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ABSTRACT
This paper provides a two-dimensional prefix computation
and its parallel algorithms on the CREW PRAM machine.

The two-dimensional prefix computation is to compute the’

values &, of .., %+ for all up-left submatrices
_ [x;],.,» Which contain the first row and first column

element X, of a matrix. This computation can be applied

to compute grayscale sums of Subimages for the fractal

image compression and to find the maximum sum submatrix.

First, we design a faster'paréllel algoritbm with time
complexity O(log n) using O(n?) processors. Then, a
cost-optimal algorithm is found to run in O(log n) time

n2
logn

using O(5%-) processors.

1. INTRODUCTION

Parallel prefix computation is an important parallel
computation method which has many applications, for
example, maximum sum subsequence, job sequencing with

deadlines, etc. Parallel two-dimensional prefix computation

computes the values Z inj for all up-left

Ogi<p 05j<q

of a mamx [x; )k » Where up-left

submatrices [x;] .,

submatrices are those submatrices which contain the first
row and first column elemenf X, . It can be applied to
precompute grayscale sums of subimages for fractal image
compressions[5]} and to find the maximum sum submatrix of

a matrix.

Parallel prefix computation is a one-dimensional case of
parallel two-dimensional computation. There are many
researches on the pa:aﬁel prefix computationf1-4, 6-17].
AKki[1] summarized as the following. A sequential algorithm
of the prefix computation had time complexity (Xn). On
the CREW .PRAM, a parallel prefix algorithm ran in
O(log n) time using O(n) proéessbrs and a cost-optimal (or

work-optimal) parallel prefix algorithm had the time

n \ . .
—) processors. Then, it

complexity O(log ) using O o

could be improved by the dividé-and—conquer method with

the time complexity O(Iog log n) using O(log ’lzog n)

Processors.

In this paper, we design the parallel two-dimensional
prefix computation on the CREW PRAM. We provide the
two-dimensional prefix computation and its sequential
algorithm in Section 2. Then, Section 3 gives a faste;'
parallel two-dimensional prefix computation and a cost-
optimal parallel two-dimensional preﬁx computation.

Finally, conclusions are in Section 4.
2. TWO-DIMENSIONAL PREFIX COMPUTATION

Given a set y and define an operation © on x such
that
(1) The operation © is a binary operation, i.e. x; °X;
where X,X; €X.
(2) The operation o satisfies the closure, that is, if

X,,Xx; € x then x,0x, € 1.



(3) The operation o satisfies the associative law, that is, if
X;,X;, X, €y then

(xi°xj)°xk =xi°(xj°xk)=xi°xj°xk‘

i ]mxn 4

Consider matrix X =[x where X, € ¥ and

0<i<m,0< j<n.Tocompute the following quantities :

Soo = Xoo»
So1 = Xo0 ° X015

Sop = Xog ° Xo1 @ Xog»

Sont = %00 ©Xp3 70 X s

S10 = Xo0 © X195
Syt T Xpg O Xy 0110 Xy O Xy O Xy 00Xy,

N 1 = X000 X1 O 0 Xgp 1 O O Xy 19O Xy 00K

> Dx, where 0<i <m~1 and0< j<n-1.

0<susi 0svsj

m-la- m-la-1*

That is, S;

We can also express the above expressions as following :
Soo = X0 |

So; =S80, °%,; Where 1< j<n,

S0 =Si0 %X, Where 1<i< m and

Sy =8, °X%g°---ox; where 1<i<m and 1< j<n.

from X=[x; ]

..['j
The process, which obtain S=[s p ]

mxn mxn
is called the two-dimensional prefix computation. Similarly,
the two-dimensional suffix computation’ is defined as the

following expressions:

am—l.n—l = xm-l,n—l »

a(n—l./’ = xm—l.j ° am—l.]‘+l»’

Aip1 = Xipa © ai+l,n—l. and

Ay =X;0K%; ;400X 10, .

Example 1 : Suppose y be the set of integers and © be the

_addition of integers. Given a matrix

X= 1 2 3
4 5 6
7 8 9

As the above definitions, we can obtain matrices S and 4 by
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the two-dimensional prefix computation and the two-

dimensional suffix computation respectively, where

1 3 6 45 33 18
§=|5 12 2ljand 4={39 28 15]|. Q.E.D.
12 27 45 24 17 9

Suppose the operation o take the constant time. Since the

element s __

all

1a-y iD the matrix S is computed from x,; for

0<i<mand 0< j<n, the sequential two-
dimensional prefix computaﬁon has the time complexity
O(n?), as the algorithm in Fig.1.

Algorithm RAM TWO-DIMENTIONAL PREFIX COMPUTATION
Step 1: 549 « X

Step 2 :for j = 0to n-2 do

Soyat € Sgy 0 Xg 0

‘end for

Step 3:for i = 0 to m-2 do
s'm,o € S50 ° X0

F e X0 .

for j=1to n-2do
rerox

i+1j
Sist; & Sy o7
end for
end for

Figure 1. The élgo'rithm of the sequential two-dimensional prefix
computation

Iﬂ order to process the submatrix in the multiprocessor
system, we -discuss the relations of the two-dimensional
prefix computation between the submatrix and the original
matrix in Theorem 1. Without loss 6f generality, we take ©
as the addition operation of real numbers and take the inverse
operation of © as the subtraction operation of real numbers.

Theorem 1. Suppose M be a submatrix of a matrix X as the

following:
) qu xp,q+l xpv
M=| :
xuq xu,qH xuv
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Let S and S be the two-dimensional prefix sums of X

and M, respectively. Then
M o_ X x X

Si = Sivpj+g = Sp-1,jg Sixp.g-1

+_SP-L g-1-
In particular, the submatrix sum

M. CX_ X X X
S"-P-v-q_s"v Sp-1j Si.q-l-i_-sp-l,.q.—l‘ QED.

Example 2 : Suppose the matrices X and S be as in Example

1. Now, given M = [g S], s =28. S can also be
computed by _
Sp = Sp S+ S =45-6-12+1=28.  QED.

3. PARALLEL TWO-DIMENSIONAL PREFIX
COMPUTATION ON THE PRAM

3.1. A Faster Algorithm

We describe an algorithm to find § =[s,] from
X =[x;] on the PRAM. Suppose P,,P,,-:-,P be

mxn-1
mxn processors on the PRAM. Initially, the matrix X is
Iaixn-c— J

and 0<Zj<n-1.

stored in shared memory by havih_g

the 0<ism-1

reads x; from
input, for
Processor P, . sets the variable 'Sy equal to Xy - These
processes take the constant time.

The algorithm is composed by log n + log m iterations;
during each step, the binary operation is performed by pairs
of processors. First, the indices of these processbrs, which
read elements in the same row of the matrix X, are separated
by a distance of 2% at the kth iteration, for
1< k <logn. Then, the indices are separated by a distance
of 2¥'xn the
1<k<logm.

at (log n + k) -th iteration, for
Hence, in the first iteration, we compute
So1 €= S0 ©So1>S02 € So1 ° 50255 S0t € Sg0-2 © So,n-10

Sy € Sy 085S 8y 0812 s S € S0 O S s

Smett € St 0 @St Smetnml € Sz © Smop et

Then, in the second iteration, we compute

S02 € 500°502%03 € 501%%3 ** 35amt € Son3 OSons

848100815135 9813 58y €503 Oy

Soi2 S0 9Sn12:5m13 €511 S 130 " 3 mtnd S Sins OSmanie

“In the log(n)-th iteration, we compute

SQ,_I. (—SOO°SQ,§’SO,'-;H (_S01°SQ§_,_1" *38gm1 (_SO.",’-l OS>
SLLZ, (“S‘OOSLL;,SLgH (—-Sl 1°SI.§+P °e ',SL,,_] (_ng_l osLn—l’

-

St g2 St

€5,4,°8 gt

Sm.L.; Hm—LO Osm-l,g ’ s""lﬁ‘ﬂ
And, .in other iterations, similar expressions can be

computed to obtain the finial values in .. Figure 2
_ i

illustrates the tw_o-dimensional prefix computation while
m=4 and n=4 as the algorithm in Figure 3.

Xoo Xo1 X2 Xo3 Xy Xy Xiz Xy3 Xz0 X1 X2 X3 X30 X1 X33 X33

VWA WA A WA

So0 So1 Saz So3 S10511 S12513  S20521 S22 5n S30 831 832 833
v v Y

S00 So1 Sz So3 S10SuSi2S13  S0SnSnSy  SpSn Siz2Sy
v v A% v

S0 So1 Soz So3  Si0 Su 512 813 S29 521 Sp $n S3p S31 832 S33

810511 S12 513 S20 821 S12 523

Soo Sor So2 So3

S30 S31532 S33

Figure 2.The two-dimensional prefix computation on the PRAM



Algorithm PARALLEL TWO-DIMENSIONAL PREFIX

COMPUTATION ON THE PRAM

for i=0to log n-1 do
for j=0to mxn-1 do in paraellel
I'= jmod n
k = (-i)/n

if (27 < 1) then Sp € S, 5 %58y

end for
end for _
for i=0to log m-1 do
for j=0to nxm-1do in parallel
I=jmod n 4
k = (-D/n
if (2' < k) then Sy < 5,

-2 oSy

end for
end for

Figure 3. The parallel algorithm of two-dimensional prefix
computation on the PRAM
The time complexnty of the parallel two- dimensional

preﬁx computation is O(Iog n) Since p(n) O(n*), the
cost of this algorithm is
c(n) = p(n)xt(n)

= O0(n*)x O(log n)

= O(n*log n)
This cost is not optimal while the sequential two-
dimensional prefix computation on the RAM requires the

time complexity O(n*)

3.2. A Cost-Optimal Algorithm

m
Suppose p = \flog m » q;,/logn, u—-; and

n’ o
v=T. The PRAM has  uxv

Py, P,, - P, ,,- Consider that the matrix
X = [x; Jmxn is decomposed into u-v submatrices with size

pXq, that is,

processors *
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: 00 00
Ko T Xogu Yoo 0 Yoga
Yoo = T = .
00 00
[ Xpt0 "7 Xl Vo0 70 Ypiga
r 01 01
Xog T Xoga Yoo 0 Noga
Hi=| =
x RS 01 .
Wi xp—LZq—l Y P10 Y p-l.g-1
. u-1, -1 .. u~1, -1
Kot pt, g1 S | }’oo Yoy
}l’l—l.v—l = . : =
’ -1, vl PPRERVE
X1, ng-1 Lo, n-1- Yoo " Yol

First, proééssor F, reads Y, where 0<i<u-—1 and

0<j<v-1, and stores it into shared memory of the
PRAM. Then, apply RAM TWO-DIMENSIONAL PREFIX
COMPUTATION to obtain the matrix

i i

S0 So.q-1 . .
. where 7 = z Zy;i’
. ’ " 0Sr<k 051/

i e ¥

Sp-1,0 Sp-tg-t

0<i<u-land 05 j<v-1.
Since each processor executes \/K)g_; x \/Eg_n- iterations,
this step requires O(log n). '

Secondly, compute the following matrix by the PARALLEL
TWO-DIMENSIONAL PREFIX COMPUTATION on processors

Poos Pors 00 Pug s
00 ' 0,v-1
Splg-1 0 " S p-1,g-1
u-1,0 . u—l,y-1
Sptg-t " p-1,g-1
This step can obtain the final values of sg tig-l and runs in
(log( Tor )) time.
;
50.4-1
Then, each processor processes the last column
sp—Z. g-1

as the following. For each element in this column, compute

{S:?q-; S:f;,-l sk ”q:l] where 0<r<p-2 by
parallel prefix computation on processors
By, By L B This step requires
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to each

)). And, add si%)

O(w/logn loglogf: ﬁjﬁ

element in this column with time complexity O (, flog n )

Similarly, each processor processes the last row

sV, ,.,]and requires d,/logn loglogﬁ)) .
Add sbir , to each element in this row with time

compl_exlty 0(,/ log .n )

Finally, proéess other elements on each Processor.

[S p-10

Compute the following matrix on each processor by

lljl
p-l,q-1

i, j-1

¥ _ ¥ i-Lj
Sy =8, +S,0, 8, 1~

p-1t s

, 0<r<p-2and

0<t<gqg-2.

Sp-2,0 Sp-2,4-2

Due to Theorem 1, 57 has the two-dimensional prefix sum.
This step requires the time complexity O (log n).

Figure 4 shows this algorithm. The time complexity is

Oflogn)+ Oliogtz=) J+ 0(@ loglog oo )+ Ollogn )

We . need to O(log n)

compare with

O(,/ logn loglog(mfﬁ)) in the following theorem. And,

the time complexity is O(log n).

Theorem2 : O(log n)2 Olylog n loglog(7&-)) -

Proof : We' only show that ./logn Zlog.logn. Let

f(x) = 4flog x —log log x-
f1(x) = Tx'lLT[w/lOg x—2].When x216, f'(x)20.
And, f(16)=0.

)QED

Hence 0 log n ( logn

_10_

Since p(n) = O(lT'Z?)’ the cost of the algorithm is

c(n) = p(n)xt(n)
= 022} 0(log )
=0(n?)
Hence this cost is optimal. We give Example 3 to illustrate

this cost-opnmal parallel two-dunensmnal preﬂx algorithm
as in Figure 5.
Example 3 : Let = be +, m=4, n=4 and y be the set of

integers. Here p=2, ¢=2, u=2 and v=2. We use four

processors : By, By, B, and B, . Initially, decompose the
1 2 3 4

matrix {3 6 7 8| into four submatrices so that
9 10 11 12
13 14 15 16

processors Py, P,, P, and P, have {! 21, |2 4
: ‘ 5 6 7 8

9 104 and |1 12} respectively. Then, according to the
13 14 15 16

cost-optimal two-dimensional prefix computation, the steps

can be processed as the following.

Step 1 : Processors Fy, B, B, and B, compute [1 3 }

6 14
3 70, (9 19iand {11 23] respectively.
10 22 22 46 26 54

Step2 : |14 221 can be computed to obtain |14 36| on
46 54 . 60 136

processors P, Py, P, and A, parallelly.
Step 3 : Process [3][7] [19]and [23] on
P, B, B, and P, respectively.

Step 3.1: [3 7] can be computed to obtain [3 10] on
processors Pg, and Py, . Simultaneously, [19 23] can be
computed to obtain [19 42] on processors P, and F.
Step 3.2:Add 14 t0 19 on proéessor P, and add 36 to 42 on

processor B, concurrently.
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Algorithm COST-OPTIMAL PARALLEL TWO-DIMENSIONAL PREFIX COMPUTATION
Step 1 : Apply RAM TWO-DIMENSIONAL PREFIX COMPUTATION to obtain the following matrix on

each processor.
y . i
S o0 o So,q-t
y Y |
Sp-1.0 Sp-1,9-1

Step 2 © Apply PARALLEL TWO-DIMENSIONAL PREFIX COMPUTATION to yield the following matrix
o1 Processors Py, Py, - s P, -

00 0,v-1
Sptg-1 "7 Spoigal
u=1,0 u-1,v-1
Sp-lg=1 . 7" Spoig
i
) SO,q—-l
Step 3 : Process . | oneach processor.
i
sp—lq—l
. il x -l
Step 3.1 : Compute [s, g1 s:, 1 " Srg- _,] by PARALLEL PREFIX COMPUTATION on
processors p . p, .. P, .-

Step.3.2 : Add s;'_ll’ ’;_l to each element in this column.

Step 4 : Process [s? s¥ oL, 2] 0 each processor.

2-1,0
§ ;l—l, r
: 1j :
Step 4.1 : Compute S”j‘" by PARALLEL PREFIX COMPUTATION on the processors

Syt
Po,"ij' rPu-l,j'
Step 4.2 : Add s:,’ f 1— 1q_1 to each element in this row.
Step 5 : Obtain the following matrix on each processor by computing
sho=shwsihwsbi sl ifiz0or j20
s¥=s? +5.00 if i=0and j>0
sh=shesitd if i>0and j=0

where 0<r<p-2and 0<r<sg-2.

ol i
SOO o SO,q—Z

i

Sp-2,0 Spa2,q-2

- Figure 4.The optimal-cost two-dimensional prefix algorithm

-1-
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Initialization

~1'
5

8

9 10
13 14

11 12

15 16

Step 2

1 3

3 7

6 |14

10 | 36

9

11 23

19
22 | 60

26 136-

Step 3.1

1] 3

3 |10

6 14

10 36

9 |19

11| 42

22 60

26 136

Step 4

13
6 14

10

3
-1_(;'36

9 33

22] 60

11 78

-2_6—'136 .

Step 4.2
1 3|(3 10
6 [14] 4] 36
9 33| |11 78

28 [ 60|

-9?{ 136

Figﬁre 5. Cost-optimal two-d.

Step 1

13

6 14

3 7
10 22

g9 19

22 46

11 23
26 54

Step 3

1.3

al7

6 14

10 36

9 [19

11|23

22 80

26 136

~ Step 3.2

1 3

6 |14

3 10
10 | 36

9 |33

11 78

22 60

26 136

Step }4.1

1 3

3 10

6 |14

10| 36

9 83

i1 78

28 | 60

36| 136

Step 5

1 |3
6 1[14]

6 |10
24] 36

15 3g]

28 60

54| 78

96 136

imensional prefix

computation on the PRAM

_‘]2_

Step 4 : Process [6] [10] [22]and [26] on processors
Py, B, P, and B, respectively.

6

Step 4.1 :
2

can be computed to obtain 6 on
: 28
processors F, and B,. Simultane;)usly, [10] can be
26

computed to yield [IO} on processors F, and P, .
36 '

Step 4.2 * Add 14 to 10 and add 60 to 36 concurrently.

Step 5 * Processor P, computes 3+3=6. Processor B,

computes 6+9=15. Simultaneously, processor £, computes

11+33+24-14=54. Hence the following result matrix can be
1 3 6 10

obtained. | 6 14 24 36 Q.ED.

15 33 54 78
28 60 96 136

- 4. CONCLUSIONS
In this paper, we provide the two-dimensional prefix
computation and its parallel algorithm on the CREW PRAM.
A cost-optimal algorithm has the time complexity

O(log n) using Of 2 ) processors. This computation

log n

can be applied to the fractal imagé compression and the

maximum sum submatrix. In the future, we shall apply the

divide-and-conquer method to solve this computation and
implement other data structures to observe this computation.
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