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ABSTRACT

The automatic conversion of 3D wire-frame models to
boundary representation solids is very important for one-
off conversion of line drawings to solid modeling system.
In this paper, a minimum internal angle (MIA) algorithm
that efficiently finds all quadric surfaces in a wire-frame
model is addressed. It requires considerably less searching
time than depth-first searches that could grow
exponentially in complexity. In addition, the proposed
method is benefit for easily description the geometry of the
traced surfaces when compared to other methods.

1. INTRODUCTION

In CAD, designer uses a graphic system to simply draw a
wire-frame model on screen to describe the shape of an
object continues to be popular for early conceptual stages
of a design. However, the main role for such concept is the
ability to automatically convert the wire-frame models to
boundary representation solids, ie. the extraction of
accurate surface information from a 3D wire-frame model.

Previous attempts at automatic surface extraction from a
wire-frame model are generally grouped into topological
and geometric approach [1]. The topological approaches
treat the search as a graph-connecting problem. It uses
concepts from graph theory to derive the face topology and
avoids the geometric reasoning about the features of a
wire-frame. Based on such technique, Hanrahan [2], Dutton
{3] presented work that started with an adjacency list
structure of an undirected graph. A planarity algorithm [4]
was used to create a directed graph. The faces of a wire-
frame model thus could be found by constructing a new
adjacency list structure, which was based on the embedding
of the directed graph for the original undirected graph.
Their algorithm was linear in the number of vertices in time
and space. However, it was constrained to wire-frame with
3-connected planar surfaces with no holes.

Later, Ganter [5]), Courter [6] and Hojnicki [7] also
proposed purely topological techniques, based on Paton’s
algorithm [8], that generated a set of fundamental cycles
from a wire-frame. Then, the set of cycles was reduced to
the set of candidate faces according to two heuristic
observations:

1. Any cycle that is a true face in a given object has a
minimum number of edges in common with any other
cycle.

2. The sum of all edges in all cycles is a minimum when
the cycles are the faces of an object.

The geometric approach is based on the pure geometric
information of the wire-frame to identify three dimensional
face loops. It assumes that the types of two adjacent edges
can define 4 surface and its equation. For example, two
straight lines define a planar face; a straight line and a
circular arc define a cylinder; two circular arcs define a
sphere or a torus [9-12]. Once the type of a surface is
defined, a depth first search method searches all edges on
this surface. Since a face loop is closed, the search is
completed when it returns to the start vertex, providing
none of the edges intersect each other.

From the above discussion, the topological approach
provides a good framework for dealing with the arbitrary
surface type of the wire-frame model in automatic face
loop identification. However, this approach has its inherent
drawbacks. Firstly, it cannot describe the type of a face, i.e.
the face equation. This is because it relies on the relative
connectivity of the graph elements to generate the desired
edge cycles. Thus, the cycles are nothing but a set of
circuits. Secondly, using a reduce-fundamental-cycle
method [6] for wire-frame conversion can be very
expensive. For some highly symmetric wire-frame models,
the size of the established fundamental cycle matrix could
be very large. Finally, this approach has no guarantee that it
can always establish correct face loops for objects whose
genus greater than zero, nor even for 3-connected planar
wire-frames. The problem is that these models do not have
unique graph embedding [2].

In the geometric approach, it is clear that tracing planar
loops is very straight forward by using the vector product
of two adjacent straight edges to define an assume face
normal. However, the identification of a curved surface
equation from the types of two adjacent edges is ill defined
without severely restricting the scope of models that can be
handled. For example, a straight edge and a circular edge
could define a planar, cylindrical, conical or other higher
order curved surface. On the other hand, a conical surface
could be defined by two of any kind of coinc edges. In this
approach, an exhaustive depth-first search method is
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usually used to find a close loop that is very expensive. In
addition, it could also produce face loop with inner edge
when the starting vertex was not a convex hull vertex [13]

In this paper, a method that efficiently extracts all quadric
faces in a wire-frame model is addressed. Unlike previous
mentioned approaches; this method finds quadric face

loops that have no inner edges subdividing them and avoids

finding the unwanted outer loops. It requires considerably
less searching time than depth-first searches that could
grow exponentially in complexity, and it simplifies the
subsequent face type identification.

2. THE MIA ALGORITHM

The method used to automatically trace three dimensional
face loops in a wire-frame model is called the minimum
internal angle (MIA) method. This includes five steps as
follows (see figure 1):

Step 1. Choose a convex hull vertex v, that has not been
processed yet as the tracing-start vertex. This can be, for
example, the vertex with minimum x-coordinate.

This step ensures that the edge loop will lie on one side of
v,, so that an orientation can be assumed that avoids
producing edge loops with inner edges subdividing them.

Step 2. Choose a pair of edges e(vy, v|) and e,(v,, v;)
adjacent to v,, that have not paired together before, and a
third edge e;(v,, v5) to define the surface equation.

The general implicit quadric surface can be represented as
follows:
fle,y,z)=Ax" + By’ + Cz* + Dxy + Eyz + Fax

1
+Gx+Hy+Jz+K=0 M

To solve (1), we could choose nine different vertices on e,
e, and e, to work out the ten homogeneous coefficients.

Step 3. Choose e, as the tracing-start edge and define the
turning direction. This includes two sub-steps:

(a) Calculate the surface gradient V,at v, to define the

auxiliary plane P, common to Vl and e, where

S (VP (ORI (O 2
& & &
PM)=(V,x (v -v))e(v=v)=0 3)

(b) The turning direction T, is assumed to be clockwise
when P(vy) 20, otherwise, counterclockwise.

Step 4. Choose a next edge, e, adjacents 1o v, at the far
end of e, that satisfies the surface equation. [f there is a
choice, choose the edge with minimum internal turning
angle.

The internal angle, @, between e2 and e, is calculated using

two intersection vertices v;,v;. When turning direction at

e, about their auxiliary plane is 7,, then

d,ed
_ -I( _2 _,3) h T =T
) T —COS ldzuds‘ when 1, 1

7t+cos"(
& ﬂ |

-v,) and 33

@

) otherwise

where 32 =(v, =(v; -v,)

The calculations of inverse function, cos™ () in equation (4)
involve finding the convergence of its power series, which
is very time consuming. This can also be implemented
using comparisons of the dot and cross products, so that
square-root and inverse-cosine function are avoided, as

follows:
Let

32=(x2,y2,z ), 3~=(x3,y’3,23) and
d od (x2x3 + Yo Y3 + 2,23)
Id "dl (xz +); +z2)”2(x3 +; +23)”2

where —-1<@ <1

The target of the minimum internal angle method is to
choose the minimum intemnal angle edge as the next
tracing edge. In other words, it is to find the edge with the
smallest internal angle in a set of co-surface candidate
edges that are adjacent to the current tracing vertex. This
allows us to subtract 77 on both sides of (4), and rewrite it
as

o = {— cos_'lI (w) when 7"2 =T, )

cos” (@) otherwise

where 8'=6-rx

The inverse cosine is a monotonically decreasing function

between @ = —| and @ =1. Therefore, we may just
depend on the @ value in (5) to decide the edge’s
internal angle as follows

R o whenT, =T
9" = o (6)
2-w otherwise
Let &= a)z, (6) can be divided into four cases as
5 ifdyed>0andT,=T,
Bm‘—: _5 V€2.€3<Oand7‘2= 1 (7)
2-6 ifd,ed;20and T, =T,
248 ifdyed, <0and T, =T,
where & = (% + 1oy +2,23)

(3 +y; +2)x; + )5 +27)

It should be noted that (7) uses one more multiplication
and two more comparisons, but one less square roots and
one less inverse-cosine calculations, when compared to

“)

_62_



Step S. When e, is retraced, a face-loop has been found,
but when no more edges fit, abandon the search.
Otherwise go to step l.and treat v, as v,.

Application of the above steps to all vertices in the wire-
frame results in a set of quadric faces.

The reason for choosing a convex hull vertex, as the
tracing-start vertex in step 1 is that it avoids producing
edge loops with inner edges subdividing them and it avoids
the outermost edge loop. For example, in figure 2 there are
six coplanar edges and three face loops. If the face tracing
algorithm had started from v, with the normal direction for
face f; set to be e(v,,v;)xe(v,,v;), then a face loop
Ava,vs,vs) would be traced. But the second face loop would
then be f{v,,vy,vy,vs) with two inner edges e(v,v;) and
e(v,,vs). This is the unwanted outer edge loop. On the other
hand, if the tracing-start vertex is always a convex hull
vertex, v, for example, then the two inner face loops,
S,V V3,V4,Vs) and f{vs,vs,v,) are correctly found. Step 2 and
step 3 assumed a quadric surface and an orientation of the
surface that is used to choose the next tracing edge. Step 4
applies (7) to choose a minimum internal angle as the next
tracing edge. Finally, step 5 iteratively assigns the current
tracing vertex and edge. Application of the above steps to
all vertices in the wire-frame resuits in a set of quadric
faces.

Note that in the MIA algorithm, once a pair of edges is
chosen to define an assumption surface equation, the
choice of next tracing edge is forced. When there is more
than one edge on the assumption surface, the algorithm
always selects an edge with minimum internal angle.
Therefore, to trace a candidate face, the complexity is
linear to the vertex degree.

- 3. CONTAINMENT TEST

Sometimes a 3D object includes holes whose loops are
contained in another loop. We need a containment test to
decide the “hole face” (not a true face). There are three
well-known methods for performing such a test. These are
half-plane containment test, sum-of-angle containment test,
and count-ray-crossing containment test [15].

The half-plane method is computationally attractive.

However, this method works only for convex polygons.

The sum-of-angle method works for both convex and
concave polygons. However, it may not work in the case of
loop with curved edges. In addition, this method turns out
to be very slow as it sums the signed angles formed at the
test point by each edge’s end points. The count-ray-
crossing method is based on the Jordan curve theorem [15).
This theorem is always true when the points in a given
region are 2-connected. Since there is no intersection
between two faces (with the same face equation), either one
face completely surrounds the other or they do not overlay
at all. Therefore, the count-ray-crossing algorithm is the
most useful one for the containment test.
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To test two 3D face loops, we project back to their 2D
views (orthographic projections). Then we apply the count-
ray-crossing method to determine the containment
relationship between two loops. Theoretically, to complete
the containment test we repeat the test procedure for each
point of a testing loop with each edge of the other loop.
However, according to the MIA method, a face loop is
either totally inside or outside the other loop. Therefore, we
just need a point to complete the test. This saves much of
the testing time.

In general, faces many contain each other in a hierarchical
manner. Once the status of one face has been established,
the remaining can be deduced. They are alternately face

and hole, ie., f(face)>f,(hole)>f,,,(face)- -

ez where
f; is atrue face when / is even, and a hole when i is odd.

4. TYPE OF THE SURFACES

The type of quadric surface can be determined by
translating the general quadric form into a central quadric
form with its center at the origin. However, the axes of the
quadric can be made to align with the coordinate axes by
three rotation, whether it is central or non-central [14].

When the quadric is central, the result of the translation and
rotation gives a standard form equation as in (8).

fle,y,2)=*+ B+  +x=0 (8)

The type of the quadric surface is usually classified
according to the signs and real values of the coefficients
that appear in the standard form.

(1) If a=p=y>0 and x>0, the quadric surface is
spherical.

(2) If a#B#y>0 and x>0, the quadric surface is
elliptic.

(3) If a=8>0, y=0 and « >0, the quadric surface
is  cylindrical. The axis is aligned with the z-
coordinate. Similarly, if =y >0, =0 the axis
is aligned with the y-coordinate. If S=y>0 and
a =0 the axis is aligned with the x-coordinate. When
two of the non-zero coefficients are unequal, an
elliptical cylindrical surface results.

(4) If x=0, a=4>0 and y <0, the quadric surface
is circularly conical with its axis aligned with the z-
coordinate. Actually, the axis of a cone is associated
with the coordinate of the negative constant. As with a
cylinder, if a = >0 the surface is on an elliptic
cone.

(5) if x#0, @,#>0 and y <0, the surface is on a
hyperboloid with one sheet whose axis is the z-
coordinate axis.

(6) if x#0, a,f<0 and y <0, the surface is on a

hyperboloid with two sheet. The axis is associated
with the positive constant.
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When the quadric is non-central, the linear terms in
equation (1) cannot be eliminated. The standard form is
then represented as

axt+ =0 9

Similarly, the type of the non-central surface is defined by

the coefficients of (9) as

(DI a,>0 and y >0, the quadric surface is on a
downward elliptic paraboloid where z-coordinate is the
axis. If y <0 the paraboloid is upward, i.e. the surface
opens along the positive z-axis.

QIf a<0, >0 and y >0, the quadric surface is on
a downward hyperbolic paraboloid in which the focal
axis is the x-axis, the saddie downward. If ¥ <0, the
saddle is upward. When o >0 and f <0 the focal
axis is the y-axis, the saddle’s open direction is decided
by the sign of y.

(3)If a=0 or B=0 the surface lies on a parabolic
cylinder.

The above discussion of quadric surface type can be
summarized as in Table 1.

5. EXPERIMENTAL RESULTS

The MIA method presented above has been applied as part
of a complete system (implemented in C++ on a SUN4
UNIX system) for the automatic interpretation of three-
view engineering drawing [17]. Two examples are given, in
figure 3 and 4, to demonstrate the power of the MIA
method. In figure 3(a), a wire-frame model with some
redundant faces is reconstructed from 2D, 3-view
engineering drawings using a Junction-Match method [16].
There are 18 planar face loops are traced by the MIA
method as shown in figure 3(b). Then, 7 true faces are
extracted, and a surface shading solid is displayed as in
figure 3(c).

The wire-frame model shown in figure 4 inciudes three
types of natural quadric surfaces, the spherical, conical and
cylindrical surfaces.

6. CONCLUSION

Now a day, in geometric lofting and the design of cars,
ships and aircrafts are mainly performed by CAD systems.
However, in many cases these systems provide only wire-
frame models. In this case, a method applied to
automatically generate solid boundary representations from
the wherefore model is very important. Especially, this is
important for one-off conversion of drawings to solid
modeling systems.

Previous attempts at automatic surface extraction from a
wire-frame model are generally grouped into topological
and geometric approach. The topological approach is good
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for dealing with arbitrary face type of wire-frame models in
automatic face loop identification. However, this approach
is difficult in determining the type of extracted faces.

The geometric approach is very straightforward by using
the vector product of two adjacent straight edges to define
an assumed face normal. However, the identification of a

. curved surface equation from the types of two adjacent

edges is ill defined without severely restricting the scope of
models that can be handled. In this approach, an exhaustive
depth-first search method is usually used to find a close
loop that is very expensive. In addition, it could also
produce face loop with inner edge when the starting vertex
was not a convex hull vertex [13].

This research proposes to develop the automatic capability
of extraction all quadric faces from a wire-frame model.
Unlike previous mentioned approaches; this method finds
the quadric face loops that have no inner edges subdividing
them and avoids finding the unwanted outer loops. It
requires considerably less searching time than depth-first
searches that could grow exponentially in complexity, and
it simplifies the subsequent face type identification. As a
quadric surface is traced, its surface type is uniquely
defined by two adjacent edges.
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Figure 4. An object with planar, spherical, conical and
cylindrical surfaces
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Figure 1. The MIA method
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Figure 2. Six coplanar edges form three face loops
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[UJE 0:( 0- 1)-fO-f1
[U]JE 1:( 0- 2)-f0-f2
[U]E 2:( O- 6)-f1-f2
[G]E 3:( 1- 2)-f0-f3-f4-£5
[U]E 4:( 1- 3)-£3-£f6-£7 y
[U]JE 5:( 1- 6)-f1-fd-f6-£8
[UJE 6:( 1- 7)-f5-f7-f8
(U]E 7:( 2- 3)-f3-£9-f10
[UJE 8:( 2- 4)-f5-f9-f11
[UJE 9:( 2- 6)-f2-f4-f10-f11
[UJEL0:( 3- 4)~-f6-f9-f12-f13
[UJELl:( 3- 5)-f12-f14
[U]E12:( 3- 7)-f7-f10-f13-f14
[UJE13:( 4~ 5)-f12-f15
[U]E14:( 4- 6)-f6-f11-f16
[U]EL5:( 4- 7)-f5-f13-f15-f16
[U]E16:{ 5- 7)-f14-f15
[U]EL7:( 6- 7)-£8-f10-f16 §

(b) (©

Figure 3. (a) a 3D wire-frame model  (b) 18 face loops are extracted (c) the surface shading solid with

7 true faces
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Table 1: Geometry of quadric surfaces

- . Standard Central Quadric Non-central Quadric
~~._ form 2 2 2 2 2
~ o’ + +7Z°+x=0 + 7=
Surface \\\ e @+ Pyt +pz=0
type ~
Plane a=p=y=0
Ellipsoid* azfzy>0, >0

a=04>0,y=0,x>00r
Cylinder B=y>0,a=0,c>00r

y=a>0,=0,x>0

a=8>0,y<0,x=00r
Cone B=y>0,a<0,x=00r

y=a>0,<0,x=0

a,f>0, y<0or

Hyperbola By>0, a<0 or

a,y>0, <0
Elliptic paraboloid a, >0
Hyperbolic paraboloid ] a<0, >0
Parabolic cylinder a=0or =0

*Sphere is a special case of ellipsoid
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