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ABSTRACT

A recursive self-correction algorithm is introduced to
improve the calculation accuracy of discrete signal
processing under failing the fulfilling of the required
application conditions. This algorithm is applied to the
discrete Fourier transform (DFT) and averaging
algorithms of discrete periodic signals. The analytical and
simulation results show the accuracy improvement for
processing discrete periodic signals sampled non-
synchronously. Exact DFT analysis and averaging for
sinusoid signals are realized by the recursive self-
correction algoritbm under fulfilling the sampling
theorem. For non-sinusoid periodic signals the processing
accuracy is much higher than that of other algorithms.
The principle can also be used for the accuracy
improvement of some approximation algorithms.

1. INTRODUCTION

The well-known data processing algorithms, such as DFT
and averaging algorithms, etc., are based on the
application condition: f;= Nf, where f; and f are the
sampling frequency and the signal frequency respectively,
and N is the sampling number per signal period. If this
condition is not fulfilled, see (7), remarkable calculation
errors are caused to influence the data processing
accuracy [1, 2, 3]. Furthermore the calculation accuracy
of the most approximation algorithms is also dependent
upon the calculation conditions. The failing of the
fulfilling of the required conditions causes additional
calculation error.

In this paper a general recursive self-correction algorithm
is derived from the recursive Self-Correction DFT
algorithm proposed in [2, 3, 4, 5] to solve the problem
mentioned above. A recursive self-correction principle is
applied to the accuracy improvement of the discrete signal
processing and approximation algorithms under failing
the required conditions. The calculation error is
minimized by the recursive self-correction algorithm.
This algorithm is applied to the discrete Fourier
Transform and the averaging of discrete periodic signals.

In the following sections we introduce firstly the recursive
self-correction algorithm and then give the recursive self-
correction DFT and averaging algorithms of the discrete
periodic signals as examples. The simulation results will

show the advantages of these algorithms compared with
other algorithms, such as standard and interpolated DFT
{1,6,7, 8, 9] and averaging algorithms.

2. RECURSIVE SELF-CORRECTION
ALGORITHM

In the recursive self-correction algorithm we assume that
the input data and output data are xy(k) and yi(n)
respectively, where the number of the data volume k and n
are normally unequal. These data are functions in the
time or frequency domain. Reference data y,(n) for the
self-correction are assigned by using the output data. The
reconstruction data x;(k) are calculated by the
corresponding signal model, for example, inverse DFT
and regression etc. The index i denotes the iteration times
of the recursive algorithm if i > 1. These data definitions
are considered in the following algorithms.

2.1 Recursive Self-Correction Algorithm

The recursive self-correction algorithm is based on the
self-calibration by using internal reference data, which
are calculated by the standard algorithm with the use of
the original input data xe(k) or the reconstruction data
Xi(k). This algorithm (Fig. 1) consists of four main parts,
that is, 1) initialization, 2) self-correction unit, 3) error
minimization unit, and 4) output, etc.

In the initialization the original output data y,(n) are
calculated by the corresponding standard algorithm (S-A)
by using the input data xy(k), where the index O denotes
the original data. The original output data ys(n) serve for
the initialization of the reference data y,,(n) for the first
iteration and for the error correction of the output data
yi{n) of the i-th iteration. In the case of not fulfilling of the
application conditions the output data yy(n) deviate from
the exact data so that a self-calibration method is needed
to determine the deviation data and compensate them.
The following steps contribute to the self-correction unit.

In the self-correction unit (Fig. 2) reference data y,(n) are
assigned by the output data y, ,(n):

Y (m)=y,_,(n) (-

where i=1 denotes the assignment by the original output
data yy(n) at the first iteration.
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These reference data y,(n) are transformed into reference
reconstruction data x,(k) according to the signal
modeling. If reference output data yi (n) are calculated by
the same standard algorithm (S-A) with the use of the
reference reconstruction data x,(k), the calculation
deviation Ayi(n) of the standard algorithm can be derived
from the difference between the reference output data
y; (n) and the reference data y,(n):

Ay, (n)=y; () - y,;(n) @)

These data denote the calculation error of the standard
algorithm. Therefore an error correction of the original
output data yo(n) can be realized by the following
operation:

¥i(n) = o (M) = Ay; (n) 3)

After the i-th error correction the output data y;(n) is more
approximately to the exact output data than the original
output data y,(n). The corrected output data are assigned
as reference data for the following iteration if the
calculation accuracy does not satisfy the requirements.

The reason for using the recursive algorithm is that the
reference reconstruction data x,;(k) of the first iteration is
unequal to the input data xy(k). In this case the deviation
data Ay,(n) calculated by the standard algorithm at the
first iteration is not the same as the calculation deviation
of the original output data ye(n). Therefore, the reference
reconstruction data x,,(k) should be approximated step by
step to the original input data x,(k), and the deviation
Ay(n) is approached to the error of the original output
data yo(n) by using a recursive self-correction algorithm.

This approximation, however, is nonlinear in some cases
[2]. Thus an Error-Minimization Unit is introduced in
this self-correction algorithm in order to optimize the
calculation accuracy, that is, the optimal iteration times i,.

In this unit the output data y,(n) are inversely transformed
into the reconstruction data x;(k) by the corresponding
signal model. The error between the reconstruction data
x,(k) and the original input x¢(k) can be determined by

e; (k) = x; (k) — x, (k) @

We define the error band E; of these error data as the
error evaluation of the i-th iteration:

E; =max{e,(k)}-min{g;(K)} 5

At each iteration the error band E; is checked. The
iteration times are defined as the optimal iteration times i,
if the error is minimized. The iteration process is not
ended until the evaluation error E; is minimized by the
self-correction algorithm. By means of this algorithm we
can finally obtain the optimal output data y;.(n).
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Fig..1 Recursive Self-Correction Algorithm
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Fig. 2 Self-correction unit

In the following this recursive self-correction algorithm
will be illustrated by the example algorithms for the
averaging and DFT of discrete periodic signals.

2.2 Recursive Self-Correction Averaging
(SC-AVE)

Fig. 3 shows the recursive self-correction algorithm for
the averaging of discrete periodic signals. This algorithm
is based on the standard averaging (S-AVE) algorithm,
which is realized by

M
Y =Y xln+ N(j-1)] ©®)
M =

where x(k) is discrete periodic signal in the time domain,
¥(n) is the averaging data in one period, and N and M
denotes the number of the output data per signal period
and the averaging times respectively. The condition for
the self-correction algorithm is written by
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fi=(N+a)f M

where f and f; are the frequency of the periodic signal and
the sampling frequency of the input data, and « is defined
as a deviation factor with normally |oj<0.5. An exact
calculation of the averaging output data is realizable only
at a=0 by using (6) [10]. The calculation error for oz0
must be reduced by the recursive self-correction
algorithm.

The original averaging data y,(n) are calculated by the S-
AVE algorithm with the use of the input data x,(k) in the
initialization and assigned as reference data y,;(n) at the
first iteration in the self-correction unit. The reference
data y,;(n) are transformed to reference reconstruction
data x,,(k) by signal model. The signal model is realized
by the recursive self-correction DFT algorithm [2, 3, 4, 5]
for sinusoid signals and by a linear regression algorithm
for triangle and ramp signals.

After calculating the reference averaging data yi'(n) by
the S-AVE algorithm with the use of the reference
reconstruction data x,;(k), the calculation errors of the S-
AVE algorithm can be determined by (2). The error
correction of the original averaging data is made by (3).
The cormrected averaging data y;(n) are transformed into
reconstruction data x;(k). The error evaluation E; can be
calculated by (5) according to the deviation data e;(k)
between the reconstruction data x;(k) and the input data
xo(k). It is checked whether the error evaluation parameter
E,; is minimized or not. The corrected output data y,(n)
are assigned as reference data y,(n) for the following
iteration if the error is not minimized. The iteration
calculation is not ended until the error evaluation E; is
minimized for a given maximal iteration number. Thus
an error minimization is realizable by using the recursive
self-correction algorithm.

The error minimization procedure of this averaging
algorithm is normally linear convergent for sinusoid
signals so that the optimal accuracy is easily realizable
under the convergence condition.

2.3 Recursive Self-Correction DFT (SC-DFT)

Fig. 4 shows the recursive self-correction algorithm for
the discrete Fourier Transform. The standard DFT (S-
DFT) algorithm can be written by the following periodic
complex functions [2]:

N-1 _ipkn

2
Sm=—Y xtke N ®
N o
and
P j21t/—(—’£
x(k) =) S(n)e” N ©)
n=0

1998 International Computer Symposium
‘Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Initialization
S AVE
|YO(n) Eo, i=1 |

........................................

Self-
Correction
Unit

..........................

Error- :
Minimization :
Unit .

Yio(n)

Fig. 3 Recursive self-correction algorithm
for averaging of discrete signals

where x(k) denotes the input data or reconstruction data in
the time domain, S(n) is a corresponding frequency
function and connotes the spectrum of the n-th harmonic,
N is the sampling number per signal period and P is the
highest order of the harmonics of the frequency function.
According to the sampling theorem the condition: P<N/2
should be fulfilled. Equation (8) is known as the Discrete
Fourier Transform (DFT) and (9) the Inverse Discrete
Fourier Transform (IDFT).

The frequency function S(n) calculated by the S-DFT
under the condition (7) with o # 0 are not exact [1, 2, 3,
4, 5]. Thus the recursive self-correction algorithm has to
be used to improve the calculation accuracy in this case.

In this algorithm (Fig. 4) the input data xp(k) and the
reconstruction data x;(k) calculated by the IDFT are time
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functions while the output data Si(n) and reference data
Syi{n) are frequency functions. The principle here is the
same as the recursive self-correction averaging algorithm,
see also {2, 3, 4,-5]. The approximation procedure of the
recursive self-correction algorithm, however, is normally
nonlinear convergent [2]. Therefore a special algorithm
should be used for the error minimization. The
convergence condition here depends on the error
minimization algorithm.

In the following section we will take a closer look at the
comparison between different algorithms.

3. SIMULATION RESULTS

In order to make a comparison between the recursive self-
correction algorithm and the standard algorithm as well
as interpolation-algorithm [1, 6, 7, 8, 9], we generate two
typical signal wave-forms: sinusoid and triangle signals
for the simulation. The relative error E, is used for the
evaluation and is defined as [2]

E.
E, =—%%—— (10)

Xmax ~ *min

where E;, denotes the minimal error band of the
reconstruction data x;(k) determined by (5), and x,,,, and
Xmin denote the maximum and minimum values of the
input data xy(k). Analytical results prove that the relative
error is dependent on 1) the iteration number, 2) the
deviation factor ¢, and 3) the frequency ratio R=f, /f.

Fig. 5 shows the approximation procedure of the recursive
self-correction averaging algorithm for sinusoid signals.

The averaging is carried out under the conditions: N=21,
0=-0.5 and M=7. The relative error is defined as the
absolute reconstruction error e;(k) (4) divided by the
maximum x,,, of the input data. From Fig. 5 we find that
the original error (64.9%) of the standard averaging (S-
AVE) is reduced by the self-correction averaging (SC-
AVE) with the increase of the iteration number. After the
20th iteration SC-AVE(20) the relative error is reduced to
less than 0.01%. A calculation error of less than 0.0001%
is realizable by using a recursive self-correction alogrithm
with 30 iterations.

Fig. 6 shows the simulation results of three averaging
algorithms using a sinusoid signal. From Fig. 6(a) we find
that the relative errors of the S-AVE and I-AVE
algorithm increase with the absolute deviation factor lotl.
The error of the I-~AVE algorithm is less than that of the
S-AVE. The relative error of the SC-AVE, however, is
reduced to be negligible and nearly independent on the
deviation factor. Fig. 6(b) shows the relation between the
relative error and the frequency ratio R=f,/f. Similarly,
the relative errors of the S-AVE and I-AVE algorithms
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Fig. 4 Recursive self-correction algorithm
for the discrete Fourier Transform

1.00E+02 ggzgiz=— 405
€ 100401 L N AN N=21
S 1.00E+00 § - %o - S-AVE
' 1.008-01 3 | —m— SC-AVE()
2 1.00E-02 g | —a—SC-AVE(S)
% 1.00E-03 ) ; —»—SC-AVE(10)
o T . | —%—SC_AVE(15)

1.00E-04 + o
00 09 O O © ® SC-AVE(20)
SN OmMT DHDoOoN D
- - - - - -
Time (sec)

Fig 5 Approximation procedure of the recursive SC-
averaging algorithm for sinusoid signal

increase with the reduce of the frequency ratio, while the
error of the SC-AVE is nearly independent on the
frequency ratio and is negligible in the range of R, > 2.5.

_58_



1998 Intemational Computer Symposium
Workshop on Algorithms
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.O.C.

Er (%)
~ 100 50 . N =21
9.\, =10
~ &0 40 <] P
e N
o / ——S-DFT
2z % 20 —a— I-DFT
B 4 10 ——SC-DFT
T 04 0 —d
05 03 01 01 03 05 ¢
Deviation factor ¢ (a) Sinusoid series
0,
(a) The relation between the relative Er (%) N=21
. 12 =10
error and the deviation factor o 0 p
(calculation condition: N=10, M=7)
8
A ——S-DFT
—~ 80 8 —a— |-DFT
X 4 A COFT
Do B N o] /4/ A -8
o 01 —+—S-AVE 'g’ < il
m ' ! T T
404N- 2 2N - e —B—-AVE
o FTTd 05 03 01 o 3 05 &
g . o SCAVE ot O 0.5
3] .
2 (b) Triangle
T 54 ) A A "
Te] ['e] 7o) w wn H i i
2 oe 2 a 3 o Fig.7 The re}at.lon between the relative error and the
- . ¥ deviation factor by using DFTs
Frequency ratio Rf (S-DFT: Standard DFT, I-DFT: Interpolation DFT,

SC-DFT: Self-correction DFT)
(b) The relation between the relative

error and the frequency ratio Ry

. - = 50— a " y
(calculation condition: M=7, 0=0.5) X . . . i a=0.5
= 40 BT P=10
i :
Fig. 6 Simulation results of three averaging algorithms 5 304 R
using a sinusoid signal (S-AVE: standard < ' oo
. : . A o 20 ;
averaging, I-AVE: interpolation averaging, = i
SC-AVE: Self-correction averaging) % 10 +
> g

Fig. 7 shows the relative errors of the DFT algorithms on
the deviation factor & for sinusoid series and triangle
signal wave-forms respectively, with N=21 as the number
of sampling points and P=10 as the highest series order. () Sinusoid series
For all the three DFT algorithms the relative errors
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increase with the growth of lal. The errors are greatly 3
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influenced by a large lal for both sinusoid series and g P=10
triangle signal wave-forms, which are analyzed with the w
S-DFT and the I-DFT. With the help of the SC-DFT the g S-DFT
error is reduced to less than 3% for the triangle signal. L::

-8 -DFT

For the sinusoid series the error approaches to be % SC-DFT
negligible, too. g Relbroris
Fig. 8 shows the errors as the function of the frequency
ratio Ry under the condition: a=-0.5 and P=10, The ]
Reference in Fig. 8(b) means the reconstruction error Frequency ratio Rf=fs/f
calculated by the S-DFT under the condition o = 0 due to (b) Triangle
the spectral leakage. We can find that the errors decrease
with the increase of the frequency ratio Ry for all three Fig. 8 The relation between the relative error and the
DFTs. Similarly, the calculation error of the SC-DFT is frequency ratio R; by using DFTs
negligible for calculating sinusoid series and is less than (S-DFT: Standard DFT, I-DFT: Interpolation DFT,
those of the other two DFTs for calculating triangle SC-DFT: Self-correction DFT)

signal. The reconstruction error for higher frequency ratio
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results from the leakage (loss) of the higher harmonics
because the highest order is fixed at P=10.

Another important advantage of the SC-DFT is that the
error is nearly constant in the whole frequency range
determined by the sampling theorem. Thus a minimal
sampling frequency can be used for data acquisition in
sciences and engineering. The SC-DFT algorithm is used
for the measurement of electrical quantities [3, 4, 5] and
contributes to the accuracy improvement.

4. CONCLUSIONS

The recursive seif-correction algorithm is examined by
the simulation of the averaging and DFT of periodic
signals. From the analytical and simulation results we can
draw the following conclusions:

e The recursive self-correction algorithm contributes to
the accuracy improvement for processing discrete
signals sampled non-synchronously. This algorithm is
based on the corresponding standard algorithm. The
calculation error of the standard algorithm is self-
corrected by the recursive self-calibration and error
minimization units. This algorithm is easily applied to
discrete signal processing.

e Using the example algorithm SC-AVE an precise
averaging calculation is realized for sinusoid signals
without the limitation of the calculation conditions.
The convergence condition for sinusoid signals is
easily fulfilled for the practical uses.

e The amplitude and phase as well as reconstruction
data of sinusoid signals can exactly be calculated by
the example algorithm SC-DFT. For other periodic
signals the calculation accuracy of the SC-DFT is
much higher than that of the S-DFT and I-DFT,
especially for discrete data processing in the case of
lower frequency ratio.

e The error of the SC-DFT is dependent on the
deviation factor o and nearly independent upon the
frequency ratio R Therefore, The SC-DFT can be
applied to data processing under the minimal
frequency ratio determined by the sampling theorem.
This algorithm is very suitable for data processing of
higher frequency signals.

e The application of the recursive self-correction
algorithms enables measuring and data processing
systems to simplify the system structure and to
improve the calculation accuracy.
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