second 1is that these nodes’ private TP
addresses can not be the same. There is a IP tunneling module
in Linux kernel Because it is a kernel module, it exhibits better
performance.

2) Port Forwarding: Port forwarding is another method for
solving private IP address issue. Figure 3 shows the concept
of port forwarding. The NAT server transfers packets from
a specific port to a specific node. The nodes outside the
NAT server can send packets to the nodes inside NAT server
through specific port. Its disadvantage is that the listening
port of MPI receiving socket can not be predicted. There is
no solution except writing a new channel device for MPICH
that can specify the communication port. The article,Globus
Toolkits Firewall Requirements [9], presents the requirements
of Globus Toolkit behind a firewall. The method mentioned in

41

Port B routing lable
port A to node |
port B to node2
port C to node3

Port (

.’ﬁ"’l’

node

Fig. 3. Port forwarding

the article does not solve the problem completely.

L. Summary

In the environment that each node owns a public IP, all MPI
implementations mentioned above are qualified to work across

clusters. In the environment that some nodes only have private
IPs, PACX-MPT is currently the only solution.

IIT. OPTIMIZATION FOR PACX-MPI

Packets in the outgo daemon are handled one by one. If
a packet takes a long time, other non-related packets must
also stall. There 1s a method letting the non-related packets be
handled concurrently. We modify the code of outgo daemon
to support this function.

A Multithread

Thread [6] 1s called light weight process, because the newly
spawned thread is in the same address space with the parent
instead of a new process. Therefore threads belonging to
the same process share the same resource. The procedure of
spawning a new process needs to allocate a range of memory.
After allocating the memory, OS copies the memory in the
parent’s memory space to the allocated memory. The proce-
dure may have a little difference in different OS. Therefore
the overhead of creating a thread 1s less than that of spawning
a process. There is another advantage that threads belonging
to the same parent share the resource in text region and data
region. That means communications among threads does not
need Inter-Process Communication. On the other hand, that
may be a nightmare due to race condition.

In Linux, the pthread library is used widely. Pthread stands
POSIX (Portable Operating System Interface for Computer)
thread. For UNIX systems, this library has been specified
by the IEEE POSIX 1003.1¢ standard (1995). Linux kemel
doesn’t support a real thread environment yet. The minimum
scheduler unit is a process nstead of a thread.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

B. Pipeline Optimization

The original schedule policy of the daemon 1s serial, the
next request begins once the previous request finishes. If two
requests occur at the same time, one request must stall until the
other request finishes. The concept of multithread and pipeline
1s needed.

As shown in figure 4(a), packet transmission from a sender
in one cluster to a receiver in the other cluster follows the
following procedures. First of all, MPI Recv Command is
sent from sender to the outgo daemon to specify the type
of packet to be transmitted. This 1s followed by MPI Recv
Data, also from the sender to the outgo daemon to actually
send the data. A thread is then spawned by the outgo daemon
to handle TCF/IP connection with the income daemon in the
other cluster so that data can actually be transmitted across
clusters.

Due to MPI limitation, all MPI Recv parts can not be
handled concurrently in all cases. The TCP/IP parts can
not be handled concurrently either if the destinations of
packets are the same cluster. As shown in figure 4(b),
only MPI Recv and TCP/IP parts can overlap and separate
TCPAP parts can not overlap. However, if the destinations of
packets are not the same cluster, as in figure 4(c), TCP/IP
parts can be handled concurrently with separate threads.
Pseudo codes of our optimization are listed below. The
pthread join and pthread detach functions enable MPI Recv
parts to be received in turn. The pthread mutex lock and
pthread mutex_unlock enable TCP/AP parts to be handled in
turn 1if the destinations of packets are the same.

pthread join{wait unless thread detach)
MPI Recv Command

pthread create

MPI Recv Data

pthread mutex lock, pthread detach
TCP/IP transmission

pthread mutex unlock

thread exit

IV. MEASUREMENT RESULT

MPICH-P4, MPICH-GM, PACX-MPI are used in the mea-
surement. MPICH-P4(p4) is MPICH over TCP/IP. MPICH-
GM(gm) is MPICH over Myrinet. The item, pacx-m, means
PACX-MPI with our optimization.

A. Testhed Description

As shown in figure 5, there are one front-end node and
fifteen computing nodes. The font-end node 1s an SMP and
joins others for computing.

1) CPU: AMD Athlon(tm) MP 2400+

2) Memory: 512 MB with ECC function.

3) Linux kernel version: 2.4.20-19.7smp built by RedHat.

4) GCC version: 2.96 built by RedHat.

5) Network: Myrinet: up to ~490MB/s user-level bidirec-
tional data rate. Ethernet: 100Mbps kernel-level data
rate.

42

> I'ime
NSRS AN
N5 N
R T T S S e T Sttt N NN
()
N
//Q thread n
N
J crall 4 o R e, A R
y N stall SRS e 1t |
e ettt e et a e e et
A > 0,‘-’0‘0*0’0*0’0‘0’0’0’0‘0‘0*0*0
Condition 1
packets’ destination are the
(h) sammee cluster.
- ~
//\\\ thresd n
PN
%k thread n+1
AT
Condition 2:
packets' destination are not
(C) the same.
[~ g ’,'.?&
rvw:ﬁc_w.- MI"Iil"cu:'.' %:ﬁ TCRIP
A Command k Data t*:*:
Fig. 4. Comparison

SRR \ w:\n\ln/

i
=90 000 090
{ Ethemet) .
\, 40114280 }/ = i S
|

AT ¢
y Loobps N

Ethernet)
\ 19216800 /

\

Fig. 5.

Testbed description

B. NFB

NPB (NAS Parallel Benchmark) [16] 1s a set of eight
programs developed by NASA Advanced Supercomputing
(NAS). BT, FT, and MG can not pass the compiling process.
In the statistical charts of IS and SP, the data of MPICH-GM
is neglected because the value of the data is too large. EP
18 a communication insensitive program [21]. As shown in
figure 7, all MPI implementations including MPICH-GM show
the same performance. LU is sensitive to the small message
communication performance of an MPI implementation [20].
As shown in figure 9, MPICH-GM shows the best performance
and the others show the same performance. CG, IS and SP
are communication sensitive programs [20][21]. As shown in
figure 6,8,10, PACX-M (PACX with multithreading) shows the
best performance 1n IS, PACX shows the best performance in

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

CG L1
1200 4000
Hp Op4d 3000 O p4
S0 Hom £ Hgm
o j=1
= 288 O pacx = 200 | O pacx
i O pacx-m 1000 O pacx-m
0 _|:-:|:|_A_|:._|_| I L 0 LT il . L I L 1
1 2 4 & 16 1 2 4 8 16
of nodes #of nodes
Fig. 6. NPB CG p4/gm/pacx/pacx-m Fig. 9. NPB LU p4/gm/pacx/pacx-m
SP
ER
530
1
38 O . 00 O
@ | a
£ 60 B § 40 B pacx
= 40 O pacx 200 O pacx-m
20 W] O 9 J:._| ! . .
| e [T 1, 1 L Pacx-m
0 1 4 g 16
1 2 4 8 16
of nodes
of nodes
Fig. 10. NPB SP pd/pacx/pacx-gm
Fig. 7. NPB EP p4/gm/pacx/pacx-m
C. POVRAY

SP, and MPICH-P4 shows the worst performance.

Comparing with MPICH-P4, PACX-MPI shows better per-
formance in all benchmark. The reason is that communications
of PACX-MPI within a cluster are through vendor MPIL. Only
in IS and SP benchmark, PACX-MPI with multithreading gets
better performance. Because IS benchmark is a communica-
tion sensitive program, the bottleneck of the communications
between two clusters occurs in the daemon.

20
g 15 o
E% 10 ;pacx
pacx-m
* [7|
0
1 i 4 8 16
#0of nodes
Fig. 8. NPB IS pd/pacx/pacx-m

43

POVRAY [17] (Persistence of Vision Raytracer) with MPI
patch [18] 1s a communication insensitive program. If there
are n nodes joining a job, one node becomes a server node
and the others become client nodes. The server node partitions
data and sends pieces of data to client nodes. When a client
node finishes the processing of partitioned data, it sends result
back and requests for new partitioned data. Generally, the
transmission time of partitioned data is much shorter than the
transmission time of result. There is no transmission except
transmissions of partitioned data and result. Assume that the
latency of network between two clusters is @, the process time
for each node is y and the transmission time of partitioned
data is ignored. When « (n — 2) = y, the system gets the
best throughput. In actual condition, the network latency and
number of computing nodes are determined. Therefore the
performance is affected by the size of the partitioned data.

From figure 11, each MPI implementation shows almost the
same performance in POVRAY benchmark. Comparing with
the latency of data process, the latency of data transmission
is extremely small within a cluster. Therefore MPICH-P4
and MPICH-GM show the same performance. The latency of
data transmission can not be ignored between two clusters
in separate organizations. The size of partitioned data is
tuned for suiting the latency between two clusters in separate

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

3000
2500 &
2 2000 H =
(=] -l
2 1500 \L\ I “em
T acx
£ 1000 B
o \l._ | pacxk-m
500 i — |
O 1 1 1 il il Il il 1 1 1 il I} 1 1 il Il il il 1 1
AL TR\ BN TN I 0
computing nodes

Fig. 11. POVRAY pd/em/pacx/pacx-m

organizations. In our measurement, the size of partitioned data
used by PACX-MPI is 16 times the size of partitioned data
used by MPICH-P4.

V. CONCLUSION AND FUTURE WORK

The results show that both MPICH-P4 and PACX-MPI show
worse performance for the communication sensitive applica-
tions, but PACX-MPI may exhibit better performance. All the
MPI implementations show almost the same performance for
the communication insensitive applications. Only PACKX-MFPI
can support private P address. That means the PACX-MPI
can extend easily its size, because existing clusters often use
private IP address. In Grid, PACX-MPI can provide an on-
demand resource for communication nsensitive applications,
such as 3D rendering.

Although the communication sensitive applications will
show bad performance in Grid environment, there may be
performance gains by some optimizations. According to the
features of MPICH-G2 and MPICH-VMI, there are some
potential optimizations for communications between two clus-
ters. These optimizations are listed below.

A. Collective Operation With Topology-aware Mechanism

For broadcasting a message, the sender sends the same
message to all receivers within the same cluster directly. Then
the sender sends that message to the outgo daemon which will
then forward it to the income daemons of the other clusters.
The income daemons will then broadcast messages to all the
receivers within those clusters.

B. Parallel TCP Streams

When sending large messages, there will be significant
performance gains by partitioning a large message into several
smaller messages. The detailed procedure is opening multiple
sockets, partitioning the large message into packets, sending
those packets in parallel, and re-assembling the large message.
MPICH-G2 uses Globus Toolkits APl to do that. There is a
measurement of large data transfer in [19] which shows much
improvement can be made with this method.

44

C. Real Time Compression

PACX-MPI has the ability to compress messages real time,

but
use

it is not bug-free. Both PACX-MPI and MPICH-VMI
Lempel-Ziv-Oberhumer [23] compression library to im-

plement the compression function LZO is a lossless real
time compression library. As shown in the thesis [10], the
compression makes much improvement.

(1]

[21

(3]

4

(5]

(6]
(71

(8]
(%

[10]
[11]
[12]
[13]
[14]
[15]
[16]

[17]
[18]
19

[20]

[21]

[22]

(23]

[24]

REFERENCES

Ian Foster and Carl Kesselman, The Grid: blueprint for a New Com-
puting Infrastructure, Morgan Kaufimann Publishers, Inc. San Francisco,
California, 1999.

Ian Foster, Carl Kesselman, Steven Tuecke, The Anatomy of the Grid:
Enabling Scalable Virtual Organizations, International J. Supercomputer
Applications, 15(3), 2001.

Ian Foster, C. Kesselman, J. Nick, S. Tuecke, The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems
Integration, Open Grid Service Infrastructure WG, Global Grid Forum,
June 22, 2002.

Ian Foster, Nicholas T. Karonis, A Grid-Enabled MPI: Message Pass-

ing in Heterogeneous Distributed Computing Systems, Proc. 1998 SC
Conference, November, 1998.

Gropp and Ewing Lusk, An abstract device definition to support the
implementation of a high-level point-to-point message-passing interface,
Preprint MCS-P342-1193, Argonne National Laboratory, 1994.

Steve Kleiman, Devang Shah, and Bart Smaalders, Programming with
Threads, Prentice Hall.

Barry Wilkinson and Michael Allen, Parallel Programming, Techniques

and Application Using Networked Workstations and Parallel Computers,
Prentice Hall.

Scott Pakin and Avneesh Pant, VMI 2.0: A Dynamically Reconfigurable
Messaging Layer for Availability, Usability, and Management.

Von Welch, Software Architect, Globus
Project, Globus Toolkits Firewall Requirements,
http:/fwww.globus.org/security/firewal Is/Globus%620F irewal 1%20R equirements-
S.pdf, 22 July,2003

Pradeep Kumar Panjwani, Monitoring And Compression Framework In
Virtual Machine Interface 2.0, B.E., University of Bombay, 2000, Thesis.
MPICH, http://www-unix.mcs.anl.gov/mpi/mpich/.
MiMPI, http://www.arcos.inf.uc3m.es/~mimpi/
PACK-MFI, Rainer Keller, Matthias
http:/fwww .hlrs.de/organization/pds/projects/pacx-mpi/.
MPICH-Virtual Machine Interface (VMI),http://vmi.ncsa.uinec.edu/
MPICH-Globus2, http://www3.niu.edu/mpi/.

Muller,

NASA Perfermance Benchmark (NPB),
http:/fwww.nas.nasa.gov/Software/NPB/.

POVRAY, http://iwww povray.org.

POVRAY with MPIL patch, Leon Verrall,

http:/www .verrall.demon.co.uk/mpipov/

Nicholas T. Karonis, Michael E. Papka, Justin Binns, John Bresnahan,
Joseph A. Insley, David Jones, Joseph M. Link, High-Resolution Remote
Rendering of Large Datasets in a Collaborative Environment.

The NAS Parallel Benchmarks 2.0, David Bailey, Tim
Harris, William Saphir, Rob van der Wijngaart, Alex Woo,
Maurice Yarrow, Report NAS-95-020, December 1995,
http:/"www nas.nasa.gov/Research/Reports/Techreports/1995/PDF/mas-
95-020.pdf

New Implementations and Results for the NAS Parallel Benchmarks 2,
William Saphir, Rob Van der Wijngaart, Alex Woo, Maurice Yarrow,
http://www nas.nasa.gov/Software/NPB/Specs/npb2.2 new implementations.ps
NAS Parallel Benchmarks Version 24, Rob F. Van der
Wijngaart, NAS Technical Report NAS-02-007, Oct 2002,
http:/"www nas.nasa.gov/Research/Reports/ Techreports/2002/PDF/nas-
02-007.pdf.

Lempel-Ziv-Oberhumer compression library, Markus FX.J. Oberhumer,
http:/faww.oberhumer.com/opensource/lzo/.
Resource Specification Language, Globus project, http:/iwww-

unix.globus.org/toolkit/docs/3.2/gram/ws/developer/mjs_rsl_schema.html

