
WGDE -- WAP Game Development Environment

Yet-Shiang Wang, I-Chen Wu, Wen-Nung Tsai

Department of Computer Science and Information Engineering,
National Chiao-Tung University

{wangys, icwu, tsaiwn}@csie.nctu.edu.tw

Abstract-Due to the abundant resources and
diversified information services, the popularity of
Internet has rapidly grown recently. However, in the
traditional Internet, user can only access services at
some fixed locations. Because the progress of
technology in wireless communications and the
portable communication devices, along with the
wireless application protocol, users can access
Internet information through the cellular phones that
support Wireless Application Protocol (WAP). Many
wireless applications had been developed, including
stock application, restaurants services and on-line
games, etc. Among these applications, the on-line
wireless games will become more popular in the near
future.

WAP has been criticized as “Wait And Pay” due
to lack of killer applications. This is because that the
wireless terminals and communications have many
constraints. It is not an easy task to develop WAP
games, especially a large one. In this paper, we
design and implement a platform that provides useful
classes for WAP game development. The platform
provides a Wireless Markup Language (WML) page
generator, called the WAP Game Foundation Classes
(WGFC), containing layout manager, database
access, and game templates. Programmers can
develop WAP games easily without much knowledge
of the WML. Moreover, the WGFC also deals with
common security issues, including authentication,
integrity, and confidentiality.

Keywords: servlet, WAP, WML.

1. Introduction

Since the 802.11x wireless networks mature, we

can access the Internet services anytime and
anywhere via wireless devices, like mobile phones.
Mobile phones had become more and more popular,
because they are small, light-weight and low-cost.
Now, the mobile phones are not just mobile phones;
they can be applied to many value-added services.

Before June in 1997, Ericsson, Motorola, and
Nokia specified their own wireless application
protocols that were not interoperable. The
development of wireless applications was greatly
limited. Open standards can make entire industry
grow well. In order to prevent incompatibility and the
warfare of the standards, Ericsson, Motorola, Nokia
and Phone.com founded the Wireless Application

Protocol Forum in 1997 [14]. The WAP forum is an
industry group dedicated to the goal of enabling
sophisticated telephony and information services on
handheld wireless devices. These devices include
mobile telephones, pagers, personal digital assistants
(PDAs) and other wireless terminals. Recognizing the
value and utility of the World Wide Web architecture,
the WAP Forum has chosen to align its technology
closely with the Internet and the Web.

Without worrying about the compatibility,
today everyone can provide any equipments or
services that follow the WAP specification. Such
characteristic brings new ideas of services and opens
new markets. Subscribers can access traditional
WWW information by WAP-enabled terminals, and
are no longer limited at fixed places. Whether service
providers are using D-AMPS, GSM, GPRS, CDMA,
or UMTS, users can get services and information
transparently.

The WAP services are mainly developed for the
mobile network. The most proper services are those
personal, instant, necessary, and non-video services,
such as e-commerce. Content providers or service
providers offer information services through the WAP
Gateway. Due to the small, colorless displays, the
wireless terminals can only support WML decks
instead of HTML pages. There are many WAP
applications, including the Internet information access,
business efficiency promotion, notification services,
e-commerce, advanced telecommunications services,
and entertainment uses.

The market research by Datamonitor claimed that
in 2005 there would be 200 million players competing
head-to-head in games built in mobile phone in
America and the west Europe. It is almost 80% of the
mobile phone population, and it would be a 1.6 billon
dollars market! In Asia, there would be at least one
billon dollars wireless game market in the year of
2005.

1.1. Wireless Application Protocol

The Wireless Application Protocol (WAP) is an

open, global standard that empowers mobile users
with wireless devices to easily access and interact
with information and services instantly.

WAP is designed to work with most wireless
networks such as CDPD, CDMA, GSM, PDC, PHS,
TDMA, FLEX, ReFLEX, iDEN, TETRA, DECT,
DataTAC, Mobitex, etc. The WAP creates a new

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

45

1.3. Related Work markup language called Wireless Markup Language
(WML), which is different from Hyper Text Markup
Language (HTML) because of the narrowband
network connection. Thus, WAP introduces a gateway
between the terminals and the servers, WAP gateway.
The WAP gateway translates received requests so
WAP-enabled terminals can browse normal HTTP
pages. Although the data transmission rate of current
mobile terminals is 9.6Kbps, far slower than the
56Kbps of home modems, the new generation
technology GPRS will rise the rate to 110Kbps. It will
be more convenience to access the Internet.

Lilja [6] discussed the abilities of WAP devices

widely. They suggested that one should take care
more about the capabilities of different WAP-aware
terminals, like mobile phone, PDAs, and PWAs.

Cannatard and Pascum [7] suggested an
object-based architecture to build the WAP
applications. They also presented a session manager
to against unexpected disconnections which any
wireless applications must deal with.

Metter and Colomb [8] investigated problems
associated with the conversion process by examining
the conversion of a functional information system.
They focused on the proper layout of the documents
after conversion.

1.2. Wireless Markup Language

WML is a markup language based on XML and
is intended for use in specifying content and user
interface for narrowband devices. It has four major
functional areas [14]:

Goeschka and Schranz [9] developed an
object-oriented web constructional tool that builds
web servers with UML and Jessica. They discussed
the constraints on the pure HTTP and use database to
build large scaled applications. They also emphasized
the separation of the layout elements and
programming logic.

z Text presentation and layout. WML
includes text and image support, including a
variety of formatting and layout commands.
For example, boldfaced text may be
specified. Ghosh and Swaminatha [10] studied security

problems in mobile e-commerce. Encrypted
communication protocols are necessary to provide
confidentiality, integrity, and authentication services
for m-commerce applications.

z Deck/card organizational metaphor. All
information in WML is organized into a
collection of cards and decks. Cards specify
one or more units of user interaction (e.g., a
choice menu, a screen of text or a text entry
field). The size of one deck is limited to
1.4K bytes.

BEA [12] has designed the htmlKona which
simplifies the task of programmatically generating
complex HTML documents. Using htmlKona,
programmers code the web pages in a object-oriented
way, for every HTML tags are formatted with objects.
The same idea is also applied to WML documents.
The WebLogic Server has built-in package
weblogic.apache.wml which treats WML tags as
elements. This tool helps generate web pages, yet
other problems remain in WAP game development.

z Inter-card navigation and linking. WML
includes support for explicitly managing the
navigation between cards and decks. WML
also includes provisions for event handling
in the device, which may be used for
navigational purposes or to execute scripts.

z String parameterization and state
management. All WML decks can be
parameterized using a state model. Variables
can be used in the place of strings and are
substituted at run-time.

Although there have been many studies for
HTTP applications, few researches have been done on
wireless game development, especially on WAP
games [2][3][4][5][8][11]. In section 2, we will
discuss general problems that programmers must
handle.

WML is an XML language and inherits the XML

document character set. Figure 1 shows the WML
architecture.

2. The WAP Game Design Issues

A wireless game is restricted by the computing

ability of terminals and the quality of wireless
network connections. The WAP forum suggests that it
is better to build a WAP application in the
client-server model: they are WAP terminals, WAP
gateways in the middle way, and application servers.
The WAP programming model is shown in Figure 2.

WML

<template><head> <card>

This is a card
<do>

type, label
<meta>

http-equive,
content

<go>
href

To deploy wireless games, it is not sufficient to
simply guarantee access to data. We also must
consider the constraints on wireless communications
before starting to design the wireless game platform.
These constraints are described as follows [7]. The
constraints on terminals are:

Figure 1. The WML architecture.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

46

z Small, low resolution displays and limited
user-input facilities. Displays have few
lines of text and low resolution. Few
handheld terminals have mouse, and they
even have few keys. Some devices have
touch screens and voice menu. Hence,
different user interface is required.

z The web pages could be hacked easily.
Programmers must ensure any requests are
validate, especially from distrusted clients.
The web pages could be saved and modified
easily on PCs. As a result, it is necessary to
use some mechanisms to check the integrity
of the pages.

z Limited computational resources (CPU,
RAM). Terminals usually have slower CPU
and smaller memory size in order to extend
the battery life, to lower heat and costs.

If one wants to develop WAP games, he or she

will face with these constraints. The parts of the
terminals and communication are not solvable by the
software technologies. However, there exist some
methods, which we have shown in the section of
related work, to make them for the needs of game
applications.

z Cookie technique is not available.
Terminals that support WAP still do not
support Cookie technique until now. If game
programmers want to bypass players' state,
they must do something else such as using
database to store players' data.

Generally speaking, a game with the following
properties can be implemented on WAP more easily
than others. First, the game rule should be simple
enough. Second, the output should be simple, even
only text. Third, it requires few keys to play and can
be finished within few minutes or the game status can
be saved. The role-playing games puzzle games, and
strategy games satisfy the demand for these properties.
Such kinds of games can be designed in the way of
client-server model. When players start to play, the
terminals display current game states first and ask for
commands. Then players make choices. The game
server receives commands and replies new states and
new questions to players. The game is repeated by
this way until game over.

The constraints on communication are:
z Low bandwidth, high latency, and

unsteady connection. The value of wireless
networks bandwidths currently range from
0.3 to 110Kbps, some order of magnitude
lower than wired ones. The main causes of
unsteady connection are the blank out period
during handover.

z High Transmission Bit Error Rate. Error
rates are greater than in wired network, and
it is more difficult to guarantee Quality of
Service.

z Low predictable service availability.
Wireless networks can suffer short or long
periods of inaccessibility, due to congestions
or faults.

The game procedure can be viewed as a finial
state machine. Each command (request) transits the
current game state (page) to enter next state. We can
follow the steps below to develop WAP games.

 1) Design the detail state transition diagram.
The constraints on applications are: 2) Implement the state transition diagram.
z WAP, as HTTP, is stateless nature. TCP

can obtain connecting state between
communications. However, HTTP and WAP
are stateless protocols and do not keep any
user sessions.

3) Layout the contexts according to each state.

Next, we need to deal with the session problem
of WAP games. The session is an abstraction in order
to provide logic continuity of the couple WAP
request-response. There exist a set of techniques
(Cookie, HTML Forms, URL rewriting, Java Servlet
Session Tracking, and database) used to manage
sessions [7].

z Servers do almost all the computation.
Due to the limited computational resources
of the terminals, the servers do almost all the
computation. Usually, the terminals just
display the results received from the servers. Third, game servers need to access all the

parameters instantly. Traditionally web applications
are designed page by page, and thus parameters
bypassing or accessed from database is very often.
The database cannot provide faster speed than the
memory does. Therefore, anyone who wants to build
a WAP game with a lager scale should take in
consideration of the following things:

z An independent game server. A server can
run for a long time and keep the game
world. All necessary data are stored in the
memory, not in the database. Accessing local
memory is much faster than querying the
database. The server keeps the information Figure 2. The WAP programming model.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

47

in its memory, and accesses the database if
necessary.

z Use WMLScript to reduce the
computation load of servers. Although the
mobile phones have limited resources, using
WMLScript to do simple calculation is still
saving the communication time.

Last, to create a fair game, programmers must

deal with the security problems. The stateless
properties could introduce replay attack. The requests
could be modified since the web pages could be saved
on the storage of the clients. Ensuring the integrity of
the communication is very important in game
applications.

There are so many limitations on wireless
environment. It is not an easy task to produce WAP
games without the knowledge of WML, scripting
language, database management, security, and
algorithms of games. In order to ease this task, we
design and implement a WAP Game Development
Environment (WGDE) that has a WML page
generator and a WAP game template. We call the sets
of APIs “the WAP Game Foundation Class (WGFC).”
Since the WAP games can be designed by finite state
machine, we planned to develop a visual environment
which lets programmers “drag and drop” the state
transition diagrams. The platform will be described
amply in the following sections.

3. The WAP Game Foundation Class

Since the late 1980s, the object-oriented

approach to programming has been widely adopted.
Programmers use software components done by
others instead of developing all services by
themselves. Reusing components in projects can
greatly increase the speed of software development.
Microsoft Foundation Class is such a product that has
hundred classes, including applications, graphics,
Internet services, database, containers, and so on.
Window application developers use these classes
according to what they need to finish projects in
shorter periods.

We know that using a finite state machine is a
more appropriate architecture for WAP games. If we
want to transfer Web games to WAP games, the main
job is to replace the HTML layout by WML layout.
Although WML is similar to HTML, the conversion
is not an easy task, especially in dynamic contents.
The motivation of the Wireless Game Foundation
Class (WGFC) is to provide a progression of classes
that generate WML automatically, and to
transparently deal with the problems discussed. This
is first done in our past work [1].

3.1. The Architecture of the WGFC

The WGFC could be separated into two groups,

including wireless game template classes, and

tag-related classes. The WGFC architecture was
shown in Figure 3.
z Wireless game template classes. This group

contains five main classes, including
WServlet, WLogin, WMenu, WWordFly,
and WImageFly. All classes inherit
HttpServlet class. The WServlet class
provides some methods useful in wireless
games, such as session, recently accessed
page, WML tags objects containers, and so
on. The WLogin class provides login
templates. The WMenu class provides
somekinds of menus templates. The
WWordFly class provides flying messages
templates. The WImageFly class provides
flying images templates.

z WML tags related classes. In this group, all
classes inherit the WTag class. All classes
names are Wdeck, Wtimer, WImage, WText,
WLink, WTextArea, WLinkList, WButton,
WPButton, WAButton, WSButton, WForm,
WInput, WSelect, etc. Packing WML tags
into the form of JAVA classes helps game
programmers develop wireless games
whether they understand WML or not.

The WGFC focuses on the limitations we

mentioned before and it has several advantages
making programmers invest their games more.
z Automatic Layout. It is inefficient and is an

impossible mission to test programs in all
kinds of terminals when developing wireless
games. This is because there are too many
different screen attributes terminals. In order
to make work done easier, the WGFC
provides layout functions, just like JAVA
layout manager. For example, FlowLayout
methods display messages by the order that
they are added into the container.

z Divide contents automatically to fit the
deck size. The size of a deck is limited, such
as 1.4K bytes in Nokia 7110. The limitation
of content size also limits effects that could
be used by game programmers. A
programmer must take in consideration of
the program logic and keep the size
limitation in their mind. The WGFC has
been added a feature that can produce
contents smaller than a certain amount of
bytes. When containers are fed with a lot of
WML tags objects and beyond the limitation,
the output content will be divided into
several decks.

z Support sessions. The WGFC consists of an
auxiliary database to store information about
sessions and state of the application that can
be recovered after unexpected disconnection.
Game programmers call the function put() to
store information into database and call the
function get() to access what were stored.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

48

z Support security communication. While
the WGFC generates the WML pages, it
encrypts the fields that will be sent back with
the request. While receiving requests, the
WGFC decrypts the fields and test their
integrity. The encrypted data include serial
number, checksum, and the original fields.
Therefore, although users may see the source
code, they cannot modify the fields.

We will discuss some design problems in detail

in the following subsections.

3.2. The Stateless Problem

There exists a set of techniques such as Cookie,

URL rewriting, session tracking, and HTML forms)
design for bypassing the stateless nature of HTTP
communication and for managing sessions. However,
many terminals that support WAP still do not support
Cookie technique until now, which is widely used in
web applications. Meanwhile, URL rewriting could
expose user's information and has cache problem, so
it is not suitable for WAP games.

We solved this problem by using the session
identifiers. Each WML page contains a session
identifier session_id:

Current session_id = username + random_number

HttpServlet WServlet

WLogin

WList

WGEffect

WMenu

WImageFly

WWordFly

WTag WDeck

WText

WLink

WInput

WSelect

WImg

WTimer

WDataAccess

WForm

WButton

WTextArea

WLinkList

WPButton

WSButton

WAButton

 Figure 3. The WGFC architecture.

<anchor>
<go href='C' method='post'>

<postfield name='cmd' value='place;8;0'/>
<postfield name='sid' value='wan1021146025279'/>

</go>my command
</anchor>

Figure 4. A WML anchor with session identifier.

Figure 4 shows such an example. The session id
is reassigned each time when player login. Any two
players do not have the same usernames, and neither
do the session identifiers. Each WML page generated

by the WGFC contains session identifiers. Each time
when players join the game, they get different session
identifiers. The session identifiers not only identify
players, but also ensure the requests does not come
from a cached WML page before the game starts.
Session lifetime is controlled by timeout mechanism.
If one player does not send any request to the server
in time, the session will be invalidated.

3.3. The Security Issues

It is not enough that just checking the session
identifiers. There are still three problems we have to
deal with. First, we must keep secret of the players’
information. Second, we must keep the orders of the
requests. Third, we must test the integrity of each
request.

To solve the first problem, the WGFC sends data
by "POST" method. The "GET" method implemented
by URL rewriting could expose secret data, such as
user’s password. Besides, the "POST" requests are
always sent to server without cache. It is defined in
RFC2068.

For example, if the username and his password
are passed by "GET"，the URL would be rewritten. If
not specified, the WML would use "GET" by default.
Figure 5 shows this situation. When the user submits
the request to the server, the logged URL has the form
of “http://localhost/check?id=wan&pw=mypwd.”
Clearly, the user’s password is exposed in this case.
Many Web servers log the requested URL, and Web
browsers do, too. This is the reason why one should
use "POST" method to send data.

<fieldset title="ID_PW">
 Enters id:<input name="id" title="id"/>
 Enters pw:<input type="password" name="pw" title="pw"/>
</fieldset>
<anchor title="Login">Login

<go href="check">
<postfield name="id" value="$(id)"/>
<postfield name="pw" value="$(pw)"/>

</go>
</anchor>

Figure 5. A WML page using "GET" method.

Now we will show how to deal with the next two

problems. The requests could be reordered or
replayed because of the WAP stateless nature. The
worse situation is that the request is modified. To
solve these problems, each session has its serial
number. At beginning, the serial number is the
random number appended to the username. Each time
when a page is sent to the client, all its command
string will be encrypted by this serial number. The
server also stores the commands in the player’s
session for further checking when they back.
Commands will be decrypted and compared to the
stored ones. The serial number is changed after the
successful test. The original serial number is treated

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

49

[2] A. Fasbender and F. Reichert, “Any Network,
Any Terminal, Anywhere,” IEEE Personal
Communications, pp22-30, 1999.

as a random seed to generate next serial number.

This method ensures that the requests and
responses in the right order and keeps its integrity. We
encrypted the command by calculate the exclusive-or
value of the command and serial number. Figure 6
shows the encrypted version of Figure 4. The original
value of “cmd” is “place;8;0.” After using the DES
algorithm to encrypt the field, we get
“3bb7a1656b930b7e.” (hexadecimal representation)

[3] A. Schmidt and A. Takaluoma, “Context-Aware
Telephony over WAP,” Personal Technologies,
pp.225-229, 2000.

[4] E. Kaasinen, M. Aaltonen and T. Laakko,
“Defining User Requirements for WAP
Services,” Human-Computer Interaction,
pp.33-37, 1999.

[5] E. Kaasinen and M. Aaltonen, “Two Approaches
to Bringing Internet Services to WAP Devices,”
Computer Network, pp.231-24, 2000

<anchor>

<go href='C' method='post'>
<postfield name='cmd' value='3bb7a1656b930b7e'/> [6] T. Lilja, “Mobile Energy Supervision,”

Telecommunications Energy Conference, 2000.
INTELEC. Twenty-second International,
pp.707-712

<postfield name='sid' value='wan1021146025279'/>
</go>my command

</anchor>
Figure 6. A WML anchor with encrypted command.

[7] M. Cannatard amd D. Pascum, “An Object-based
Architecture for WAP-compliant Applications,”
Database and Expert Systems Applications, 2000.
Proceedings. 11th International Workshop on,
pp.178-185, 2000.

4. Conclusions and Future Work

We have provided a platform for the WAP game
development. This platform can reduce the time
needed to overcome the problems that all developers
must face to. First, programmers can develop WAP
games easily by using the WGFC without much
knowledge about the syntax of WML. Second, the
WAP game template deals with the common issues
like deck size, session and security, so programmers
can concentrate on their games more.

[8] M. Metter and R. Colomb, “WAP Enabling
Existing HTML Applications,” User Interface
Conference, 2000. First Australasian, pp.49 –57,
1999.

[9] K. M. Goeschka and M. W. Schranz, “Client and
Legacy Integration in Object-Oriented Web
Engineering,” IEEE Multimedia, pp.32-41,
Jan.-March 2001.

[10] A. K. Ghosh and T. M. Swaminatha, “Software
Security and Privacy Risks in Mobile
E-Commerce,” Communications of the ACM,
Volume 44, Issue 2. pp. 51-57, February 2001.

The WAP games can be modeled as finite state
machines. Based on the theory of visual programming,
we are trying to implement a visual environment, like
Macromedia Authorware, for WAP game
development. Our goal is to make the procedure of
the WAP game development as follows:

[11] g M. Jones and G. Marsden, “Improving WEB
Interaction on Small Displays,” Computer
Network, ppt.1130-1137, 1999.

1) Design the detail game state transition
diagram and draw it in this environment.

[12] BEA Htmlkona,
http://e-docs.bea.com/wls/docs61/htmlkona/

2) Use visual tools to layout contexts. [13] Sun Microsystems, URL:http://java.sun.com/
3) Modify the automatically generated code. [14] WAP Forum, URL:http://www.wapforum.org/

Due to the stateless nature of WAP and HTTP,

currently we use database to store game states.
However, this method suffers from inefficiency. And
thus it is not suitable to build a larger game such as
MUD on WAP. Now we are studying the techniques
needed in large scale online games. A game server
can maintain complete game status and all online
players' information without having to access the
database frequently, and thus it will improve the
performance.

References

[1] Chu-Shiang Shu, “WGFC – A WAP Game

Delopment Platform ,” Department of Computer
Science and Information Engineering, National
Chiao Tung University, Thesis of Master, advised
by Wen-Nung Tsai, June 2001.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

50

http://java.sun.com/j2ee/apm/
http://www.wapforum.org/

