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Abstract-We study the distance measures between
two probability distributions via two different distance
metrics, a new metric induced from Jensen-Shannon
Divergence[4] and the well known Ly metric. First we
show that the bounds between these two distance met-
rics are tight for some particular distributions. Then
we show that the Ly distance of a binomial distribu-
tion does not imply the entropy power inequality for
the binomial family, proposed in [5].

Moreover, we show that, several important results
and constructions in computational complexity under
the L1 metric carry over to the new metric, such as
Yao’s next-bit predictor [13], the existence of extrac-
tors [11], the leftover hash lemmaf?] and the con-
struction of expander graph based extractor. Finally
we show that the useful parity lemma [12] in studying
pseudo-randommness does not hold in the new metric.

Keywords: Jensen-Shannon Divergence, variational
distance, extractors.

1 Introduction

For any two distributions P and @ over the sample
space {w1,--+,wy}, the variational distance (under
L; metric) between P and @ denoted by SD(P, Q)
is defined as £ > | | Pr[P = w;] — Pr[Q = w;]|. This
definition is equivalent to the existence of the best
distinguisher B such that B(w;) = 1 if and only if
Pr[P = w;] > Pr[Q@ = w;] and |Pr,,—p[B(w;) =
1] — Pry,—q[B(w;) = 1]| = SD(P,Q). We say that
two distributions P and ) on a sample space are
e-close in Li-norm if SD(P,Q) < e. In computa-
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tional complexity, many results have been obtained
based on the L; metric, such as pseudo-randomness
and extractors[11] and Yao’s next-bit predictor[13],
etc. It prompts a natural question why we should
use the L; metric in the first place. Can we use an-
other metric of distributions instead of the variational
distance? Suppose we have a new distance metric
for probability distributions. Do the computational
complexity results still hold under the new distance
metric? Endres and Schindelin recently proposed a
new metric N D for probability distributions [4]. The
square of the new distance measure is the so-called
Jensen-Shannon Divergence. This motivates us to

answer the above question for this new metric.

Jensen-Shannon Divergence was proposed by
Lin[7]. For breaking the condition of absolute con-
tinuity of Kullback divergence. These researches are
information-theoretic. We will use Jensen-Shannon
Divergence to investigate some computational com-

plexity issues.

In this paper, we bound variational distance SD
by the new distance N D and show that the bound
is tight. Then we show that it is unlikely to prove
entropy power inequality for binomial family via the
bound from L; metric. Moreover, we show that, sev-
eral important results and constructions in compu-
tational complexity under the L; metric carry over
to the new metric, such as Yao’s next-bit predictor
[13], the existence of extractors [11], leftover hash
lemmal?] and the construction of expander graph
based extractors. Finally we show that the useful par-
ity lemma [12] in studying pseudo-randomness does
not hold in the new metric.
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| SD ND
Entropy power inequality || Non-Applicable Applicable
for binomial family
Next-bit predictor Applicable Applicable but Factor Loss
Existence of extractor Applicable Applicable but Factor Loss
Leftover hash lemma Applicable Applicable
Expander graph Applicable Applicable
Parity lemma Applicable Non-Applicable

Table 1: Comparison between SD and ND

2 Preliminaries

We use [n] to denote the set {1,2,..,n}. The base
of log function is 2. For any distribution X with
sample space Q,, = {w1, .., wy, }, define the entropy of
X tobe H(X)=>" | —Pr[X = w;|logPr[X = w].
For every positive integer m, U, denotes the uniform
distribution over {0,1}". We say a distribution D,,
in {0,1}" is a k-source if for all z € {0,1}", D, (z) <
27, The notation || - || always means the ¢ norm.

Let II be the set of distributions whose sample
space is £2,,. We use a metric function to measure the
distance between two distributions. A metric func-

tion satisfies the following properties.

Definition 1 We say that a function F : 11 x II —
[0,1] is a metric if (a)F(P,Q) = 0 if and only if P =
Q, (b)F(P,Q) = F(Q, P), and (c)for any P,Q,R €
II, F(P,Q) < F(P,R)+ F(R,Q).

We could easily prove that variational distance is a
metric. The following facts are useful in this paper.

Fact 1 Function SD is a metric where SD(P, Q) =
3 2t | Pr[P = wi] = Pr[Q = wi]|.
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3 A tight relation between ND
and SD

Let P and @ be two distributions with the same prob-
ability space and T be a 0-1 random variable with
Pr[T = 0] = 1/2 and independent of P and Q). De-
fine the following distribution:

Zrg = {

Definition 2 The Jensen-Shannon Divergence is
(H(Zpg) — (H(P)+ H(Q))/2). ND is defined as

p
Q

ifr=0
if T =1.

H(P)+ H(Q)

ND(P,Q)Z\/H(ZPQ)— 5

Endres and Schindelin proved that N D is a metric[4].
Suppose P =< p1,---,pp > and Q =< q1, -+, qn >
where p; = Pr[P = w;] and ¢; = Pr[Q = w;] for
1 < i < n. We need a lemma proved by Topsge [10].

Lemma 1 [10] For any distributions P and @Q in 11,

n

2 (ND(P,Q))* = Z; 23.(2;_ ) (Z

loge

.
Ipi — a4l

J
(pi + Qi)2j71 .

i=1
We reprove the following in a more direct way.

Theorem 1 [10] /SD(P,Q) > ND(P,Q) >

\/(1+SD(P,Q)) log(l—l—SD(P,Q))—5(1—SD(P,Q)) log(1-SD(P,Q)) )

Actually, the above bounds are tight. For the left-
hand-side inequality, we consider the following two
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1-— 1-—
distributions: P =< ¢, ; -, ——,0 > and
_ n—2
_,_/
n—2
1-— 1-—
Q=<0,—< ...~ —% e>. Cleatly SD(P,Q) =
n — 2 n—2
—_——
n—2

e. We can compute ND(P,Q) =
left-hand side is tight.

Ve. Hence the
For the right-hand side we

1+e 1+e 1—¢ 1—c¢
set: P = d
¢ < o2n ' 7 2n 7 2n 7 2n > an
1—¢ ln—e 1+e 17—l|—e
— . Clearl
@ =< on’ T 2n 2n 7 2n >. Clearly

D(P,Q) = e. And we have:

(14+¢€)log(l+e€)+ (1 —€)log(l—¢)
5 .

Therefore the right-hand side is a tight bound.

ND(P,Q)* =

4  Advantage of ND

In this section we show that Theorem 1 does not help
to prove the entropy power inequality for the binomial
family in [5]. This shows that ND is more suitable
than SD in this case. The following facts will be
handy in the rest of this section.

Fact 3 [3] Suppose P and Q are two distributions
on A. Let B = {z € A: P(z) > Q(zx)}. Then
SD(P,Q) = Pr[P € B] — Pr[Q € B].

Fact 4 [2] (rg]) < 2"\/2

2n2
Let X1,---,X,,--- be an ii.d. random process
where each X; ~ U;. Let Y, = Y7 | X;. Then

Y,, is a binomial distribution with parameters n and

1 The entropy power inequality for the binomial

f?amily states that: for any m,n > 1, 22H(=) 4
22H(Ym) < 92H(Yn+Ym)  Ap easy observation is that
if is increasing in n then the power inequal-
ity holds. Hence we just need to show that 2210
is increasing. It is sufficient to prove the following
lower bound: H(Y,41) — H(Y,) > Flog %t De-
note Py as the probability distrlbutlon of Y. It
is clear that Py, , = W By the definition

of Jensen-Shannon Divergence, we have H(Y,,11) =

92H (Yn)
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H(Y, +1)/2 + H(Y,)/2 + ND*(Py,, Py, +1). Note
that H(Y;,) = H(Y,, +1). Hence we have H(Y,,11) =
H(Y,)+ ND?(Py,, Py, 11). The following has been
proved by Harremoés and Vignat[5]

1 n+1

ND?*(Py,, Py, 1) > Qlog (1)

Thus we obtain a lower bound for H(Y,,+1) — H(Y,)

via ND.

We may hope that Theorem 1 will help us to prove
Inequality (1). However we cannot prove it via The-
orem 1. In fact we can prove the following inequality
for large n

< 1 1
n  2n?’

(2In2)(SD(Py,, Py, 41))° (2)

This implies (as in the proof of Theorem 1) that

o0

P T

Jj=1

i 1+n
(SD(Py,, P o<
i ‘771 (Py,., Py,+1)) n—

3)

Inequality (3) tells us that Theorem 1 does not help
us prove Inequality (1). Finally we show that In-
equality (2) is correct for large n. We can view Py,
,n+ 1}

By Fact 3 and 4 we have SD(Py,,Py, 1) =
2’”(r§]) < \/g Indl Tt is easy to check that the

2n?
following inequalities: (2In2)(SD(Py,, Py, 11))° <
1_ 1

n 2n2 "

and Py, 41 as two distributions on {0, 1,- -

5 Randomized computation via
ND

Randomized computation has been a very useful
method for algorithm design. Randomized algo-
rithms are the only known efficient methods for many
difficult problems [8].
that several important results in randomized compu-
tation based on SD carry over to ND. While we also
show a non-applicable case.

In this section we illustrate

5.1 Distinguisher v.s. predictor

Yao [13] proved that a boolean function G is a good
distinguisher between two distributions (where one of
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which is uniform) if and only if G is a good next-bit
predictor. First of all we give some definitions.

Definition 3 For any distribution D,, on the prob-
ability space {0,1}",
D,, and U, is a boolean function C such that

an €-good distinguisher between

Pr [C(z)=1]—- Pr [C(z)=

1] > e

z—D, Uy,
Definition 4 For any distribution D,, an e-good
next-bit predictor for D, is a function, for some
i € [n] and given the first (i — 1) bits of the input,
such that |Pry—p, [G(z1,- -+, 2i—1) = x;]| > €.

With a distinguisher as an oracle, Yao proved the
following lemma.

Lemma 2 [13] If C is an e-good distinguisher be-
tween Dy, and U, then there exists an :-good next-
bit predictor for D,,.

By Theorem 1, we have the following result:

Theorem 2 Suppose ND(D,,U,) > €. Then
we have a next-bit predictor G with the follow-
ing property: there exists i € [n] such that
PriG(zy, - xi-1) = 4] > %, where Ty, -,
sampled from D,,.

T; are

Proof. By Theorem 1, we have SD(D,,U,) >
ND(D,,U,)?* > €. By Lemma 2, there exists an
%-good next-bit predictor G for D,,. O

5.2 Extractors

We continue to show the existence of extractors under
the setting of N D with some appropriate parameters.
Similar to the definition of extractor [9], we have the
following definition.

Definition 5 EXT : {0,1}" x {0,1}" — {0,1}" is
called a (k,€)-extractor for ND if for every k-source

Dy, ND(EXT(Dp,Uy),Un) < €.

For ND we have the following analogous result.
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Proposition 1 For every n, € > 0 and k < n, there
exists a (k,€)-extractor EXT : {0,1}" x {0,1}% —
{0,1}™ for ND with t = logn —k — 4loge + O(1)
and m =k +t + 4loge — O(1).

Proof. We prove the proposition by the probabilis-
tic method [1, 8]. Consider the random extractor f
which maps z € {0,1}""" into {0,1}" randomly and
independently. Since a k-source can be represented
as a convex combination of flat k-sources and ND is
a metric, it is sufficient to prove the proposition for
For any distribution P in {0,1}" and
any boolean function 7' : {0,1}"" — {0,1} we de-
note Pr as a distribution in {0, 1} with Pr[Ppr = 1] =
> w7 (=1 L(@). We first prove the following claim.

flat sources.

Claim 1 For any flat (k + t)-source Q, if m
and t satisfy the conditions of Proposition 1, then
PrIND(£(Q),Up) > €] < 22" . 2792

Proof. Let the support of distribution @ be
Supp(Q) {z : Q(z) > 0}. For ecach z €
Supp(Q), the distribution of f(x) is the same as
Un. Also {f(z) x € Supp(Q)} is a set
of random variables which are ii.d. For each
boolean function 7' : {0,1}" — {0,1}, {T'(f(z))

x € Supp(Q)} is also a set of 0-1 random
variables which are iid. and Exp[T(f(z))] =

% = Pr[(Um)T = 1}. By the Chernoff
T(f

Bound [1, 8], P [|Zz€3ugpk<fg (f(=)) |{zT 1}\| S

62] < 9= Q(2ktte 4)_ By Theorem 1, we can get

Pr[ND(f(Q),U

D(f(Q).Um) > €] < Pr[SD(f(Q),Un) > €*] <
Pr[3T, SD(f(Q)7, (U,

m)p) > €2] < 227 . 27,
O

The probability that f is not a good extractor for
some flat k-source is at most @k) 92" 9= Q2T <
1. This proves the existence of the extractor for ND.
O

The crucial part of the proof is the inequality be-
tween SD and ND. Then we can use the property of
SD to show the existence of extractor with good pa-
rameters. There seems no constructive proof on the
existence of the extractor for ND.
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5.3 Leftover Hash Lemma

Linearity plays an important role in the proof of the
Leftover Hash Lemma and expander-based extrac-
tors. It seems that ND does not have such linear
property. However in some setting N D has a good
upper bound in terms of ¢, norm. This bound can

help us prove some results about extractors for N D.

Definition 6 [6/ H = {h : D — R} is universal
family of hash functions if, for every x,y € D, x # y,
Pri_wlh(z) = h(y)] = - H is almost universal if

Pryowh(z) = h(y)] < 77 + 1y

Now let D = {0,1}", R = {0,1}", and |[H| = 2.
The Leftover Hash Lemma states the following.

Theorem 3 [6] Suppose H is almost universal, X is
a flat k-source on {0,1}", and h is a random func-

tion drawn from H. Then SD ((h,h(X)),Uttm) <
o(m—k)/2

Define Col[(h,h(X))] = Pr[(h,h(X)) = (h’,h/(X"))]
where h'/, X’ are i.i.d.

crucial part of the proof of Theorem 3 is to show the

to h, X, respectively. The
following lemma.

Lemma 3 [6]

Col[(h, h(X))] < (1 +20+778) /@2+m),

Define Exzt : {0,1}" x {0,1}' — {0,1}**" by
Ext(x,h) = (h,h(z)). We show that Ext is an ex-
tractor for ND. Here, instead of directly applying
the inequality between N D and SD, we establish the
relation between N D and />-norm.

Theorem 4 Suppose H is an almost universal fam-
ily of hash functions from {0,1}" to {0,1}™ where
m =k+2loge —1/2. Let t = [log|H|]. Then the
above Ext is a (k,€)-extractor for ND.

Proof. Without loss of generality we assume that
X is a flat k-source. Let ¢ o+m—k)/2 By
Lemma 3, we have Col[(h,h(X))] < 5= (1 + €).

Therefore ||(h,h(X)) — Uprm|> = Col[(h,h(X))] —
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ﬁ < Qf% By the proof of Theorem 1, for any

distribution P over {0, 1}", we have (ND(P,U,))* <

1 [P@)—2"""\ _  on— 5
2 (er{o,m W) = 2l |IP-U,|"°.
Hence we have (ND((h,h(X)),Ui4m)) < W
This concludes that Ext is an extractor for ND. O

5.4 Expander graphs

Similar to the Leftover Hash Lemma for ND, the
expander-based extractor has the same property.
Let G be a d-regular graph and Mg be its ad-
jacency matrix. G is a A-expander if the sec-
ond largest eigenvalue of Mg is not greater than
A1, 8. A
random walks on A-expander converges to the uni-

We view a distribution as a vector.

form distribution. Precisely, for any distribution
P, |Mc*P, — U,|| < M||P, — Uy,||. From the
prior discussion, we get, for any distribution P, on
{0,1}", 21" (ND(Mg Py, Un))? < | M Py — Un||* <
A2 (Col(P,) —27"). We define Extg : {0,1}" x
{0,1}* — {0,1}" by setting Exte(z,y) to be the
y-th neighbor of z. Suppose X,, is a flat k-source
and —2logA > n — k — 2loge. Then we have
(ND(MgXn,Un))? < 27| Mg X, — Uy || < 271
A2 (Col(X,) —27") < % Hence we achieve the fol-
lowing expander-based extractor for ND.

Theorem 5 If G is a 2'-reqular \-expander graph
with —2log A\ > n — k — 2loge, then Extg : {0,1}" x
{0,1}" — {0,1}" is a (k, €)-extractor for ND.

5.5 An example that doesn’t carry
over to ND

In the previous 2 subsections, we know that N D has
a good bound in terms of 5 norm for some special
setting. Nevertheless N D is not linear in general. In
this subsection, we give an example to show that L;-
distance has more linear property. For SD metric,
the parity lemma is as following.

Lemma 4 (Parity Lemma)[12] For any t-bit random
variable T, SD(T,Us) < 3_ e 10,130\ (ot} SDP(T v, Un).

However this statement is not true in general for N D.
We find a counterexample. Let T5 be the distribution
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A | Pr[Ty = A] |
00 0.389932
01 0.303991
10 0.201038
11 0.10504
ND(T3,Us) 0.073862
> eroai2vjoo; ND(T v, Ur) [ 0.0689

Table 2: Distribution of T5

as shown in Table 2. By a simple calculation, we
see that ND(T3,Uz) > 3_,c 0,132\ {00y ND(T2-v,U1).
Hence the new metric VD does not hold for the parity
lemma.

In order to find a general counterexample for ¢t > 2
we define a distribution J; on {0, 1}t as J; = ThoU;_o.
It is easy to get ND(J;,Uy) = ND(Ty,Us). Next we
want to show the following proposition.

Proposition 2

>

ve{0,1}*\{0*}

ND(Jyv,Uy) =

>

v€{0,1}2\{00}

Proof. Note that for any ¢, € {0,1}> and for
any nonzero vector w € {0,1}'7% (ty o w) -
Jo = U. Hence ND((tg o w) - Jy,Uy) =
0. Therefore EUG{O’I}t\{Ot}ND(Jt - v, Uq)
Zt2€{011}2\{00} ND ((TQ o Ut,Q) . (tg o Ot_2)7U1) =
the{O,I}Q\{OO} ND(T; - t27U1). O

In general we get, for any ¢ > 2, ND(J;,Uy) >
> vefoyigory ND(Ji-v,Ur). However, it is still pos-
sible that the parity lemma may exist for ND in a
different form.
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