1998 Intemationat Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

Lottery Drawing

Jenshiuh Liu and Yeh-Ching Chung

Dept. of Information Eng. and Computer Science
Feng Chia University
Taichung, Taiwan 407
ROC

Abstract:

We consider the problem of an unbiased choice
of k items at random from a total of n candidates,
where £ < n. This problem has many applications,
for example, in quality control or lottery drawing.
We present three algorithms to tackle the prob-
lem. All three algorithms have their own merit
and are based on using random numbers. Due to
the nondeterministic characteristics, the execution
time for each algorithm is primarily determined by
the number of random numbers used in its process.
We formally analyze each algorithm by computing
its expected number of random numbers required
and the variance associated with it. Computer sim-
ulations are used to gain further insights of these
algorithms. Finally, we present a general guide-
line to direct users in selecting an appropriate al-
gorithm based on the values of k¥ and n.

1 Introduction

We consider the problem of an unbiased choice of
k items at random from a total of n candidates,
where k£ < n. This problem has many applications,
for example, in quality control or lottery drawing.
In quality control, we usually need an unbiased
sample of size k out of the total n items to ex-
amine if the chosen ones are with certain property
or not. In lottery drawing, the k lucky numbers
must be drawn unbiasly from the n balls. Many
data processing applications can be modelled as a
lottery drawing, for example, to select k out of the
n students who want to enrol in a certain course, or
to select k out of the n persons who are interested
in purchasing a certain stock when it goes public.

In this work, we study the problem of efficient
lottery drawing using computer. Although some
lottery players let computers choose their lucky
numbers, few people trust that the computer will
draw lottery fairly. People used to watch on TVs
and expect that balls labeled with their lucky num-
bers drop from the pot on the lottery drawing
nights. It is hard to image how many people still
want to play lottery if the drawing process is re-
placed by a computer to pick the lucky numbers.
In some applications, it is almost impossible to use
balls or other similar substitute for lottery draw-
ing, especially when n gets very large. Thus, effi-
cient and unbiased algorithms for lottery drawing
are necessary.

We present three algorithms to tackle the prob-
lem. Al of these are based on using random num-
bers. The execution time for each algorithm is
primarily determined by the number of random
numbers used in its process. Each algorithm has
its strength for certain values of ¥ and n. Due
to the nondeterministic characteristic of random
numbers, the execution time for each algorithm will
vary for different drawings. To further investigate
these algorithms, we choose the expected number
of random numbers required in each algorithm as
our performance matric. We formally analyze each
algorithm by computing its expected number of
random numbers and the variance associated with
it. Although the expected number of trials needed
is a good measurement for the performance of the
three algorithms, there are other factors involved.

‘Computer simulations were used to gain further -

insights of these algorithms. The rest of this pa-
per is structured as follow. Section 2 presents the

75

1998 Intemational Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.Q.K.U., Tainan, Taiwan, R.0.C.

three algorithms. Their formal analysis is given in
Section 3. Section 4 shows computer simulation re-
sults. Finally, Section 5 contains some concluding
remarks.

2 Unbiased Lottery Drawing

The lottery drawing problem has many applica-
tions in different fields. In some cases, for example
real lottery, an ID number to represent a candi-
date is good enough. One the other hand, in some
data processing, each candidate usually consists of
a collection of data called a record. The drawing
should not depend on the content of each record.
To simplify our presentation, we label each candi-
date with an ID number ¢ (1 < 7 < n), and view
each candidate as a number. Therefore, we use an
integer array to mark or store the selected items in
all three algorithms. If the data been processed are
in aform of records, an extra array of pointers may
needed in order to access the data records after the
selection.

2.1 Random Drawing without
Replacement

An obvious approach is to select each item with
probability k/n. It seems appropriate, but it gives
only an average of k£ items in the sample. It is
quite possible that the number of selected items
will either too large (> k) or too small (< k) to give
the necessary results. The following modification
(see e.g., [3]) gives what we want: We examine
items one by one; the i+1% (0 < 7 < n) item should
be selected with probability (k—s)/(n—1), where s
is the number of items have already been selected
upto the i** item. To see why the probability is
appropriate, we focus on the selection of the 7 +
1°¢ item. Consider all the possible ways to choose
k items form n under the condition that s items
have been selected in the first ¢ items: There are
n—1
]C — S8
the remaining n — i. The selection of the ¢ + 1°¢
item implies that k£ — s — 1 items must be selected
from the remaining n — ¢ — 1. Therefore, exactly

n—1-1 n-—1 k—-s
(k—s——1>/(k—s):n—i

of these will select the ¢ + 1°¢ item.

possibly ways to select k — s items from

The previous idea leads us to algorithm Alg_o.

Alg_o
1. Fori=1 to n do
Mark[i]= * ’. -
2. Set 1=0, s=0.
3. While (s< k)
3.1 Generate a random number R,

uniformly distributed in [0,1).
3.2 If R< %% then

Mark[i+ 1] = ’*’, s=s+1.

3.3 i=12+1.
4. For i=1 ton do
4.1 If Mark[i]= ’*’ then select X[¢].

Alg_o seems to be unreliable at the first glance,
expecially one may ask how can we guarrante that
step 3 terminates? In fact, step 3 will repeat no
more than n times. To see this, we examine the
following extreme case: Suppose that none of the
first n — k itmes are selected (i.e., we are in a situ-
ation of s = 0 and ¢ = n—k,), then the probability
to select the n — k 4 1** item and what follows will
all be, by Alg_o, exactly 1. In other words, all the
remaining k itmes will be selected with probability
1. Hence, we have shown that step 3 repeats at
most n times.

Another question one may ask is that whether
Alg_o gives an unbiased result. It is not difficult to
see that the probability of the first item been se-
lected is k/n. Although, we do not select the ¢+ 1°¢
item with probability k/n, the following argument
shows that the probability of any item been se-
lected is exactly k/n. We have seen that for ¢ = 0,
the probability to select the first item is k/n. For
i = 1, we distinguish between the following two
cases: (A) the first item was not selected (i.e.,
s = 0), and (B) the first item was selected (i.e.,
s = 1). The probabilities for cases A and B to oc-
cur are (1—k/n) and k/n, respectively; The proba-
bilities to select the second item are, by Alg_o, ;—f—l—
and £=L for cases A and B, respectively. Therefore,

n—1
the probability to select the second item is

kk-1 &

n—-k k

n n-1

an—1 n

76.

In general, the probability to select the i+ 1%* item
can be expressed as

i ()@

s=0

It can be shown that the previous expression equals
to k/n for ¢ < n, which means that the probability
to select any item is exactly the same. Thus, Alg_o
gives an unbiased result.

We have seen that Alg_o correctly gives an unbi-
ased result, but it may not perform well under cer-
tain conditions such as when ¥ < n. To see this, we
examine the following example. Given k = 1 and
n = 100, it may take 1 iteration in step 3 in the
best case, or it may take 100 iterations if we are un-
lucky. In fact, we will see in the next section that
on the average Ff_—l(n + 1) drawings are needed to
complete a selection of k£ candidates out of n, which
says that, on the average, 50.5 trials are needed in
a selection of 1 out of 100 candidates. Our next
approach tries to remedy this.

2.2 Random Drawing with
Replacement

The idea behind our second approach is similar to
the (real) lottery drawing. In other words, we as-
sign each candidate an identification (ID) number
from 1 to n, put n balls labeled from 1 to » to an
urn, and randomly draw k balls from the urn; A
candidate is selected if one’s ID number matches
any of the labels of the & balls that have been
drawn out of the urn.

The implementation of the above idea needs
some attentions. Observe that to draw a ball is
similar to get a random number between 1 and n.
To draw the first ball from the urn can be simulated
by generating a random number between 1 and n.
However, to simulate the remaining drawing is not
so straight forward. Since all the balls have differ-
ent labels, we should have & distinct labels once we
draw k balls. One question arises is that how can
we simulate the i** drawing such that the i** ran-
dom number is different from all the previous 1 —1
numbers. One way to handle this is to generate a
random number in the range of [1,n — i + 1] for the
ith drawing and reallocate all the candidates to the
first n — ¢ positions (relabel all the candidates from
1 to n—1) after the i** drawing has been completed.

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

This scheme may create a tremendous amount of
work (reallocation) after each drawing when n is
large.

To avoid the reallocation, we always generate
random numbers in the range {1,n] and record all
the (ID) numbers that have been appeared. At
each drawing we ignore the numbers if that have
been drawn before, and repeatedly generate ran-
dom numbers until a new one has been obtained.
Formally, algorithm Alg_w is as follows.

Alg_w

1. For =1 to n do
Mark[i] = 7,
2. Set s=0.
3. While (s < k)
3.1 Generate an integer random number R,
uniformly distributed in [1,n].
3.2 Iif Mark{R]= > ? then
Mark[R] = ’*’, s=s+ 1.
4. Fori1=1to n do
4.1 If Mark[s]= ’*’ then select X[i].

The array Mark[] in Alg.w is used to record
whether candidates have been selected before.
With this, in step 3.2 of Alg_w, we ignore the ran-
dom number R if it has been appeared before. One
may also ask whether Alg w gives an unbiased re-
sult. Since in step 3.2 we just ignore the selected
ones, all the trials are still independent and the
probability to select any one is still equally 1/n.
Therefore, Alg_w gives an unbiased result. In Sec-
tion 2.1, we have seen that step 3 of Alg-o repeats
no more than n times. Moreover, on the average,
50.5 trials are needed in a selection of 1 candidate
out of 100. Here, it can be seen that, with Alg_w,
exactly 1 trial is needed in a selection of 1 candi-
date out of 100. One interesting question is that
how many iterations should be conducted in step
3 of Alg_w so as to select k candidates out of n. In
the next section, we will show that on the average
no more than n{H, — H,_) trials are needed in a
selection of k candidates out of n, where H, is the
nt* Harmonic number. Hence, Alg_w takes exactly
1 trial to select 1 candidate out of 100, which is
quite an improvement over Alg_o under this exam-

77

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

ple. On the other hand, Alg_w takes about 290.4
(100(H100 — Hs)) trials to select 95 candidates out
of 100. This is much worse than the result of Alg_o,
which takes no more than 100 trials. Our third ap-
proach will give reasonable result in all cases.

2.3 Random Permutation

A different approach to tackle the problem is to
arrange the n items in a certain order and then
select the first k in the line. One issue remains to
be solved is: how to properly arrange the items. It
is known that there are n! different ways to order
n items; any of these could be our choice. With
the above observation, an immediate solution is to
choose anyone of the n! permutations. Therefore,
our third method is to generate a random permu-
tation of the n items and then select the first & in
that permutation. To produce a random permuta-
tion is similar to shuffle the items. The problem
of shuffling has been studied before. Assume that
initially we place the n items in any order. It is
known, see e.g., [3], that a random permutation of
n items can be obtained by a sequence of n — 1
exchanges; In the " (1 <'i < n — 1) iteration we
simply exchange the items placed at the i** and at
the r** positions, where r is a random number in
the range [z, n]. Formally, Alg_p is as follows.

Algp

1. Fort=1ton-1do

1.1 Generate an integer random number R,
uniformly distributed in [z, n].

1.2 Exchange X[7] and X[R].

2. Select X[1], X[2], --- , X[A].

Again, one may ask whether Alg_p gives an un-
biased result. To answer this, we demonstrate that
step 1 in Alg_p gives an unbiased random permu-
tation. For ¢ = 1, by step 1.1, any of the n items
could be selected (with probability 1/n) and per-
manently placed at the first position. In general,
one can see that for ¢ = ¢, any of the remaining n—1
items could be selected (with probability 1/(n—1))
and permanently placed at the #** position. There-
fore, Alg_p gives an unbiased result.

'{8

3 Performance Analysis

In this section, we formally analyze the perfor-
mance the three algorithms. We use the number of
trials (random variates) needed (to draw & objects
out of the n candidates) as our metrics, since the
execution time of any algorithm is primarily deter-
mined on this factor. Due to the nondeterministic
characteristic of the Alg_o and the Alg_w, the num-
bers of trials will vary for different drawings. We
compute the expected numbers and the variance of
the expected numbers for the Alg_o and the Alg_w.
On the other hand, a random permutation can be
obtained with a fixed number of random variates.
We give the exact number for the Alg_p.

3.1 Random Drawing without
Replacement :

The approach taken by the Alg_o can be modeled
as follows. Suppose that we have an urn containing
n balls of which k are red and others (i.e., n — k)
are black. Balls are randomly drawn one by one
without replacement until exactly all ¥ red balls
are drawn. Let P(s) denote the probability that
the k** red ball will be drawn on the st* trial, i.e.,
it needs s trials to complete a drawing. Let E(S)
denote the expected number of trials to complete
a drwaing. We compute P(s) first, then obtain the
E(S).

Since there is no way to have k red balls in less
than k trials, we have
P(s)=0 for s<k.

For k£ < s < m, exactly k - 1 red balls and s - k
black balls are drawn in the first s — 1 trials and
the k** red ball is drawn on the st* trial. Hence,
the probability of completing a drawing in exactly
s, where k < s < m, trial is

(f0) (52)

k-1 s—k 1

P(s) = n n—s+1
(13

With some algebraic operations, the probability
can be expressed as

P(s):(j_—_i)/(;:) for k<s<n (1)

It is known that E(S) =), sP(s). Hence,
g1)(3)
s=k

With some algebraic operations, the expected
number of trials can be expressed as

o=(1) 5 ()

The summation term in the previous equation is

n+1
exactly (P) (see e.g., [1, pp-159]). There-
fore, we have

E(S) = ——(n+1) (2)

k41

It can be shown that E(S)is an increasing function
of k for any fixed n. Furthermore, the expected
number of trials for the Alg_o is at least 0.5(n + 1)
(which occurs when & = 1) and never exceeds n
(when k& — n), ie., it is in the range of [0.5(n +
1),n]. To investigate how well is the distribution
of s, we further compute its variance (denoted by
V(S)).

Define E(S(S+ 1)) = > ,s(s+ 1)P(s). It can
be seen that E(S(S + 1)) = E(5%) + E(S). In a
way similar to our computation of E(S), it can be
shown that

E(S(S+1)) = ros(n + 1)(n +2)

k+
By definition, V(S) = E(S?) — E*(S). Hence,

V(S) E(§%) - E*(5)
E(S(S+1)) - E(S) - E*(S)
k(n - k)(n +1)

T Grk+1lE (3)

3.2 Random Drawing with
Replacement

"The approach taken by the Alg_w can be modeled.

as follows. Suppose that we have an urn contain-
ing n balls that are labeled 1,2,---,n. Balls are
randomly drawn one by one; the label of each ball
drawn is recorded and then put back to the urn
(with replacement) until exactly k distinct balls

1998 Intemational Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

have been obtained. Let P(s) and E(S) be defined
as in Section 3.1. We compute P(s) first, then
obtain the E(S).

To compute P(s), we consider the problem of
random distribution of s balls into n boxes and
seek the probability gix(s) that exactly k£ boxed
are empty. The random distribution problem is
an example of the occupancy problems (see e.g.,
[2]), which has various reformulations such as the
coupon problem. The probability for gx(s) is
known [2, pp.43] to be :

e (1) Bo(15) (=422

3=0

It can be shown that P(s) is exactly the probability
of the instance that the k** distinct box been filled
on the s** trial. This instance is equivalent to the
conjunction of the following two conditions: (A)
exactly k—1 boxed are filled in s—1 trials, and (B)
the st* ball is distributed to one of the remaining
n —k + 1 empty boxes. Let py_1(s — 1) denote the
probability of condition (A), i.e., after the random
distribution of s—1 balls, there are n —k +1 empty
boxes. With the definition of gx(s), it can be seen
that

Pr-1(s = 1) = gn_gsa1(s — 1) 4)

The probability of condition (B) is simply "—“—Z*‘—l
Therefore, we have

—-k+1

P(s) = pr_y(s ~ 1)2 (5)

n

We have seen that the number of trials to com-
plete a drawing in Alg_o varies in the range of [k, n].
Equations 4 and 5 show that the number of trials
to complete a drawing in Alg_w is also a random
variable. Indeed, it takes at least & trials to com-
plete a drawing of k¥ distinct balls. However, if we
were unlucky, we may never complete a drawing.
In other words, the number of trials to complete a
drawing in Alg_w is in the range of [k,c0).

One way to compute E(S5), as we did in the pre-
vious subsection, is to multiply Eq.5 with s and
sum over all possible values of s. This approach
leads us to work on an infinite series, which is
rather complicated. Instead of doing this, we take
the following approach: For k = 1, we need exactly
one trial to draw one (distinct) ball. For & > 2,

79

1998 Intemational Computer Symposium
Workstop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

let z; (where ¢ = 1,2,- — 1) denote the num-
ber of trials that must be performed after the 7t
new ball enters the sample and until the (z + 1)”‘
new ball enters the sample. It can be seen that
s=1+z 4+ +Tp_1-

We now focus on the z’s. The event z; = j occurs
if and only if the first j — 1 balls drawn after the
ith distinct ball enters the sample duplicates any-
one of the previous i distinct balls, and the 74 ball
drawn is different from the previous ¢ balls. Since
all the drawings are independent and the trial con-
tinues until we obtain a distinct ball, z; is in a
geometric distribution with parameter "n—"— Thus,
E(X;) = ;Z;. Furthermore, all the trials on z}s are
also independent. Therefore,

E(S) = E1)+ E(z1)+ - -+ E(zx-—1)
k-1
- 1+.Z(n7ii)
— 11— _._1 +--- _____1]
= Ctey T Y eTErD
= n(Hn— Hnk) (6)

where H, is the n® Harmonic number. Similar to
the case of the Alg_o, Eq.6 shows that E(S)is an
increasing function of k for any fixed n. More pre-
cisely, the expected number of trials for the Alg_w
is at least k.and never exceeds n(H, ~ H,_), To
investigate how well is the distribution of s for the
Alg_w, we compute its variance (denoted by V(.5)).
We have defined that s = I+ 2y +---+z;_;. By

definition,
V(s) =

VOA+ X1+ Xo+ -+ Xg-1)

Since all the s are independent, we have
V(s)=

V(X1)+V(X2)+ -+ V(Xko1)

Recall that z; is in a geometric distribution, its
variance is (11_111777 Therefore,

V(5)

Z('n—z
1 k-
T k+1)2](7)

80

3.3 Random Permutation

We have seen that a random permutation of n ob-
jects can be completed in n — 1 exchanges. In our
problem only the first k£ objects -are selected. In-
deed, it is not necessary to order the rest n — & ob-
jects. Therefore, we can modify the procedure for
random permutation and terminate the (permuta-
tion) procedure after making the first ¥ exchanges.
With this modification, we have the following re-
sult:

ES) = k | (8)

V(S) = 0 | (9)

3.4 Comparison

To summarize, the expected numbers of trials for
Alg.o Alg-w and Alg_p are captured in Eqs. 2, 6
and 8, and their variances are captured in Egs. 3,
7 and 9, respectively. Table 1 shows some values of
expected number of trials and standard deviation
(square root of variance) for the three algorithms
for n = 10, 000.

It can be seen that Alg_p needs exactly k trials
and its standard deviation is always 0, which is
the best possible and the best choice of the three.
The performance of Alg.o is acceptable only when
k ~ n, under that condition the expected number
of trials is about n; however, the expected number
of trials is at least 0.5(n + 1), even when we just
need to pick up a single one (i.e., k = 1) out of
the n candidates; this is not acceptable for large n.
On the other hand, Alg_w performs reasonably well
when k& < n; however, Eq. 6 shows that as k ap-
proaches n, the the expected number of trials goes
up to about nH,, which can be approximated (see
e.g., [1, pp-262]) by nlogn for large n; this is quite
different from the other two algorithms, where both
are bounded by n. How do these factors translate
into computer execution time? In the next sec-
tion, we will further examine the performance of
the three algorithms by computer simulation.

4 Simulation Results

Although the expected number of trials needed is
a good measurement for the performance of the
three algorithms, there are other factors involved.
In fact, the ezchange operation in Alg.p (line 1.2)

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Alg_o Alg_w “Algp

k mean | std mean | std | mean | std
100 | 9902.0 | 97.5 1005} 0.7 100 0
500 | 9981.01| 19.4 512.9 3.7 500 0
1000 | 9991.0| 9.5 1053.5 7.6 | 1000 0
20001 9996.0f 4.5 | 2231.3 16.4 [2000 0
3000 | 9997.7 | 2.8 | 3566.5| 26.8| 3000 0
4000 | 9998.5 1.9 5107.9 | 39.5 4000 0
5000 | 9999.0 14| 6931.0 | 554 5000 0
6000 { 9999.3 | 1.1 | 9162.2| 76.4 | 6000 0
7000 | 9999.6 ; 0.8 | 12038.6 | 106.3 { 7000 0
8000 | 9999.8| 0.6 16092.4 | 154.6 | 3000 0
9000 | 99999 | 0.4 | 23021.4 | 258.7 | 9000 0
9500 | 9999.9 | 0.2 | 29947.8 | 399.8 | 9500 0
9900 { 10000.0 0.1 | 46002.3 | 969.0 | 9900 0

Table 1. Mean and Standard deviation for number of trials for n = 10, 000.

is also a deciding factor in determining the execu-
tion time, since it repeats k£ times. In this section,
we use computer simulation to do further study.
We have implemented the three algorithms in C
language, and run them on a Sun Ultra 1 work-
station with 128 MB RAM. It is seen that & and
n are two determining factors in execution time.
Different set-ups for & and n are tried. Since all
three algorithms are nondeterministic, the execu-
tion times were averaged over 400 runs. In our pre-
vious analysis, we have observed that Alg_p would
be the best choice of three, if the expected number
of trials is considered along. However, based on
-our simulation experiment, this is not always true.
The simulation result for n = 10,000 is shown in
table 2, from which we can observe the following:
(1) Alg-o performs best for k/n > 0.95, (2) Alg.w
performs best for k/n < 0.1, and (3) Alg-p out-
performs others for 0.2 < k/n < 0.9. To see the
above observations, we focus on different k/n ra-
tios. For small k/n (i.e., k € n), Egs. 2, 6 and 8
show that the expected number of trials is: (a) at
least 0.5(n + 1) for Alg_o, (b) approximately k for
Alg_w, and (c) exactly k for Alg_p. It is clear that
Alg_o needs to do much work compared to others.
Step 3 in Alg_wis iterated for approximate & times,
where most time is spent on random number gen-
eration. Step 1in Alg_pis also iterated for k times,
where in each iteration we need to do one ezchange

81

[k/n%] Algo] Algw | Algp]
11149150 13700 § 13750
51150325 | 20025] 20325

10 | 151325 | 28200 | 28525
20 | 153425 | 46000 | 44850
30 [155250 | 66175 61175
40 { 157000 ; 89250 | 77450
50 | 158425 | 116125 | 93775
60 | 159900 | 148725 { 109975
70 | 161075 | 190175 | 126400
80 | 162150 | 247850 | 142450
90 | 163275 | 344325 | 158750
95 | 163700 | 439600 | 166825
99 | 164175 | 659525 | 173025

Table 2. Execution time in p-sec for n = 100,000

in addtion to generate a random number. This ex-
plains obervation (2). For large k/n (i.e., k = n),
Egs. 2, 6 and 8 show that the expected number
of trials is: (a) approximately k for Alg_o, (b) ap-
proximately nH, for Alg_w, and (c) exactly k for
Alg_p. Again, k ezchanges are needed for Alg_p,
but not in Alg.o. This explains observation (1).
For medium k/n, the expected number of trials
becomes the determinant factor of the execution
time. Hence, Alg_p will be our best choice, which

1998 International Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

explains observation (3).

To quantify the cut-off points for small, medium
and large, we did further experiment on n = 1, 000
and n = 10,000. The result is shown in Figures 1
and 2, where the execution time (denoted by t) is
displayed as a function of k/n. Figure 1 illustrates

19000 ——
18000 —:}g-ﬁv
17000 Falg p
16000
15000
-14000<><><>.. > - - >..§5:: 3'fﬁz:
13000 S 3.
12000 AL - B

0 10 20 30 40 50 60 70 80 90 100

k/n %

3
..g--
CA -

=

Y

Figure 1. Execution time in pg-sec for n = 1,000

80000 ——
70000 3180

alg.w

60000 _alg_P

y 50000 L
40000
P
- B

10000 =
0 10 20 30 40 50 60 70 80 90 100

k/n %

boo.

fam}
=

7670

I
Iy
Py

Figure 2. Execution time in p-sec for n = 10, 000

the performance of the three algorithms, which
confirms our analysis result obtained in the pre-
vious section. More precisely, the execution time
for both Alg_o and Alg_p are bounded above by a
linear function of n, whereas the execution time
for Alg.w can be approximated by a fucntion of
nlogn when k£ = n. The cut-off points also de-
pend on the value of n. From Table 2, Figure 1 and
2, the cut-off points for small, medium and large
are: (1) 0.05, 0.99 for » = 1,000, (2) 0.05, 0.95
for n = 10,000, and (3) 0.1, 0.95 for » = 100, 000,
respectively. It can be seen that the cut-off point

82

for small and medium moves up as n increases. On
the other hand, the cut-off point for medium and
large goes down as n increases. Both are due to
the exchange operations invloved in Alg_p but not
in others. As n increases, the time spent for ex-
change operations becomes an important part in
the performance. Hence, despite of more trials,
Alg_.w and Alg-o outperforms Alg p for small k/n
and large k/n, respectively. In summary, all three
algorithms have their own merit. In general, for
different k /7 ratio, a guideline would be: (1) Alg_w,
if k/n < 0.1, (2) Alg_p,if 0.1 < k/n < 0.9, and (3)
Alg_o,if k/n > 0.9.

5 Concluding Remarks

In this work, we have studied the problem of effi-
cient lottery drawing using computer, i.e., an un-
biased choice of k items at random from a total
of n candidates, where £ < n. We have presented
three algorithms to tackle the problem. Our anal-
ysis shows that the expected number of random
numbers required for the three algorithms are ap-
proximately n, nlogn, and k, respectively. How-
ever, there are other factors involved. Fach algo-
rithm has its strength for certain values of £ and n.
For different k/n ratio, a general guideline would
be: choose (1) Algw, if k/n < 0.1, (2) Alg.p, if
0.1 < k/n < 0.9, and (3) Alg_o, if k/n > 0.9. In
fact, Alg.p has been used for years at out Univer-
sity in providing an unbiased student enrollment
for certain courses.

References

1. GranaMm, R. L., KNuTH, D. E., AND PATASH-
NIK, O. Concret Mathematics. Addison Wesley,
1989.

2. HokeL, P. G., Porrt, S. C., AND STONE, C. J.
Introduction to Probability Theory. Houghton
Mifflin Co., 1971.

3. KNuTH, D. E. The Art of Computer Program-
ming, second ed., vol. 2. Addison-Wesley, 1981.

	
	75
	76
	77
	78
	79
	80
	81
	82

