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Abstract- In this paper, we intend to solve the 
problem of maximum-revenue multicast routing with 
a partial admission control mechanism. Specifically, 
for a given network topology, a given link capacity, 
the destinations of a multicast group, and the 
bandwidth requirement of each multicast group, we 
attempt to find a feasible routing solution to 
maximize the revenue of the multicast trees. The 
partial admission control mechanism means that the 
admission policy of the multicast group will not be 
based on a traditional “all or none” strategy. 
Instead it considers accepting of partial portions of 
destinations for the requested multicast group. 
Firstly, we model this problem as an optimization 
problem. Then, we propose a simple heuristic 
algorithm and an optimization based heuristic to 
solve this problem. The methodology taken for 
solving the problem is Lagrangean relaxation. 
Computational experiments have been performed on 
regular networks, random networks, and scale-free 
networks. 
 
Keywords: Admission Control, Routing Assignment, 
Multicast Service, Lagrangean Relaxation. 
 
1. Introduction 
 

With the popularity of the Internet, applications 
based on network service are growing rapidly. In 
order to support the advanced applications such as e-
learning and video conference, it will be necessary 
for the service delivery infrastructure to provide 
multimedia services and multicast data delivery 
within guaranteed bounds of Quality-of-Service 
(QoS). Multimedia application environments are 
characterized by large bandwidth variations due to 
the heterogeneous access technologies of networks 
and different receivers’ quality requirements, which 
make it difficult to achieve bandwidth efficiency and 
service flexibility. There are many challenging issues 
that need to be addressed in designing architectures 
and mechanisms for multicast data transmission [1]. 

In order to meet the requirements for multimedia 
distribution, network operators invest more and more 
capital to enlarge their network capacity. In addition 
to enlarging the network capacity, there is still one 
way to achieve the goal of revenue maximization, 

namely: network planning or traffic engineering. 
Traffic engineering is the process of controlling how 
traffic flows through a network in order to optimize 
resource utilization and network performance. At the 
same time, it can provide QoS. The goal of QoS 
routing is to select the network routes with sufficient 
resources for the requested QoS parameters, to 
satisfy the QoS requirements for every admitted 
connection, as well as to achieve global efficiency in 
resource utilization. Admission control is often 
considered a by-product of QoS routing and resource 
reservation. If the latter is successfully performed 
along the route(s) selected by the routing algorithm, 
the connection request is accepted; otherwise, it is 
rejected. It is clear from the above introduction to 
know that in order to consider the QoS assurance 
issue, the three closely-related mechanisms of 
admission control, routing and resource reservation 
should be treated jointly. 

In this paper, we jointly considering the above 
three mechanisms and intend to solve the problem of 
maximum-revenue multicast routing with a partial 
admission control mechanism. The partial admission 
control mechanism means that the admission policy 
of the multicast group will not be based on a 
traditional “all or none” strategy. Instead it considers 
accepting of partial portions of destinations for the 
requested multicast group. More specifically, for a 
given network topology, a given link capacity, the 
destinations of a multicast group, and the bandwidth 
requirement of each multicast group, we attempt to 
find a feasible admission decision and routing 
solution to maximize the revenue of the multicast 
trees. Firstly, we model this problem as a linear 
optimization problem. Then, we propose a simple 
heuristic algorithm and an optimization based 
heuristic to solve this problem. The methodology 
taken for solving the problem is Lagrangean 
relaxation. Computational experiments have been 
performed on regular networks, random networks, 
and scale-free networks. 

The rest of this paper is organized as follows. In 
Section 2, we formally define the problem being 
studied, as well as a mathematical formulation of 
max-revenue optimization is proposed. Section 3 
applies Lagrangean relaxation as a solution approach 
to the problem. Section 4, illustrates the 
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computational experiments. Finally, in Section 5 we 
present our conclusions and the direction of future 
research. 
 
2. Problem Formulation 
 

The network is modeled as a graph where the 
switches are depicted as nodes and the links are 
depicted as arcs. A user group, which has one source 
and one or more destinations, is an application 
requesting transmission on this network. Given the 
network topology, the capacity of links and the 
bandwidth requirement of user groups, we want to 
jointly determine the following decision variables: (1) 
the routing assignment (a tree for multicasting, or 
path for unicasting) of each admitted destination; and 
(2) the admitted number of destinations of each 
partially admitted multicast group. We assume that 
the multicasting is single-rate.  

By formulating the problem as a mathematical 
programming problem, we intend to solve it 
optimally to obtain a network that fits into our goal, 
i.e., ensures the network operator can earn maximum 
revenue from servicing the partially admitted 
destinations. 

This model is based on the following viable 
assumptions. 
 The revenue from each partially admitted group 

can be fully characterized by two parameters: the 
entire admitted revenue of the group and the 
number of admitted destinations. 

 The revenue from each partially admitted group is 
a monotonically increasing function with respect 
to the number of admitted destinations. 

 The revenue function from each partially 
admitted group is a concave function with respect 
to the entire admitted revenue of the group and 
the number of admitted destinations. However, 
the entire admitted revenue and the number of 
admitted destinations jointly may not be a 
concave function. 

 The revenue from each partially admitted group is 
independent. 
The notations used to model the problem are listed 

in Table 1. 

Table 1. Description of notations 
Given Parameters 

Notation Descriptions 

gF  
Revenue generated from admitting partial 
users of multicast group g, which is a 
function of fg and ag 

ga  Revenue generated from admitting 
multicast group g 

gα  Traffic requirement of multicast group g 

G  The set of all multicast groups 
V The set of nodes in the network 
L  The set of links in the network 

gD  The set of destinations of multicast group 
g 

lC  Capacity of link l 

vI  The incoming links to node v 

gr  
The multicast root of multicast group g 

gr
I  The incoming links to node rg 

gdP  The set of paths user d of multicast group 
g may use 

plδ  The indicator function which is 1 if link l
is on path p and 0 otherwise 

Decision Variables 
Notation Descriptions 

gpdx  1 if path p is selected for group g destined 
for destination d and 0 otherwise 

gly  1 if link l is on the subtree adopted by 
multicast group g and 0 otherwise 

gf  The number of admitted destinations in 
multicast group g 

According to the description in previous, the max-
revenue problem is formulated as a combinatorial 
optimization problem in which the objective function 
is to maximize revenue from servicing the partially 
admitted destinations. Of course a number of 
constraints must be satisfied. 
Optimization Problem: 

Objective function: 
min  ( , )g g g

g G

F a f
∈

−∑                            (IP) 
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The objective function of (IP) is to maximize the 
total revenue of servicing the partially admitted 
destinations in multicast groups g, where g∈G and G 
is the set of user groups requesting transmission. Fg  
reflects the priority of partial users belonging to 
group g, while different choices of Fg may provide 
different physical meanings of the objective function. 
For example, if Fg is chosen to be the mean traffic 
requirement of partial users belonging to group g, 
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then the objective function is to maximize the total 
system throughput. On the other hand, if Fg is chosen 
to be the earnings of servicing partial users belonging 
to group g, then the objective function is to maximize 
the total system revenue. In general, if user group g 
is to be given a higher priority, then the 
corresponding Fg may be assigned a larger value.  

Constraint (1) is the capacity constraint, which 
requires that the aggregate flow on each link l does 
not exceed its physical capacity Cl. Constraint (2) 
requires that if one path is selected for group g 
destined for destination d, it must also be on the 
subtree adopted by multicast group g. Constraint (3) 
is the tree constraint, which requires that the union of 
the selected paths for the destinations of user group g 
forms a tree. Constraints (4) and (6) require that the 
number of selected incoming links ygl is 1 or 0 and 
each node, excepting the root, has only one incoming 
link. Constraint (5) requires that there is no selected 
incoming link ygl that is the root of multicast group g. 
As a result, the links we select can form a tree. 
Constraints (7) and (8) require that at most one path 
is selected for each admitted multicast source-
destination pair, while Constraint (9) relates the 
routing decision variables xgpd to the auxiliary 
variables fg. The introduction of the auxiliary 
variables fg may facilitate the decomposition in the 
Lagrangean relaxation problem to be discussed later. 
Constraint (10) requires that the number of admitted 
destinations in multicast group g is the set of integers. 

 
3. Solution Procedure 
 
3.1 Lagrangean relaxation  
 

By using the Lagrangean Relaxation method 
[2][3], we can transform the primal problem (IP) into 
the following Lagrangean Relaxation problem (LR) 
where constraints (1), (2), (3), and (9) are relaxed. 

For a vector of Lagrangean multipliers, a 
Lagrangean Relaxation problem of (IP) is given by 

Optimization problem (LR): 
( , , , )

min  ( , )
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subject to: (4)(5)(6)(7)(8)(10).  
Where βl, λg, θgl and εg are Lagrangean multipliers 

and βl,θgl≥0. To solve (LR), we can decompose (LR) 

into the following five independent and easily 
solvable optimization subproblems. 

Subproblem 1: (related to decision variable xgpd) 
1( , , )

           min  ( )

                     
g gd

Sub

g g gl pl gpd
g G d D p P l L

Z

x

λ θ ε

ε λ θ δ
∈ ∈ ∈ ∈

=

− +∑ ∑ ∑ ∑  

subject to: (7)(8). 
The Subproblem 1 is to determine xgpd and it can 

be further decomposed into |G||Dg| independent 
shortest path problems with nonnegative arc weights 
θgl. Each shortest path problem can be easily solved 
by Dijkstra’s algorithm. 

Subproblem 2: (related to decision variable ygl) 
2 ( , , )

               min  ( )
Sub

l g g gl g gl
g G l L

Z

D y

β λ θ

β α λ θ
∈ ∈

=

+ −∑∑
 

subject to: (4)(5)(6). 
The Subproblem 2 can be decomposed into |G| 

independent problems. For each multicast group 
g G∈ : 

2.1( , , )

              min  ( )
Sub

l g g gl g gl
l L

Z

D y

β λ θ

β α λ θ
∈

=

+ −∑
 

subject to: (4)(5)(6). 
The algorithm to solve to Subproblem 2.1 is stated 

as follows:  
1. Compute the coefficient βlαg+λg-θgl|Dg| for all 

links in the multicast group g. 
2. Sort the links in descending order according to 

the coefficient. 
3. According to the order and complying with 

constraints (4) and (5), if the coefficient is less 
than zero, assigns the corresponding negative 
coefficient of ygl to 1; otherwise 0. 

Subproblem 3: (related to decision variable fg) 
3 ( ) min  ( ( , ) )Sub g g g g g

g G
Z F a f fε ε

∈

= − +∑  

subject to: (10). 
We can easily solve Subproblem 3 optimally by 

exhaustively searching from the known set of fg. 
According to the weak Lagrangean duality 

theorem [4], for any βl,θgl≥0, ZD(βl, λg, θgl, εg) is a 
lower bound on ZIP. The following dual problem (D) 
is then constructed to calculate the tightest lower 
bound. 

Dual Problem (D): 
Dmax ( , , , )D l g gl gZ Z β λ θ ε=  

subject to: βl,θgl≥0. 
There are several methods for solving the dual 

problem (D). The most popular is the subgradient 
method [5], which is employed here. Let a vector s 
be a subgradient of ZD(βl, λg, θgl, εg).  Then, in 
iteration k of the subgradient optimization procedure, 
the multiplier vector is updated by ωk+1=ωk+tksk. The 
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step size tk is determined by tk=δ(Zh
IP – ZD(ωk))/||sk||2.  

Zh
IP is the primal objective function value for a 

heuristic solution (an upper bound on ZIP). δ is a 
constant and 0 < δ ≤ 2. 

 
3.2 Getting primal feasible solutions 

 
After optimally solving the Lagrangean dual 

problem, we get a set of decision variables. However, 
this solution would not be a feasible one for the 
primal problem since some of constraints are not 
satisfied. Thus, minor modification of decision 
variables, or the hints of multipliers must be taken, to 
obtain the primal feasible solution of problem (IP). 
Generally speaking, the best primal feasible solution 
is an upper bound (UB) of the problem (IP), while 
the Lagrangean dual problem solution guarantees the 
lower bound (LB) of problem (IP). Iteratively, by 
solving the Lagrangean dual problem and getting the 
primal feasible solution, we get the LB and UB, 
respectively. So, the gap between UB and LB, 
computed by (UB-LB)/LB*100%, illustrates the 
optimality of problem solution. The smaller gap 
computed, the better the optimality. 

To calculate the primal feasible solution of the 
maximum revenue tree, the solutions to the 
Lagrangean relaxation problems are considered. The 
set of {xgpd} obtained by solving Subproblem 1 may 
not be a valid solution to problem (IP) because the 
capacity constraint is relaxed. However, the capacity 
constraint may be a valid solution for some links. 
The set of {ygl}obtained by solving Subproblem 2 
may not be a valid solution because of the link 
capacity constraint and the union of {ygl} may not be 
a tree. Also, because the constraint (9) is released, the 
set of {fg} obtained by solving Subproblem 3 may 
not be a valid solution. 

Here we propose a comprehensive, two-part 
method to obtain a primal feasible solution. It utilized 
a Lagrangean multipliers based heuristic, followed 
by adjustment procedures. While solving the 
Lagrangean relaxation dual problem, we may get 
some multipliers related to each OD pair and links. 
According to the information, we can make our 
routing more efficient. We describe the Lagrangean 
based heuristic below. 
[Lagrangean Multipliers based heuristic] 

Step 1 Use βlαg+λg-θgl|Dg| as link l’s arc weight and 
run the T-M heuristic [6] to get a spanning 
tree for each multicast group. 

Step 2 Drop procedures: 
2.1 Check the capacity constraint of each 

link. If there is a link violate the 
capacity constraint, go to Step 2.2, 
otherwise Step 3. 

2.2 Sort the links in descending order 
according to {Cl – the aggregate flow 
on the link}. Choose the maximal 
overflow link and drop the group with 

the maximal subgradient  (-Fg(ag,fg)-
εgfg). Go to Step 2.1. 

Step 3 Add procedures:  
3.1 Sort the dropped group in ascending 

order according to the subgradient (-
Fg(ag,fg)-εgfg).  

3.2 In accordance with the order, re-add 
the groups to the network. Use 
βlαg+λg-θgl|Dg| as link l’s arc weight, 
removes the overflow links from the 
graph and run the T-M heuristic. If it 
can not find a route for the destinations, 
drop the destinations. 

 
4. Computational Experiments 
 

In this section, computational experiments on the 
Lagrangean relaxation based heuristic and other 
primal heuristics are reported. The heuristics are 
tested on three kinds of networks - regular networks, 
random networks, and scale-free networks. Regular 
networks are characterized by low clustering and 
high network diameter, and random networks are 
characterized by low clustering and low diameter. 
The scale-free networks, which are power-law 
networks, are characterized by high clustering and 
low diameter. Reference [7] shows that the topology 
of the Internet is characterized by power laws 
distribution. The power laws describe concisely 
skewed distributions of graph properties such as the 
node degree.  

Two regular networks shown in Figure 1 are 
tested in our experiment. The first one is a grid 
network that contains 100 nodes and 180 links, and 
the second is a cellular network containing 61 nodes 
and 156 links. 

(a) Grid Network (b) Cellular Network  
 Figure 1: Regular Networks 

Random networks tested in this paper are 
generated randomly, each having 100 nodes. The 
candidate links between all node pairs are given a 
probability following the uniform distribution. In the 
experiments, we link the node pair with a probability 
smaller than 2%. If the generated network is not a 
connected network, we generate a new network. 

Reference [8] shows that the scale-free networks 
can arise from a simple dynamic model that 
combines incremental growth with a preference for 
new nodes to connect to existing ones that are 
already well connected. In our experiments, we 
applied this preferential attachment method to 
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generate the scale-free networks. The corresponding 
preferential variable ( 0 ,m m ) is (2, 2). The number of 
nodes in the testing networks is 100. 

In order to prove that our heuristics are good 
enough, we also implement a simple algorithm to 
compare with our heuristic. 
[Simple Algorithm] 

Step 1 Set link l’s arc weight to 1 and run the T-M 
heuristic to get a spanning tree for each 
multicast group. 

Step 2 Drop procedures: 
2.1 Check the capacity constraint of each 

link. If there is a link violate the 
capacity constraint, go to Step 2.2, 
otherwise Step 3. 

2.2 Sort the links in descending order 
according to {Cl – the aggregate flow 
on the link}. Choose the maximal 
overflow link and drop the group with 
the minimal revenue. Go to Step 2.1. 

Step 3 Add procedures:  
3.1 Sort the dropped group in descending 

order according to the unit revenue 
{Group revenue/number of destination 
of the group}.  

3.2 In accordance with the order, re-add 
the groups to the network. Remove the 
overflow links from the graph, set each 
link’s arc weight to the aggregate flow 
of the link and run the T-M heuristic. If 
it can not find a feasible route for the 
destinations, drop the destinations. 

For each testing network, several distinct cases, 
which have different pre-determined parameters such 
as the link capacity, the number of multicast group 
and the number of nodes in a group, are considered. 
The traffic demands for each multicast group are 
drawn from a random variable uniformly distributed 
in pre-specified categories {1, 2, 5, 10, 15, 20}. We 
conducted 120 experiments for each kind of network. 
For each experiment, the result was determined by 
the group source and destinations generated 
randomly. Table 3 summaries the selected results of 
the computational experiments. 

For each testing network, the maximum 
improvement ratio between the simple heuristic and 
the Lagrangean based heuristic is 186.46 %, 93.37%, 
137.08 %, and 139.17%, respectively. In general, the 
Lagrangean based heuristic performs well compared 
to the simple heuristic. We also find that in more 
congested network, either with more destinations or 
with less link capacity, the Lagrangean based 
heuristic outperforms the simple heuristic such as the 
case D of grid network and case F of scale-free 
network. 

There are two main reasons of which the 
Lagrangean based heuristic works better than the 

simple algorithm. First, the Lagrangean based 
heuristic makes use of the related Lagrangean 
multipliers which include the potential cost for 
routing on each link in the topology. Second, the 
Lagrangean based heuristic is iteration-based and is 
guaranteed to improve the solution quality iteration 
by iteration. Therefore, in a more complicated testing 
environment, the improvement ratio is higher. 

To claim optimality, we also depict the 
percentile of gap in Table 3. The results show that 
most of the cases have a gap of less than 40%. We 
also found that the simple heuristic performs well in 
many cases, such as the case I of grid network and 
case G of random network. 

 
5. Conclusions 
 

In this paper, we attempt to solve the problem of 
capacitated max-revenue multicast routing and partial 
admission control for multimedia distribution. Our 
achievement of this paper can be expressed in terms 
of mathematical formulation and experiment 
performance. In terms of formulation, we propose a 
precise mathematical expression to model this 
problem well. In terms of performance, the proposed 
Lagrangean based heuristic outperforms the simple 
heuristics. Our model can be easily extended to deal 
with the constrained multicast routing and admission 
control problem for multi-layered multimedia 
distribution by modifying some constraints. These 
issues will be addressed in future works. 
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Table 3. Selected results of computational experiments 
CASE  Cap. G # N # SA UB LB GAP Imp.

Grid Network Max Imp. Ratio: 186.46 %
A 20 20 20 -1777.01 -1998.12 -2400 16.75% 12.44%
B 20 20 50 -2010.87 -3536.48 -5274.67 32.95% 75.87%
C 20 50 20 -3052.47 -3731.75 -5918.61 36.95% 22.25%
D 20 50 50 -1998.79 -5725.72 -8123.47 29.52% 186.46%
E 20 100 20 -3744.71 -5859.17 -9232.08 36.53% 56.47%
F 20 100 50 -5844.29 -9574.34 -14114.3 32.17% 63.82%
G 40 20 20 -2170.69 -2208.75 -2322.6 4.90% 1.75%
H 40 20 50 -3854.31 -4105.33 -5450 24.67% 6.51%
I 40 50 20 -3613.02 -3636.07 -5086.36 28.51% 0.64%
J 40 50 50 -5382.09 -6862.85 -10767.9 36.27% 27.51%
K 40 100 20 -6118.06 -6506.32 -11033.3 41.03% 6.35%
L 40 100 50 -10594.3 -14500.4 -20074.9 27.77% 36.87%

Cellular Network Max Imp. Ratio: 93.37 %
A 20 20 20 -1531.19 -1748.98 -2340 25.26% 14.22%
B 20 20 50 -4686.17 -5394.88 -5600.02 3.66% 15.12%
C 20 50 20 -4212.02 -4407.76 -5813.74 24.18% 4.65%
D 20 50 50 -4262.02 -8241.3 -9765.03 15.60% 93.37%
E 20 100 20 -4620.5 -6083.93 -8604.21 29.29% 31.67%
F 20 100 50 -7117.66 -12337.8 -14587.2 15.42% 73.34%
G 40 20 20 -2031.8 -2040 -2044.53 0.22% 0.40%
H 40 20 50 -4329.65 -4529.65 -4900 7.56% 4.62%
I 40 50 20 -5244.04 -5352.35 -5840 8.35% 2.07%
J 40 50 50 -8684.42 -9577.18 -11413.8 16.09% 10.28%
K 40 100 20 -7301.44 -7538.01 -11184.8 32.61% 3.24%
L 40 100 50 -13701.3 -17705.2 -20706.6 14.49% 29.22%

Random Networks Max Imp. Ratio: 137.08 %
A 20 20 20 -1799.28 -1945.48 -2060 5.56% 8.13%
B 20 20 50 -4161.85 -4609.93 -4750 2.95% 10.77%
C 20 50 20 -4204.04 -4541.83 -5460 16.82% 8.03%
D 20 50 50 -5168.37 -7950.94 -11279.4 29.51% 53.84%
E 20 100 20 -4323.71 -4979.78 -9704.55 48.69% 15.17%
F 20 100 50 -5050.87 -11974.8 -18540.9 35.41% 137.08%
G 40 20 20 -2033.63 -2044.82 -2123.08 3.69% 0.55%
H 40 20 50 -5153.08 -5239.75 -5450 3.86% 1.68%
I 40 50 20 -6155.9 -6160 -6175.29 0.25% 0.07%
J 40 50 50 -12539.6 -12676.2 -16000 20.77% 1.09%
K 40 100 20 -5811.08 -5962.94 -10734.4 44.45% 2.61%
L 40 100 50 -11940.5 -15569 -23335.7 33.28% 30.39%

Scalefree Network Max Imp. Ratio: 139.17 %
A 20 20 20 -1969.75 -2117.51 -2580 17.93% 7.50%
B 20 20 50 -2997.46 -3343.65 -4892.02 31.65% 11.55%
C 20 50 20 -2933.91 -3426.09 -5429.09 36.89% 16.78%
D 20 50 50 -4588.44 -7384.51 -10542.8 29.96% 60.94%
E 20 100 20 -2908.92 -4809.64 -8109.17 40.69% 65.34%
F 20 100 50 -4146.94 -9918.12 -14771.3 32.86% 139.17%
G 40 20 20 -2184.54 -2216.01 -2237.26 0.95% 1.44%
H 40 20 50 -3980.47 -4096.46 -4857.93 15.67% 2.91%
I 40 50 20 -4062.27 -4171.08 -5440 23.33% 2.68%
J 40 50 50 -7237.48 -9053.87 -12152.2 25.50% 25.10%
K 40 100 20 -5421.27 -6266.76 -10723.7 41.56% 15.60%
L 40 100 50 -9482.01 -14139.5 -19914.6 29.00% 49.12%

Cap.: The capacity of each link 
G#: The number of multicast group 
N#: The number of destinations in each multicast group 
SA: The result of the simple algorithm 
UB: Upper bounds of the Lagrangean based heuristic 

LB: Lower bounds of the Lagrangean based heuristic 
GAP: The error gap of the Lagrangean relaxation 
Imp.: The improvement ratio of the Lagrangean based 

heuristic
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