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Abstract-We study the distance measures between
two probability distributions via two different distance
metrics, a new metric induced from Jensen-Shannon
Divergence[4] and the well known L1 metric. First we
show that the bounds between these two distance met-
rics are tight for some particular distributions. Then
we show that the L1 distance of a binomial distribu-
tion does not imply the entropy power inequality for
the binomial family, proposed in [5].

Moreover, we show that, several important results
and constructions in computational complexity under
the L1 metric carry over to the new metric, such as
Yao’s next-bit predictor [13], the existence of extrac-
tors [11], the leftover hash lemma[?] and the con-
struction of expander graph based extractor. Finally
we show that the useful parity lemma [12] in studying
pseudo-randomness does not hold in the new metric.

Keywords: Jensen-Shannon Divergence, variational
distance, extractors.

1 Introduction

For any two distributions P and Q over the sample
space {ω1, · · · , ωn}, the variational distance (under
L1 metric) between P and Q denoted by SD(P,Q)
is defined as 1

2

∑n
i=1 |Pr[P = ωi]−Pr[Q = ωi]|. This

definition is equivalent to the existence of the best
distinguisher B such that B(ωi) = 1 if and only if
Pr[P = ωi] ≥ Pr[Q = ωi] and |Prωi←P [B(ωi) =
1] − Prωi←Q[B(ωi) = 1]| = SD(P,Q). We say that
two distributions P and Q on a sample space are
ε-close in L1-norm if SD(P,Q) ≤ ε. In computa-

tional complexity, many results have been obtained
based on the L1 metric, such as pseudo-randomness
and extractors[11] and Yao’s next-bit predictor[13],
etc. It prompts a natural question why we should
use the L1 metric in the first place. Can we use an-
other metric of distributions instead of the variational
distance? Suppose we have a new distance metric
for probability distributions. Do the computational
complexity results still hold under the new distance
metric? Endres and Schindelin recently proposed a
new metric ND for probability distributions [4]. The
square of the new distance measure is the so-called
Jensen-Shannon Divergence. This motivates us to
answer the above question for this new metric.

Jensen-Shannon Divergence was proposed by
Lin[7]. For breaking the condition of absolute con-
tinuity of Kullback divergence. These researches are
information-theoretic. We will use Jensen-Shannon
Divergence to investigate some computational com-
plexity issues.

In this paper, we bound variational distance SD

by the new distance ND and show that the bound
is tight. Then we show that it is unlikely to prove
entropy power inequality for binomial family via the
bound from L1 metric. Moreover, we show that, sev-
eral important results and constructions in compu-
tational complexity under the L1 metric carry over
to the new metric, such as Yao’s next-bit predictor
[13], the existence of extractors [11], leftover hash
lemma[?] and the construction of expander graph
based extractors. Finally we show that the useful par-
ity lemma [12] in studying pseudo-randomness does
not hold in the new metric.
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SD ND

Entropy power inequality Non-Applicable Applicable
for binomial family
Next-bit predictor Applicable Applicable but Factor Loss
Existence of extractor Applicable Applicable but Factor Loss
Leftover hash lemma Applicable Applicable
Expander graph Applicable Applicable
Parity lemma Applicable Non-Applicable

Table 1: Comparison between SD and ND

2 Preliminaries

We use [n] to denote the set {1, 2, .., n}. The base
of log function is 2. For any distribution X with
sample space Ωn = {ω1, .., ωn}, define the entropy of
X to be H(X) =

∑n
i=1−Pr[X = ωi] log Pr[X = ωi].

For every positive integer m, Um denotes the uniform
distribution over {0, 1}m. We say a distribution Dn

in {0, 1}n is a k-source if for all x ∈ {0, 1}n, Dn(x) ≤
2−k. The notation ‖ · ‖ always means the `2 norm.

Let Π be the set of distributions whose sample
space is Ωn. We use a metric function to measure the
distance between two distributions. A metric func-
tion satisfies the following properties.

Definition 1 We say that a function F : Π × Π →
[0, 1] is a metric if (a)F (P,Q) = 0 if and only if P =
Q, (b)F (P,Q) = F (Q,P ), and (c)for any P,Q,R ∈
Π, F (P,Q) ≤ F (P,R) + F (R,Q).

We could easily prove that variational distance is a
metric. The following facts are useful in this paper.

Fact 1 Function SD is a metric where SD(P,Q) =
1
2

∑n
i=1 |Pr[P = ωi]− Pr[Q = ωi]|.

Fact 2 ln 2 =
∑∞

j=1
1

2j(2j−1) .

3 A tight relation between ND

and SD

Let P and Q be two distributions with the same prob-
ability space and T be a 0-1 random variable with
Pr[T = 0] = 1/2 and independent of P and Q. De-
fine the following distribution:

ZPQ =
{

P if T = 0
Q if T = 1.

Definition 2 The Jensen-Shannon Divergence is
(H(ZPQ)− (H(P ) + H(Q))/2). ND is defined as

ND(P,Q) =

√
H(ZPQ)− H(P ) + H(Q)

2
.

Endres and Schindelin proved that ND is a metric[4].
Suppose P =< p1, · · · , pn > and Q =< q1, · · · , qn >

where pi = Pr[P = ωi] and qi = Pr[Q = ωi] for
1 ≤ i ≤ n. We need a lemma proved by Topsøe [10].

Lemma 1 [10] For any distributions P and Q in Π,

2
log e

(ND(P,Q))2 =
∞∑

j=1

1
2j(2j − 1)

(
n∑

i=1

|pi − qi|2j

(pi + qi)
2j−1

)
.

We reprove the following in a more direct way.

Theorem 1 [10]
√

SD(P,Q) ≥ ND(P,Q) ≥√
(1+SD(P,Q)) log(1+SD(P,Q))+(1−SD(P,Q)) log(1−SD(P,Q))

2 .

Actually, the above bounds are tight. For the left-
hand-side inequality, we consider the following two
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distributions: P =< ε,
1− ε

n− 2
, · · · , 1− ε

n− 2︸ ︷︷ ︸
n−2

, 0 > and

Q =< 0,
1− ε

n− 2
, · · · , 1− ε

n− 2︸ ︷︷ ︸
n−2

, ε >. Clearly SD(P,Q) =

ε. We can compute ND(P,Q) =
√

ε. Hence the
left-hand side is tight. For the right-hand side we

set: P =<
1 + ε

2n
, · · · , 1 + ε

2n︸ ︷︷ ︸
n

,
1− ε

2n
, · · · , 1− ε

2n︸ ︷︷ ︸
n

> and

Q =<
1− ε

2n
, · · · , 1− ε

2n︸ ︷︷ ︸
n

,
1 + ε

2n
, · · · , 1 + ε

2n︸ ︷︷ ︸
n

>. Clearly

SD(P,Q) = ε. And we have:

ND(P,Q)2 =
(1 + ε) log(1 + ε) + (1− ε) log(1− ε)

2
.

Therefore the right-hand side is a tight bound.

4 Advantage of ND

In this section we show that Theorem 1 does not help
to prove the entropy power inequality for the binomial
family in [5]. This shows that ND is more suitable
than SD in this case. The following facts will be
handy in the rest of this section.

Fact 3 [3] Suppose P and Q are two distributions
on A. Let B = {x ∈ A : P (x) ≥ Q(x)}. Then
SD(P,Q) = Pr[P ∈ B]− Pr[Q ∈ B].

Fact 4 [2]
(

n
dn

2 e
)

< 2n
√

2
π

√
2n+1
2n2 .

Let X1, · · · , Xn, · · · be an i.i.d. random process
where each Xi ∼ U1. Let Yn =

∑n
i=1 Xi. Then

Yn is a binomial distribution with parameters n and
1
2 . The entropy power inequality for the binomial
family states that: for any m,n ≥ 1, 22H(Yn) +
22H(Ym) ≤ 22H(Yn+Ym). An easy observation is that
if 22H(Yn)

n is increasing in n then the power inequal-
ity holds. Hence we just need to show that 22H(Yn)

n

is increasing. It is sufficient to prove the following
lower bound: H(Yn+1) − H(Yn) ≥ 1

2 log n+1
n . De-

note PY as the probability distribution of Y . It
is clear that PYn+1 = PYn+PYn+1

2 . By the definition
of Jensen-Shannon Divergence, we have H(Yn+1) =

H(Yn + 1)/2 + H(Yn)/2 + ND2(PYn
, PYn+1). Note

that H(Yn) = H(Yn + 1). Hence we have H(Yn+1) =
H(Yn) + ND2(PYn

, PYn+1). The following has been
proved by Harremoës and Vignat[5]

ND2(PYn
, PYn+1) ≥ 1

2
log

n + 1
n

. (1)

Thus we obtain a lower bound for H(Yn+1)−H(Yn)
via ND.

We may hope that Theorem 1 will help us to prove
Inequality (1). However we cannot prove it via The-
orem 1. In fact we can prove the following inequality
for large n

(2 ln 2)(SD(PYn , PYn+1))
2

<
1
n
− 1

2n2
. (2)

This implies (as in the proof of Theorem 1) that

∞∑
j=1

1
j(2j − 1)

(SD(PYn
, PYn+1))

2j
< ln

1 + n

n
.(3)

Inequality (3) tells us that Theorem 1 does not help
us prove Inequality (1). Finally we show that In-
equality (2) is correct for large n. We can view PYn

and PYn+1 as two distributions on {0, 1, · · · , n + 1}.

By Fact 3 and 4 we have SD(PYn
, PYn+1) =

2−n
(

n
dn

2 e
)

<
√

2
π

√
2n+1
2n2 . It is easy to check that the

following inequalities: (2 ln 2)(SD(PYn
, PYn+1))

2
<

1
n −

1
2n2 .

5 Randomized computation via

ND

Randomized computation has been a very useful
method for algorithm design. Randomized algo-
rithms are the only known efficient methods for many
difficult problems [8]. In this section we illustrate
that several important results in randomized compu-
tation based on SD carry over to ND. While we also
show a non-applicable case.

5.1 Distinguisher v.s. predictor

Yao [13] proved that a boolean function G is a good
distinguisher between two distributions (where one of
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which is uniform) if and only if G is a good next-bit
predictor. First of all we give some definitions.

Definition 3 For any distribution Dn on the prob-
ability space {0, 1}n, an ε-good distinguisher between
Dn and Un is a boolean function C such that

| Pr
x←Dn

[C(x) = 1]− Pr
x←Un

[C(x) = 1]| ≥ ε.

Definition 4 For any distribution Dn, an ε-good
next-bit predictor for Dn is a function, for some
i ∈ [n] and given the first (i − 1) bits of the input,
such that |Prx←Dn

[G(x1, · · · , xi−1) = xi]| ≥ ε.

With a distinguisher as an oracle, Yao proved the
following lemma.

Lemma 2 [13] If C is an ε-good distinguisher be-
tween Dn and Un, then there exists an ε

n -good next-
bit predictor for Dn.

By Theorem 1, we have the following result:

Theorem 2 Suppose ND(Dn, Un) ≥ ε. Then
we have a next-bit predictor G with the follow-
ing property: there exists i ∈ [n] such that
Pr[G(x1, · · · , xi−1) = xi] ≥ ε2

n , where x1, · · · , xi are
sampled from Dn.

Proof. By Theorem 1, we have SD(Dn, Un) ≥
ND(Dn, Un)2 ≥ ε2. By Lemma 2, there exists an
ε2

n -good next-bit predictor G for Dn. 2

5.2 Extractors

We continue to show the existence of extractors under
the setting of ND with some appropriate parameters.
Similar to the definition of extractor [9], we have the
following definition.

Definition 5 EXT : {0, 1}n × {0, 1}t → {0, 1}m is
called a (k, ε)-extractor for ND if for every k-source
Dn, ND(EXT (Dn, Ut), Um) ≤ ε.

For ND we have the following analogous result.

Proposition 1 For every n, ε > 0 and k ≤ n, there
exists a (k, ε)-extractor EXT : {0, 1}n × {0, 1}t →
{0, 1}m for ND with t = log n− k − 4 log ε + O(1)
and m = k + t + 4logε−O(1).

Proof. We prove the proposition by the probabilis-
tic method [1, 8]. Consider the random extractor f

which maps x ∈ {0, 1}n+t into {0, 1}m randomly and
independently. Since a k-source can be represented
as a convex combination of flat k-sources and ND is
a metric, it is sufficient to prove the proposition for
flat sources. For any distribution P in {0, 1}m and
any boolean function T : {0, 1}m → {0, 1} we de-
note PT as a distribution in {0, 1} with Pr[PT = 1] =∑

x:T (x)=1 P (x). We first prove the following claim.

Claim 1 For any flat (k + t)-source Q, if m

and t satisfy the conditions of Proposition 1, then
Pr[ND(f(Q), Um) > ε] < 22m · 2−Ω(2k+t·ε4).

Proof. Let the support of distribution Q be
Supp(Q) = {x : Q(x) > 0}. For each x ∈
Supp(Q), the distribution of f(x) is the same as
Um. Also {f(x) : x ∈ Supp(Q)} is a set
of random variables which are i.i.d. For each
boolean function T : {0, 1}m → {0, 1}, {T (f(x)) :
x ∈ Supp(Q)} is also a set of 0-1 random
variables which are i.i.d. and Exp[T (f(x))] =
|{z:T (z)=1}|

2m = Pr[(Um)T = 1]. By the Chernoff

Bound [1, 8], Pr[|
∑

x∈Supp(Q)
T (f(x))

2k+t − |{z:T (z)=1}|
2m | >

ε2] < 2−Ω(2k+tε4). By Theorem 1, we can get
Pr[ND(f(Q), Um) > ε] ≤ Pr[SD(f(Q), Um) > ε2] ≤
Pr[∃T, SD(f(Q)T , (Um)T ) > ε2] < 22m · 2−Ω(2k+t·ε4).
2

The probability that f is not a good extractor for
some flat k-source is at most

(
2n

2k

)
·22m ·2−Ω(2k+t·ε4) <

1. This proves the existence of the extractor for ND.
2

The crucial part of the proof is the inequality be-
tween SD and ND. Then we can use the property of
SD to show the existence of extractor with good pa-
rameters. There seems no constructive proof on the
existence of the extractor for ND.
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5.3 Leftover Hash Lemma

Linearity plays an important role in the proof of the
Leftover Hash Lemma and expander-based extrac-
tors. It seems that ND does not have such linear
property. However in some setting ND has a good
upper bound in terms of `2 norm. This bound can
help us prove some results about extractors for ND.

Definition 6 [6] H = {h : D → R} is universal
family of hash functions if, for every x, y ∈ D, x 6= y,
Prh←H[h(x) = h(y)] = 1

|R| . H is almost universal if
Prh←H[h(x) = h(y)] ≤ 1

|R| +
1
|D| .

Now let D = {0, 1}n, R = {0, 1}m, and |H| = 2t.
The Leftover Hash Lemma states the following.

Theorem 3 [6] Suppose H is almost universal, X is
a flat k-source on {0, 1}n, and h is a random func-
tion drawn from H. Then SD ((h,h(X)), Ut+m) ≤
2(m−k)/2.

Define Col[(h,h(X))] = Pr[(h,h(X)) = (h′,h′(X ′))]
where h′, X ′ are i.i.d. to h, X, respectively. The
crucial part of the proof of Theorem 3 is to show the
following lemma.

Lemma 3 [6]

Col[(h,h(X))] ≤ (1 + 2(1+m−k))/(2t+m).

Define Ext : {0, 1}n × {0, 1}t → {0, 1}t+m by
Ext(x, h) = (h, h(x)). We show that Ext is an ex-
tractor for ND. Here, instead of directly applying
the inequality between ND and SD, we establish the
relation between ND and `2-norm.

Theorem 4 Suppose H is an almost universal fam-
ily of hash functions from {0, 1}n to {0, 1}m where
m = k + 2 log ε − 1/2. Let t = dlog |H|e. Then the
above Ext is a (k, ε)-extractor for ND.

Proof. Without loss of generality we assume that
X is a flat k-source. Let ε = 2(1+m−k)/2. By
Lemma 3, we have Col[(h,h(X))] ≤ 1

2t+m (1 + ε2).
Therefore ‖(h,h(X))− Ut+m‖2 = Col[(h,h(X))] −

1
2t+m ≤ ε2

2t+m . By the proof of Theorem 1, for any
distribution P over {0, 1}n, we have (ND(P,Un))2 ≤
1
2

(∑
x∈{0,1}n

|P (x)−2−n|2

(P (x)+2−n)

)
= 2n−1 · ‖P − Un‖2.

Hence we have (ND((h,h(X)), U(t+m)) ≤ 1
2(k−m)/2 .

This concludes that Ext is an extractor for ND. 2

5.4 Expander graphs

Similar to the Leftover Hash Lemma for ND, the
expander-based extractor has the same property.
Let G be a d-regular graph and MG be its ad-
jacency matrix. G is a λ-expander if the sec-
ond largest eigenvalue of MG is not greater than
λ [1, 8]. We view a distribution as a vector. A
random walks on λ-expander converges to the uni-
form distribution. Precisely, for any distribution
Pn, ‖MG

kPn − Un‖ ≤ λk‖Pn − Un‖. From the
prior discussion, we get, for any distribution Pn on
{0, 1}n, 21−n(ND(MGPn, Un))2 ≤ ‖MGPn − Un‖2 ≤
λ2 (Col(Pn)− 2−n). We define ExtG : {0, 1}n ×
{0, 1}t → {0, 1}n by setting ExtG(x, y) to be the
y-th neighbor of x. Suppose Xn is a flat k-source
and −2 log λ ≥ n − k − 2 log ε. Then we have
(ND(MGXn, Un))2 ≤ 2n−1‖MGXn − Un‖2 ≤ 2n−1 ·
λ2 (Col(Xn)− 2−n) ≤ ε2

2 Hence we achieve the fol-
lowing expander-based extractor for ND.

Theorem 5 If G is a 2t-regular λ-expander graph
with −2 log λ ≥ n− k− 2 log ε, then ExtG : {0, 1}n ×
{0, 1}t → {0, 1}n is a (k, ε)-extractor for ND.

5.5 An example that doesn’t carry

over to ND

In the previous 2 subsections, we know that ND has
a good bound in terms of `2 norm for some special
setting. Nevertheless ND is not linear in general. In
this subsection, we give an example to show that L1-
distance has more linear property. For SD metric,
the parity lemma is as following.

Lemma 4 (Parity Lemma)[12] For any t-bit random
variable T , SD(T,Ut) ≤

∑
v∈{0,1}t\{0t} SD(T ·v, U1).

However this statement is not true in general for ND.
We find a counterexample. Let T2 be the distribution

5
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A Pr[T2 = A]

00 0.389932
01 0.303991
10 0.201038
11 0.10504

ND(T2, U2) 0.073862∑
v∈{0,1}2\{00}ND(T · v, U1) 0.0689

Table 2: Distribution of T2

as shown in Table 2. By a simple calculation, we
see that ND(T2, U2) >

∑
v∈{0,1}2\{00}ND(T2 ·v, U1).

Hence the new metric ND does not hold for the parity
lemma.

In order to find a general counterexample for t ≥ 2
we define a distribution Jt on {0, 1}t as Jt = T2◦Ut−2.
It is easy to get ND(Jt, Ut) = ND(T2, U2). Next we
want to show the following proposition.

Proposition 2∑
v∈{0,1}t\{0t}

ND(Jt·v, U1) =
∑

v∈{0,1}2\{00}

ND(T2·v, U1).

Proof. Note that for any t2 ∈ {0, 1}2 and for
any nonzero vector w ∈ {0, 1}t−2, (t2 ◦ w) ·
Jt = U1. Hence ND((t2 ◦ w) · Jt, U1) =
0. Therefore

∑
v∈{0,1}t\{0t}ND(Jt · v, U1) =∑

t2∈{0,1}2\{00}ND
(
(T2 ◦ Ut−2) · (t2 ◦ 0t−2), U1

)
=∑

t2∈{0,1}2\{00}ND(T2 · t2, U1). 2

In general we get, for any t ≥ 2, ND(Jt, Ut) >∑
v∈{0,1}t\{0t}ND(Jt ·v, U1). However, it is still pos-

sible that the parity lemma may exist for ND in a
different form.
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[5] Peter Harremoës and Christophe Vignat. An En-
tropy Power Inequality for th Binomial Fam-
ily. Journal of Inequalities in Pure and Applied
Mathematics. Vol 4, Issue 5, Article 93, 2003.

[6] Impagliazzo, R. and D. Zuckerman, How to Re-
cycle Random Bits, Proceedings of 30th IEEE
Symposium on the Foundations of Computer
Science, Research Triangle Park, NC, October
1989, pp. 248-253.

[7] Jianhua Lin. Divergence Measures Based on the
Shannon Entropy. IEEE Transaction on Infor-
mation Theory, vol 37, No. 1. pp.145-151. Jan-
uary 1991.

[8] R. Motwani and P. Raghavan. Randomized Al-
gorithms, Cambridge University Press, 1995.

[9] Noam Nisan and David Zuckerman. Random-
ness is linear in space. Journal of Computer and
System Sciences, 52(1):43-52, February 1996.

[10] F. Topsøe. Some inequalities for information di-
vergence and related measures of discrimination.
IEEE Transaction on Information Theory, vol
IT-46 no.4, pp.1602-1609. July 2000.

[11] L. Trevisan. Construction of extractors using
pseudorandom generators. In Proceedings of the
31st ACM Symposium on Theory of Computing,
1999.

[12] U. Vazirani. Strong Communication Complex-
ity of Generating Quasi-Random Sequences from
Two Communicating Semi-Random Sources.
Combinatorica, 7(4):375-392, 1987.

[13] Andrew C. Yao. Theory and applications of trap-
door functions. In 23rd Annual Symposium on
Foundations of Computer Science, pages 80-91,
Chicago, Illinois, 3-5 November 1982. IEEE.

6

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

1385




