
A Graph Based Methodology for the Representation and Evaluation of
Text Input Strategies for Miniature and Mobile Devices

Frode Eika Sandnes

Dept. Computer Science
Faculty of Engineering, Oslo University College

P.O. Box 4 St. Olav’s plass, N-0130 Oslo, Norway
frodes@iu.hio.no

Abstract–In this paper a new methodology for
representing text-input strategies for miniature and
mobile devices is presented. The methodology is
based on representing text-input strategies as
graphs. Graph representations allow different static
mobile text-input strategies to be represented in a
uniform manner. Further, different strategies are
easily compared as the graph representation allows
various characteristics to be extracted. The
methodology incorporates KSPC (KeyStrokes Per
Character), checking for error recoverability and
correctness. We also propose an error recovery
measure – the mean error recovery distance
(MERD). The methodology can be expanded to
include additional evaluation measures and it is
feasible to implement design-tool support. Finally,
the methodology is demonstrated on several text
entry designs from the literature.

Keywords: mobile text entry, model, graph.

1. Introduction to mobile text entry

Mobile text input is an important aspect of
contemporary human computer interaction. Users
send SMS messages using mobile phones, edit song
titles on miniature mp3 players and edit address lists
on wristwatches, or portable databanks.

Small and portable devices are attractive to users.
However, the small size results in small displays and
less room for interaction controls. The limited
surface area only allows for a few keys. There is also
a trade-off between the number of keys and the size
of the keys. Smaller keys are harder to use than larger
keys and leads to higher error rates as incorrect keys
are more easily pressed accidentally (Fitts’ Law [1]).
It is rarely room for full size keyboards, and mobile
devices usually have fewer keys than there are
characters in the alphabet.

For example, mobile phones allow users to hit a
key repeatedly to cycle through characters labelled
on the key to retrieve a desired character. A character
is thus retrieved with anything from 1 to 5
keystrokes.

Two and three key text entry systems first
appeared on arcade game machines in the 70'ties,
where users employ rotator keys and press a select
button to select the desired character. MacKenzie [5]
describes the date-stamp approach at great detail.

Raghunath and Narayanaswami [6] implemented a
wristwatch system, consisted of splitting the alphabet
into two and presenting the alphabet as two rings.
One key is used to toggle between the two rings, one
key is used to cycle forward in the rings and the final
key is used to select a character.

Sandnes et al. [7] investigated the Multi-ring
where characters are organised into groups, for
example ‘abc’, ‘def’, ‘ghi’ and so forth. First, the
user cycles through the list of groups using a ‘left’
and a ‘right’ key and then selects the group
containing the desired character. Then, the user
cycles through the characters within the group.

Four key text entry strategies has been studied by
Evreinova et al [8] and Tamaka-Ishii et al [9] and
studies addressing five key text entry strategies
include Moyes [10], Isokoski and Raisamo [11] and
Bellman [12].

1.1. Benefits of a graph based methodology

There are several benefits to introducing a graph
based methodology for modelling text entry
strategies. First, the text entry strategies must be
static in nature since graphs are static structures.
Hence, no dynamic aspects can be modelled. There
are several major challenges associated with dynamic
and adaptive user interfaces from a usability point of
view. Several studies on mobile text entry conclude
that adaptive and dynamic text entry strategies are
hard to learn and thus slow to use in practice
although they are theoretically fast to use (See [5,
12]). Further, adaptive and dynamic strategies
require feedback and cannot be used eyes-free.

Second, graph theory is well understood and
widely used in computer science and a wide range of
graph theoretic algorithms and graph analysis metrics
exists, which can be applied to the evaluation and
analysis of text-entry systems.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

411

Third, the graph notation allows automated
verification and analysis of text-entry designs to be
carried out by automatic tools.

2. A graph based methodology

The purpose of this methodology is to identify
weaknesses in text entry designs before one is
committing to user tests, as testing on real people is
an expensive and time-consuming activity. Note
however that the methodology is not a substitute for
testing with real users.

2.1. Scope

The methodology in this paper has two
limitations: it applies to static text entry strategies
where there is a limited set of control signals. A static
text entry strategy can be defined as one which does
not change throughout its lifetime and that its
response is predictable. For example, text entry
prediction and disambiguation both employ
dictionaries to enhance and simplify the text entry
process. In prediction the text entry system attempts
to predict which word the user types based on the
characters already entered [13], and it is an
established technique within the realm of disabled
users. Disambiguation-based techniques are often
associated with the T9 system. Both prediction and
disambiguation are difficult to capture in a static
model and are therefore beyond the scope of this
paper.

A limited set of control signals means that the
physical characteristics of a device has only a small
number of ways in which users can interact with the
device. For example, a desktop has a full size
QWERTY keyboard with more than 100 keys, while
a wristwatch may only have three keys for
interaction. Due to the limited number of control
signals, several signals must therefore be combined
into a sequence in order for symbols to be produced
or operations to be executed. Interaction strategies
which enjoy an unrestricted number of interaction
signals has no need for sequential input and are
therefore not relevant for this strategy.

We define text entry strategies where text is typed
in one step as simultaneous text entry, for example
standard QWERTY typing and chord typing. Further,
text entry strategies were text is entered in multiple
steps is termed sequential text entry.

2.2. Devices

In this study it is assumed that the device is of
limited physical size and thus has a limited surface
area. Further, it is assumed that the device has a form
of visual, aural or tactile feedback and some
interaction controls, such as keys. The interaction

controls can be used to send interaction signals
defined by the set S = s1, s2, .., sN, where N is the
total number of control signals. These controls are
typically keys, and the devices would typically be
one-hand devices, i.e. they are held in one hand and
operated by the other hand. Note that the model is
capable of representing two-handed operation as
well. In this study devices with three keys are used
for illustrative purposes. The concept of three buttons
is appealing and it is the minimum number of buttons
one need in order to practically operate a device and
they can be operated with one hand only, in such a
way that each key is assigned a unique finger.
Implications of this is that the fingers do not need to
be moved across a keyboard from one key to another
and physical navigation errors and the delay
associated with moving fingers between keys are
eliminated [14]. Further, since the fingers constantly
cover the keys, no backlighting of the keys is needed
resulting in an overall reduced power consumption.
However, the model proposed in this paper is not
limited to just three keys.

2.3. Signals

Given a device with K keys, in this instance three
keys, several categories of signals can be sent. First,
single keystrokes can be used to send K different
signals. Second, chording can be used to increase the
number of possible signals. With K keys K2-1 signals
can be sent and with three keys 7 different signals
can be chorded. Third, keystroke duration can be
used to express different signals – for example short
taps and long or hold strokes. With K keys 2K signals
can be sent when allowing for short and long taps. If
chording and keystroke duration is combined a total
of 2(K2-1) signals can be generated. For 3 key
devices this would account to 14 different signals.
Note however that a combination of chording and
keystroke duration is difficult and would require
practice.

In the proposed methodology single keystrokes
are denoted by ei where ei indicates that key ei is
pressed, ei+ej indicate a chord signal comprising of
the keys ei and ej, and a short tap is denoted by éi and
a long tap is denoted by êi.

2.4. The alphabet

The alphabet is a set of symbols that that the user
needs in order to compose the desired texts. This
study is restricted to languages using phonetic scripts
represented by a limited set of symbols, for example
most European languages such as English. Languages
using ideographic scripts such as Chinese or Korean
may need a totally different approach \cite{Chinese
chord paper}.

The alphabet can be subdivided into two
categories – ordered symbols and unordered

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

412

symbols. Ordered symbols include the alphabet ‘a’,
‘b’, ‘c’, .. and the number ‘0’, ‘1’, ‘2’, ‘3’, ... Most
users know that ‘b’ follows ‘a’ in the alphabet and ‘c’
follows ‘b’ etc. This knowledge can be used to
improve the interaction. Examples of symbols
without a well-established or standard order are the
punctuation symbols, basic arithmetic operators etc.
In this study only ordered symbols will be
considered, but the method extends to unordered
symbols as well. The set of symbols A, also known as
the alphabet, comprise of the symbols a1, a2, .., aK
where K is the size of the alphabet and the index i
indicate the rank in the order such that ai-1 < ai < ai+1,
∀ ai ∈ A.

2.5. Editing

Advanced editing is included into the model by
treating the editing commands as part of the character
stream. In order for advanced editing to be
incorporated into the model text entry strategy must
therefore be equipped with editing symbols, for
example BACKSPACE, LEFT, RIGHT, UP,
DOWN, INSERT and DELETE to mention a few.
Further, case is included by providing TO-
UPPERCASE and TO-LOWERCASE symbols or
simply a CAPS-LOCK symbol. The particular editor
is therefore responsible for interpreting these editing
symbols that arrives in the symbol stream.

2.6. Modelling text entry strategies

A static text entry strategy can be modelled using
a finite state machine modelled as a directed graph
G(V, E), where the vertices V represent text-entry
states and the edges E represent transitions between
these states. The states typically represent time-
intervals when the device is waiting for input from a
user while the users are determining their next move.
A transition is triggered by a user signal, i.e. when a
user presses a key, and the finite state machine moves
into a new state. Transitional edges are therefore
labeled with a signal label si indicating the user signal
(or keystroke) that triggers the transition. A transition
may also trigger an output signal. This is denoted
using the notation si:aj, where the signal si triggers
the symbol aj. For example ‘2:c’ denotes that signal
‘2’ produces the output ‘c’, ‘3:’ denotes that signal
‘3’ leads to a state transition but no symbol is output,
‘:d’ defines a default state transition that occur
without a signal but produces the symbol ‘3’ and
finally ‘:’ indicates a default state transition without a
output symbol.

To simplify the diagram and increase readability
end states are denoted by edges that do not point at
other states. End states are therefore also easy to
identify in a diagram. The graph should always
comprise a start state or start vertex. In this paper

start states are represented using a gray shaded
vertex.
A graph can only have one starting-state but may
possess multiple end-states.

Given a test entry strategy defined using graph G,
then the shortest path between the two states Ca and
Cb is represented using Path(G, Ca, Cb), and the
length of this path is |Path(G, Ca, Cb)|. We also
define an output state Cout(ai) as a state that
comprises an output edge representing a transition
that produces the output symbol ai. Finally, the set of
exit states Cexit are states without outbound edges.

3. Evaluating text-entry strategies

In this section evaluation criteria for mobile text-
entry are explored, namely correctness, error
recoverability, KSPC and a new measure – mean
error recovery distance MERD.

3.1 Correctness

We define the correctness of a text entry strategy
to mean that it is both feasible and it has full
coverage. A feasible strategy can be implemented
within the constraints of the target device, and a
strategy has full coverage if all the symbols of in the
alphabet can be output.

3.2. Feasibility

For a device to be feasible the following two
criteria must be satisfied. First, the number of
outbound edges or leaving transitions from a given
state must not exceed the number of signals |S|
supported by the device. A simple graph traversal
can be used to ensure that this constraint is satisfied.
Second, each trigger of a state must be unique. If two
triggers or more are identical then the design is
ambiguous. This constraint can be verified by a
simple graph traversal.

3.3. Coverage

For a text entry strategy to cover the entire
alphabet there must be at least one unique transition
for each symbol of the alphabet. I.e. for each symbol
in the alphabet there must be an edge where the
symbol is the output.

Further, there must be a path from the start state to
all the states where the transitions labelled with the
output symbols originate. This can be verified by
applying Flynn’s algorithm to compute the distance
between any two vertices in the graph. Flynn’s
algorithm computes a distance matrix based on an
adjacency matrix representation of the graph.
Coverage is then ensured if the distance between the
start state and all the states that are the origins of

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

413

output producing transitions are greater than zero.
Note that with small alphabets the time complexity of
computing the distance matrix is insignificant. Also
note that this matrix can be reused for several other
evaluation measures discussed in subsequent
sections.

3.4. Error recoverability

Although a text entry design has full coverage it
might not be possible to fully recover from errors.
We define error recovery as the ability to reach any
state in the text entry strategy from any other non-exit
state. Typically, a user makes a mistake while
selecting the desired letter by walking the graph, and
then the error recovery characteristics of the graph
will allow the user to reach the desired state without
restarting from the origin. In terms of graph theory
there should be a path from any state to any output
state in the graph for the text entry design to have
error recovery capabilities. When using Flynn’s
algorithm (as described in a previous section) all the
non-diagonal elements in the distance matrix should
be non-zero.

3.5. Mean error recovery distance (MERD)

We propose a measure indicating the average
effort required to recover from errors, namely the
mean error recovery distance (MERD). Note that
MERD is only a simple distance oriented measure
and does not incorporate any cognitive factors.
Although cognitive factors are not included the
MERD can serve as a best-case and identify poor text
entry strategies.

The states on the path from the start-state to the
output state associated with the desired symbol a is
given by P = Path(G, Cstart, Cout(a)). Imagine that the
user has made a mistake and ended up in a state not
on this path. We define the set of states not on the
path from Cstart to Cout(a) that are not exit states as E
= P’/Cexit, i.e. the compliment of the set of states on
the path that are not exit states. The MERD
associated with reaching the output state associated
with symbol a when being in a state not on the path
of a is:

∑
∈

=
Ec

out aCcGPath
E

aMERD))(,,(
1

)((1)

In other words, the average distance from the
states not on the path from the start state to the output
state of the symbol and to the output state of the
symbol is computed. The overall MERD is computed
as:

∑
∈∀

=
Aa

afaMERDMERD)()((2)

Namely, the sum of the average recovery distance
for each symbol of the alphabet multiplied by their
respective probability of occurrence.

3.6. KSPC

KSPC (keystrokes per character) is a measure
proposed by MacKenzie [15-17], which indicates the
number of keystrokes required in order to retrieve a
particular character. The KSPC measure usually
refers to the average KSPC, the minimum KSPC and
maximum KSPC. Obviously, KSPC indicates the
potential speed in which text can be typed. However,
KSPC is criticised in the human computer interaction
community for being over simplistic not capturing
other important factors affecting typing speed. We do
not wish to add to this debate but rather demonstrate
how to compute KSPC using the proposed
methodology.

Given a graph model of the text interface it is easy
to determine minimum maximum and average KSPC.
Given a starting state Cstart and a set of output states
Cout ⊆ C, then the minimum KSPC is given by:

))(,,(minmin aCCGPathKSPC outstart
Aa∈

= (3)

The maximum KSPC is given by:

))(,,(maxmax aCCGPathKSPC outstart
Aa∈

= (4)

and finally the average KSPC is given by:

∑
∈

=
Aa

outstart afaCCGPathKSPC)())(,,((5)

where f(a) is the probability of occurrence for the
character a.

4. Examples of the methodology applied

For the purpose of demonstrating the proposed
methodology six text entry strategies are modelled,
namely the DateStamp approach (see Figure 1), a
new one-way DateStap strategy (see Figure 2),
Raghunath and Narayanaswami’s [6] wristwatch
strategy (see Figure 3), multi-tap (see Figure 4),
Sandnes et al’s [7] multi-ring (see Figure 5) and a
mesh (see Figure 6). The characteristics of each
strategy is summarised in Table 1.

The graph model for the date-stamp method for an
alphabet of five characters (‘a’, ‘b’, ‘c’, ‘d’ and ‘e’) is
presented in Figure 1. It is obvious how this extends
to the full alphabet (omitted to save space). The user
start in the state indicated with the gray background,
and the user can move to the two neighboring states
using key 1 or 2. To select the character associated
with the state the user presses key 3. Clearly, this
design is feasible as each state only has three
outbound edges. Further, the design has full coverage
as there is a path from the start state to all the other
states. In fact, there is a path from any non-exit state

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

414

to any other state and the design supports full error
correction with a MERD = 5.01.

Further, KSPCmin = 1 as only one transition is
needed to produce the output character ‘a’ (assuming
snap-to-beginning). KSPCmax of this design is
identical to the diameter of the graph [18]. The
diameter of a graph is defined as the longest path
between any two vertices of a graph. For this
particular design KSPCmax = 3. For the English
alphabet KSPCmax = 14. The mean number of
keystrokes per character for the English alphabet is
KSPC = 7.77.
The graph representation simplifies the
understanding of text entry designs, and in this next
example shown in Figure 2 a subtle but significant
alteration is made to the previous date-stamp
approach (This is to the best of our knowledge a yet
undocumented strategy). The difference between this
strategy and the date stamp approach is that the user
only can scroll in one direction, and that the user at
each step can select one of two characters. The

example design in Figure 3 also comprises 5 states,
but it supports twice as many output symbols (a total
of 10 symbols). The design is feasible and has full
coverage. Clearly, the KSPCmin = 1, and KSPCmax = 5
for this design and KSPCmax = 14 for the full English
alphabet and the mean KSPC = 6.113. This strategy
is thus theoretically more efficient than the traditional
date-stamp approach. The strategy is error
recoverable. However, the drawback is that the user
can only scroll in one direction and the user may
have to traverse the entire ring in order to make a
correction. Although the maximum distance needed
to recover from error is 12 for both the one-way
datestamp and the datestamp strategy, the mean error
recovery distance is larger for the one-way datestamp
strategy (MERD = 6.5) than it is for the datestamp
method (MERD = 5.01). However, if one for instance
assumes a 5% error rate then the benefits of the
decrease in KSPC for the one-way datestamp
outweighs the drawbacks associated with its
increased MERD.

Figure 1: The classic date-stamp
text entry strategy

Figure 2: The one-way date-
stamp text entry strategy

Figure 3: The Raghunath and
Narayanaswami wristwatch text

entry strategy

Figure 4: The multi-tap text entry

strategy
Figure 5: The multi-ring text

entry strategy
Figure 6: The mesh text entry

strategy

The multi-tap approach is a strategy that is widely
used on mobile phones. The design in Figure 4
incorporates the characters ‘a’ to ‘f’ where three
letters is assigned to each of the two of the keys and
the third key is used as a break key. To expand this
design to the full alphabet more letters are simply
added to each of the multi-tap keys. The design is
feasible and has full coverage. However, this strategy
is not fully error recoverable. For example if the user
starts by pressing key 1 the user is moved to state 2.
Imagine that this is a mistake as the user intends to
type the character ‘d’. There is no way go get to state
5 without producing output. If for instance the user

chooses to press key 2 to reach state 5 the character
‘a’ is output. Hence, MERD is not applicable.

Although the multi-ring strategy shown in Figure
5 is correct it is not error recoverable. Once the user
enters one of the sub-rings there is no path back. For
example, imagine that the user want to enter
character ‘d’. The user by accident presses key 3
from the start state 1 which moves the user to state 4.
State 4 gives the user access to one of the characters
‘a’, ‘b’ or ‘c’. There is no path from state 4 to state 7,
which is used to produce the letter ‘d’. Consequently,
MERD is not applicable.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

415

Table 1: Summary of the characteristics for the
six text entry strategies

Test entry
strategy

min
KSPC

max
KSPC

(fig)

max
KSPC

mean
KSPC

MERD

Datestamp 1 3 14 7.77 5.01
Uni d.s. 1 5 14 6.11 6.50
Rag. watch 1 3 16 7.19 6.20
Multitap 1(2) 4 14 6.69 N/A
Multi-Ring 2 4 7 4.98 N/A
Mesh 1 5 9 4.50 4.50

The mesh strategy shown in Figure 6 is not

previously documented. It is a simplification of the
bidirectional wraparound mesh [12] for five-key
devices. Three characteristics of the mesh are
particularly suitable for mobile text entry: each
vertex has few outbound edges (i.e. buttons), the
diameter of the mesh structure is relatively small and
there is a path between any two states in the structure
(error recoverability with a short distance). Figure 7
shows a 3x3 mesh incorporating the characters ‘a’ to
‘i’. In this design one key is used to cycle vertically,
the second to scroll horizontally and the third key is
used to select letters. Obviously, the strategy is
feasible and has full coverage. Table 1 shows that
this strategy is the best when considering the mean
KSPC and MERD, which are both 4.5 (note that these
values depends slightly on the character layout). Only
the MultiRing has lower KSPCmax = 7, as opposed to
KSPCmax = 9 for the mesh.

5. Summary

A graph based methodology for the
representation, design and evaluation of text entry
techniques for miniature mobile devices is presented.
The technique allows different text entry strategies to
be compared. Further, it is easy to check for
correctness and error recoverability KSPC and a new
error recoverability measure ERP is proposed. The
methodology is not intended as a replacement for
typing test using real people on real devices but
rather as an early screening tool as it will identify
poor text entry strategies early before the interaction
engineer commits to expensive testing.s

References

[1] P. M. Fitts, "The information capacity of the

human motor system in controlling amplitude of
movement," Journal of Experimental
Psychology, vol. 47, pp. 381-391, 1954.

[2] S. H. Levine, "Multi-character key text entry
using computer disambiguation," in the
proceedings of RESNA 10th annual conference,
San Jose, California, 1987.

[3] J. G. Kreifeldt, "Reduced keyboard designs using
disambiguation," in the proceedings of The

human factors society 33rd annual meeting,
1989.

[4] M. T. King, "JustType. TM. - Efficient
communication with eight keys," in the
proceedings of Proceedings of the RESNA
95¨Annual conference, Vancouver, BC, Canada,
1995.

[5] I. S. MacKenzie, "Mobile Text entry using three
keys," in the proceedings of NordCHI'02, pp. 27-
34, 2002.

[6] M. T. Raghunath and C. Narayanaswami, "User
Interfaces for Applications on a Wrist Watch,"
Persona7-30l and Ubiquitous Computing, vol. 6,
pp. 17-30, 2002.

[7] F. E. Sandnes, H. W. Thorkildssen, A. Arvei,
and J. O. Buverud, "Techniques for fast and easy
mobile text-entry with three-keys (non-dictionary
based)," in the proceedings of HCISS'37
Hawaiian International Conference on System
Science, Big Island, Hawaii, 2004.

[8] T. Evreinova, G. Evreino, and R. Raisamo,
"Four-Key Text Entry for Physically Challenged
People," 2004.

[9] K. Tamaka-Ishii, Y. Inutsuka, and M. Takeichi,
"Entering ext with A Four-Button Device," in the
proceedings of The 19th International
Conference on Computational Linguistics
COLING 2002, Taipei, Taiwan, pp. 988-994,
2002.

[10] J. Moyes, "Chord Keyboards," Applied
Ergonomics, vol. 14, pp. 55-69, 1983.

[11] P. Isokoski and R. Raisamo, "Device
independent text input: A rationale and an
example," in the proceedings of the Working
Conference on Advanced Visual Interfaces
AVI2000, Palermo, Italy, 2000.

[12] T. Bellman and I. S. MacKenzie, "A
probabilistic character layout strategy for mobile
text entry," in the proceedings of Graphics
Interface '98, Toronto, Canada, pp. 168-176,
1998.

[13] J. J. Darragh, I. H. Witten, and J. M. L., "The
reactive keyboard: a predictive typing aid," IEEE
Computer, vol. 23, pp. 41-49, 1990.

[14] J. Lehikoinen and M. Roykee, "Lehikoinen, J.
and Roykee, M.",," Interacting withComputers,
vol. 13, pp. 601-625, 2001.

[15] I. S. MacKenzie, "KSPC (keystrokes per
character) as a characteristic of text entry
techniques," in the proceedings of Mobile HCI
2002, 2002.

[16] M. Silfverberg, I. S. MacKenzie, and P.
Korhonen, "Predicting text entry speed on
mobile phones," ACM CHI'2000, vol. 1, pp. 9-
16, 2000.

[17] C. L. James and R. K. M., "Text Input for mobile
devices: Comparing Model prediction to actual
performance," in the proceedings of CHI'2001,
pp. 365-371, 2001.

[18] V. Kumar, A. Grama, A. Gupta, and G.
Karpypis, Introduction to Parallel Computing -
Design and analysis of algorithms: The
Bennjamin/Cummings Publishing Company, Inc,
1984.

Int. Computer Symposium, Dec. 15-17, 2004, Taipei, Taiwan.

416

