1998 International Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

DISTRIBUTED VOLUME MORPHING
Leewen Lin', Chungnan Lee'” and Tongyee Lee?

'Institute of Computer and Information Engineering
National Sun Yat-Sen University
Kaohsiung, Taiwan, R.0.C.
*Department of Computer Science and Information Engineering
Natjonal Cheng-Kung University
Tainan, Taiwan, R.0.C.

Abstract

3D morphing is a popular technique for creating a smooth
transition between two objects. In this paper we integrate
volume morphing and rendering in a distributed network
environment to speed up the computation efficiency. We
describe the system architecture of distributed volume
morphing and the proposed algorithms, along with their
implementation and performance on the networked
workstations. A load evaluation function is proposed to
partition the work-load and the workstation cluster for load
balancing and then to improve the performance under
highly uneven load sitnation. The analysis of performance
for five load balancing strategies are performed. Among
them, the strategy Request’ performs the best in terms of
speedup.

1. Introduction

Volume morphing is a technique for generating smooth 3D
image transformation between two objects. A source
model is mapped to a target model by incrementally
computing a function that converges the shape (and color)
of the source to the target. It has been used in
entertainment industry for a long time and can also be used
as a tool for illustration and teaching purposes. Methods
have been developed to deform various types of objects
such as 2D polygons [1], 3D polyhedral models [2], 2D
rasters [31{4], and 3D rasters [5][6].

Volume rendering, which often follows the morphed
volume construction, is a method for producing an image
from a 3D array of sampled scalar data. However, it is a
computationally intensive application. Hence, many
researchers use parallel computers to speed up the
computation and attempt to make it more interactive.
Volume morphing and rendering can be performed
independently among different processors. Unfortunately,
their computation time and inter-communication are
irregular and unpredictable. Hence, it is necessary to come
up with some strategies to achieve fast volume morphing
and rendering in the distributed environment.

In this paper, we focus on distributed volume morphing

-186-

with rendering process. Because of the large amount of
volume data and the high computational cost, we introduce
a master-slave structure to parallelize volome morphing.
We propose and evaluate five strategies to achieve fast
computation. A Joad evaluation function is used to predict
the execution time of warping a volume for each frame.
Based on prediction, the master can dynamically divide
slaves into two groups for each frame in advance. Also, we
uvse the prediction function to make volume partition for
adaptive load balancing. '
The remainder of the paper is organized as follows.
Section 2 begins with a brief survey of previous volume
morphing algorithms, volume rendering and parallel
techniques. In Section 3 we evaluate five distributed
volume morphing strategies and propose a load evaluation
function. Section 4 describes the details and pseudo code

for implementation. Section 5 gives the results of

performance evaluation of five strategies. Finally, we
conclude the paper with suggestions for future work in
Section 6.

2. Prior Work

Featnre-based volume morphing [5] creates every
morphing in two steps, warping and blending as illustrated
in Fig. 1.

Fig. 1 The data flow of a morphing system.

The first step in the volume morphing pipeline is to
warp the source and target volumes S and T into
volumes S and T . The animator identifies two

corresponding features in S and T , by defining a pair

of elements L . These feamres should be
transformed from one to the other during the m9rph. In
feature-based morphing, elements come in pais, on¢

element in the source volume S , and its counterpart in

the target volume T

Two general types of task partitions for parallel volume
rendering algorithms are object partitions and image
partitions. In an object partition each processor is assigned
a specific subset of the volume data to resample and
composite [8]{9]. The partial images from each processor
must then be composited together to form the image. In
contrast, in an image partition each processor’s task is to
compute a portion of the image [9]. Each image pixel is
computed by only one processor.

Different from previous work in parallel rendering, there
are two novelties in our research. First, we parallelize
volume morphing that is not reported in the literature so
far. Furthermore, volume morphing, which is a pipeline
work of warping, blending, and rendering, is much more
complicated than volume rendering. We must synchronize
all these phases of pipeline to achieve a better speedup. In
this case the object partition is used to assign tasks rather
than image space. Because of the warped volume
transmission at the blending phase, it needs more
communication among slaves than that of parallel volume
rendering.

3. Parallel Algorithms for Volume Morphing

In this section, we describe the parallel computation of
feature-based volume morphing. The computation is
performed on a clustered-network environment by running
PVM as parallel computing platform [10]. To achieve a
better load balancing, we propose a load evaluation
function to evaluate workload before assigning slaves into
two groups: source and target groups, dynamically. This
function is also used to make volume partition for load
balancing of tasks.

3.1 The Master-Slave Model

The overall structure of the distributed volume morphing
system is a master-slave architecture as illustrated in Fig. 2.
There are one master node and several slave nodes.

T Bource aluster

Fig. 2 The Master-Slave Model.

-187-

1998 International Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

The jobs of the slaves are completely dependent on

the master. The master divides all the slave nodes into two
clusters for each frame. One cluster is responsible for the
source and the other is responsible for the target volume
warping. For example, the source cluster warps the source
volume into intermediate volume and the target cluster
does the target one for the first frame. For the next frame
the role for the slaves in two clusters may be swapped to
achieve a better load balancing. At the beginning of each
frame, the master must pass the features and the volume
data to every slave, and send the information of one cluster,
like task id and partition table, to the other cluster. When
the slave nodes receive these messages, they can begin to
warp, blend, classify, and render. Meanwhile, the master
waits for the rendered images, prepares the next frame
information, and sends more data requested by the slaves.
The final images are saved to the file system by the master
node. '
To reduce the amount of work in the next stage, the slaves
in a smaller cluster will send its warped volume to the
slaves in the other cluster for blending when they finished
their warping job. For example, suppose that the source
cluster consists of 3 slaves and the target cluster consists
of 4 slaves, then the source cluster must send the warped
volume to the target cluster. In this way, we can make the
volume size for classification as small as possible. When a
target slave receives the warped source volume needed for
blending from the source slaves, it continues to do
blending, classification, and rendering. After it finishes the
rendering work, it sends the result of partial rendering
image back to the master node and requests more
information about the next frame,

The state transition diagram for the processing of all
stages of slaves is illustrated in Fig. 3. The items marked
on the arrows show the flow of the data needed for the
next state. The sequence of execution on these arrows is
also marked. There are 7 states for slaves. Not every slave
must walk through all the states for each frame. If the
slaves are in the smaller cluster, they do not have to do
blending, classification, and rendering. Those slaves who
send the warped volume to the correspondent slaves, they
can request the master node to send a new job. So they can

continuously work on the new frame without waiting for
the other cluster.

request
finisned

ragquest raw
volume
-

Faw volume mrere
& leatures

.
warped
vaiume

blocks Himshed
(inétist volume)

-y
request or
partisl image

"
clasmhied
volume

e
blendsd
volume

Fig. 3 State transition diagram for the slave nodes.

1998 International Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

The states for the slave node are described as

follows:

e Receive: At the beginning of each frame each slave
must receive the morphing information, such as
feature sets, task size, volume-partition table, etc.,
from the master. When the slave receive those data, it
switches to the "warp” state.

* Warp: A slave warps the block volume dispatched by
the master in this phase. If the slave in the larger
group, it will receive all the correspondent warped
volume from the other group when it finishes the
warping job and then starts its blending state.
Otherwise, it will send its own warped volume to
those slaves responsible for the same position.

A slave may send several requests to the master to ask for

more raw data other than it owns in local memory, then it

goes back to warp the unfinished data. Hence, the local

machine has more flexibility on using the local memory.

After it finishes another block, it tries to listen whether the

requested data are arrived. If they are, it comes back to the

"receive” state to receive them and transits to fill the

empty voxels.

Send: A slave will change to the "send"” state when it needs

to send messages or data to the master or the slaves under

the following conditions:

1. To request more raw volume from the master.

2. Tosend warped volume to other slaves.

3. To send rendered partial image to the master or to
request a new task.

® Voxel Filling: When the slave receives the raw
volume sent by the master, it begins to compensate
the empty warped voxels. As soon as it finishes, it
goes back to warp next blocks.

® Blend: Only the slaves in the larger group have to do
the blending job. A slave begins to blend two partial
warped volumes, when it receives all the other
warped volume at the same slice position as
illustrated in Fig. 4. In Figure 4, there are 3 tasks in
source group and 5 tasks in the target group. A slave
in the source cluster may need to send its own
warped volume, such as task 0 in the source, to more
than one slave in the target cluster, such as task 0 and
task 1 in the target. Similarly, a slave in the target,
such as task 3 needs to receive the warped volurne
from more than one slave such as task 1 and task 2 in
the source before it can proceed blending. We use a

linear weighted function w(t) 'to interpolate their
voxel values. Again, those volumes may come from
different slaves. At the next step, it renders the partial
image.

-188~

warped source warped target

volume volume

task 0 task 0

task 1

task 1 task 2

""" task 3

task 2 ——— task 4
s S

Fig. 4 Sending the warped volume from and to the source
and the target groups for blending

» (Classify: Classifying the blended volume follows the
blending state. In this phase, a slave traverses the
blended volume in storage order, computes the
opacity of each voxel, and then compares each
voxel's opacity to determine if it is transparent or
non-transparent. By this way, the slave constructs the
run-length encoded volume for rendering.

* Render: At the last stage, the slave renders the partial
image depending on the classified volume. It
computes the shear and warp factors of the viewing
transformation matrix, and composites each slice of
the volume into the intermediate image in front-to-
back order. Finally, the slave warps and sends the
partial image to the master and the next frame begins.

32 Load Balancing Schemes

The sequential morphing algorithm contains three phases:
warping and blending the source and target volumes,
classifying the blended volume, and rendering the image,
each of which can be parallelized. However, from Table. 1,
we can find that the warping phase dominates the
execution time of the sequential algorithm. So we focus on
parallelizing the warping of the two volumes.

Table. 1 The execution time for each phase of sequential
morphing algorithm (unit in second) (volume size:
128*128*84, image size: 256*256)

Frame
Task 1 2 3 4 5
‘Warp Brain 50310 166700 41.150] 73.692] 102048
Warp Sphere 136.044] 81578 39.526] 15.194] 6238
Blend 0785 0697 0.689] 090 0.696
Classify 15248] 140870 13689 12247] 8845
Render 1348 10370 L141] 1035|0563
Total [158555 114067 96.194] 102.957] 118389

We attempt to parallelize the morphing algorithm
using an object partition in which each slave is assigned a
portion of voxels partitioned in y-direction as shown in Fig.
5.

1998 International Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-18, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Fig. 5 Volume partition in y direction

When a volume is subdivided into subvolumes, each
subvolume must overlay at least 2 slices with its
neighboring subvolumes to avoid ray samples error. The
partial images produced by slaves are sent to the master
node and placed in the comect position by the master.
However, the viewing direction is not considered yet.

We discuss the four strategies in the next four Subsections

and the strategy “Request” in Section 4.

3.21 Strategy 1: Even-Group & Even-Partition

This is the simplest method among the four strategies. In
this strategy, the master divides the slaves into two groups
with the same number of slaves. Then it dispatches the
same size of volume for each slave to warp (Fig. 6).

source target
volume volume
slave 0 y/4

slave 4 y/2
slave 1 yi4
slave 2 yi4

slave 5 y/2
slave 3 y/4

Fig. 7 llustration of Strategy 2

e Load Evaluation Function

At each frame, the time for warping the source and the
target volumes may not be the same due to different
computational complexity for the source and the target
volumes. If we evenly divide slaves into two groups, there
must be a considerably waiting time for the slowest slave
to finish its job. Table. 2 shows the warping time for
source and target volumes for five consecutive frames. As
one can see that the warping time is different from frame
to frame. At the first frame, the ratio of the warping time
between the brainsmall dataset and the sphere dataset can
be as small as 0.0378, but at the fifth frame the ratio of
warping time between two datasets is as large as 16.3465.

Table. 2 The warping time for warping volumes for
5 frames

(volume size: 128*128*84, 38 sets of features)

source target
volume volume
slave 0 y/3 slave 3 /3
siave 1 ¥i3 slave 4 y/3
slave 2 yr3 slave 5 ¥/3

Fig. 6 Illustration of Strategy 1

322 Strategy 2: Adaptive-Group & Even-Partition

The strategy 1 does not consider the difference of the
warping time between frames as listed in Table 2. So, the
strategy 2 is to group the slaves based on the load of the
source and target volume (see Fig. 7). Then, these slaves in
the same group will obtain the task with the same volume
size for warping. We use the variation sum of each feature
pair to predict the loads of the two volumes. This function
is described as follows.

-189-

1
Dan 1 2 3 4 5
Brainsmall 5145 17.532 41.181 74.136 102.051
Sphere 136001 82855 39.530 15678 6243
Ratio 00378 02116 1.0418 4.7287 16.3465
Under the circumstances, the load

imbalance will degrade the performance of the
algorithm. Hence we propose a load evaluation
function for each line feature pair to predict the
load of warping a volume as follows:

load(e,e,) =cic,*ls, — s, | (1),
where C,C, is the translating distance of a set of features,

s, and 5, are the lengths of the source and target

features, respectively. They represent for the variance of
the feature pair. If a pair of line segments keep consistent,
voxels near the segments may stay at its original position
so that they need more interpolation instead of inverse
mapping by all features. Based on the load evalnation
function, we add the loads of all pairs for both the
brainsmall and the sphere datasets at each frame and use
the proportion of two datasets to divide slaves into two
groups. The calculated data are listed in Table. 3. Now as
one can see the ratio predicted by the load function is
similar to that of Table. 2.

1998 International Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1988, N.C.K.U., Tainan, Taiwan, R.0.C.

Table. 3 The ratio determined by the load evaluation

function
5 ° 1 2 3 4 5
Bransmall | 70.110 197374 382.707 625.19 926.192
Sphere |926.844 626206 384052 199.245 70.281
Ratio | 0.0756 03152 09965 3.1378 13.1784

In order to achieve 2 better load balancing, the master uses
the following equation to determine the number of slaves
in these two clusters for each frame.

Source_slaves#=total_slaves#*[source_load/(source_load

+total_load)] (2),

where the source_load is the load of source calculated by
equation (1) and the rotal_load is the sum of the source
load and the target load. Suppose there are 10 slaves, the
number of slaves for each cluster assigned by the master is
illustrated in Table. 4. Then the master can make dynamic
partition of each volume for slaves using the same
proposed load evalnation function.

Table. 4 The number of slaves of two clusters for each
frame. Ten slaves are divided into two groups using the
load evaluation function.

Frame
Data 1 2 3 4
Brainsmall 1 2 5 7
Sphere 9 7 4 2 1

Because we interpolate the source and target features at
each frame, so the intermediate feature is given by

f . +tot_frame+1—fe
tot _ frame +1

3,

e =
tot _ frame+1 °

where f is the index number of the current frame, and
tot_frame is the number of total frames that the user wants
to produce.

Assume all features are line segments, the percentage that
the source volume consititutes at frame f can be written as

Source _Load(f) = f*

t

Fig. 8 shows the relation between the percentage of
execntion time and the load predicted using equation (4) of
three examples which use 19, 24, and 38 sets of features
over 10 frames. The trends of the four curves are almost
the same. We can sec that in the middle frame the
percentages of four curses are almost the same. And at the
beginning and ending frame, the percentages for these
three examples are just a little more or less than that of the
predicted one.

100
9%
& ——19-set
E ——38-set
& —3¢— Load(f)

123456178910
Frame

Fig. 8 The relationship between the percentage of
execution time and the load predicted using equation (4)
for three examples (features: 19, 24, and 38 sets).

32.3 Strategy 3: Adaptive-Group & Adaptive-
Partition
Different from Strategy 2, this strategy adopts an adaptive
volume partition because the distribution of features is not
even, and the warp-load of each sub-volume may not be
equal. We use the load evaluation function described in
Subsection 3.2.2 to predict the load of each slice in y-
direction. First, we compute the load of each feature
element and find which slices the element crosses. Next,
the average load of each element is added to the
correspondent slices’ loads and a decreasing load, which is

Load

slices*d*’
neighboring to those the element crosses. Finally, the
master decides the partition by the average of the load. Fig.
9 illustrates this strategy. Each slave is assigned a task of
different size.

defined as is added to the slices

source target
volume volume
slave 0 sy0
slave 4 tyo
slave 1 syl
slave 2 sy2
* slave 5 tyt
slave 3 »y3

F2+(tot_ frame+1~ f)?

C))

-190-

Fig. 9 lllustration of Strategy 3

324 Strategy 4: Hybrid

In the three strategies mentioned above, each slave warps
only data in the source volume or the target volume. But
at some frames, the variation in one volume is so small
such that the slave's load is still too small. Under the
circumstances, the master will assign the slave more task
from the other volume. The loads of two volumes are
added to be a total load. The adaptive partition is still used
and volumes are equally partitioned by the average of the
total load. If the slave has two tasks at one frame, it
requests the other when it finishes the first one. Fig. 10
shows that the slave 0 is responsible for the whole source
volume and a small portion of the target volume.

source target
volume velume

| tyQ

slave 1 1

slave 2 iy2

siave 3 ty3

siave 4 ty4

slave 5 tys

Fig. 10 Hlustration of Strategy 4

4, Implementation :

To farther decrease the waiting time at the end of each
frame, the slave can make request for next task as soon
as it finishes the current one. The master will compute the
intermediate features, group slaves, and make volume
partition afier it has sent all of the information about the
current frame. Then it waits for the slaves’ responses and
sends the information of the next frame to the slaves. The
slaves can warp each frame at different time io save
vnnecessary ~ waiting tme. However, for the
synchronization reason, the master sends the
synchronization signal to inform slaves to make sure that
all slaves work at the same frame. Thus, the slave who
warps first will not send the warped volume to the wrong
frame. Incorporating the strategy 4 with the mechanism
described above it becomes the strategy “Reqguest”.

In the distributed computing environment, the
communication cost can be a dominant factor in the
morphing process. So we send the soorce and farget raw
volumes to all the slaves at the beginning, each slave holds
these data till alf tasks are done.

In volume rendering, we adopt Locrounte’s Volpack library
of fast volome rendering that wubses a shear-warp
factorization of the viewing transformation [7}. It
combines the adveniages of ray casting and splatiing
algorithms and is said to be the fastest volume rendering
method in the literatres so far. Locroute chooses the shear
wansformation such that the viewing rays become
perpendicular to the slices of the volume. The shear is
implemented by translating and resampling each slice of
volume data. Projection is then trivial: the resarnpling
shices are combined together in front-to-back order using
the "over" operator to form an intermediate image. Finally
the intermediate image must be transformed into the

-191-

1998 International Computer Symposium
Workshap on Computer Graphics and Virtual Reality
December 17-19, 1998, N,C.K.U., Tainan, Taiwan, R.0.C.

correct final image by applying an affine 2D warp. The
warp is relatively inexpensive, because it operates on 2D
images rather than the 3D volume data.

5. Performance Evaluation

We implement the algorithm of distributed volume
morphing using the C language and the PVM (Parallel
Virtual Machine) platform [10] on a network computing
environment with SUN SPARCS workstations. To run 2
program under PVM, the user first execuies a dacmon
process on the local host machine, which in turn initiates
daemon processes on all .other remote machines. Then the
user's application program, which should reside on each
machine. Communication and synchronization among
these user processes are controlled by the daemon
processes. Unlikely a shared-memory multiprocessor, the
communication overhead of the neiwork environment
must be handled carefully.

The two datasets we psed in these experiments are a
brainsmall and 2 sphere volume data. The sizes of them
are 128%128%84 (x*y*z). We define 38 sets of features for
each volume to produce the morphing sequences. Among
38 sets of features, there are 14 poinis and 24 seginents.
Fig. 11 shows only the first, the middle and the Iast
animation results of this example.

Fig. 11 The animation sequence of the sphere to the
brainsmall

® Speedup:

Fig. 12 shows the speedup for four strategies and strategy
'Request’ described in Section 4. Among five strategies,
the strategy 'Request’ achieves the best speedup of 6.253
when 10 slaves are used.

12 proccgrs fimear
- Swrategy §
10 Sirategy B
e irntegy i
i Stemtgy TV,
8 it Reoguest
4
| S .
” M]
4 e
”NWE
] - S
@ 1 2 3 4 5 6 7T 8 9 10

No. of slaves

Fig. 12 Speedup for the average time of 5 frames.

1998 Intemational Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

Table 5 shows the parallel efficiency for each strategy
using different slaves. The parallel efficiency is defined as
follows:

Speedup

parallel _ efficiency = (5)

Sp eedup linear

* Efficiency:

We use a load balance equation to evaluate the warping
time. The load balance (or efficiency) of a computation is
the ratio of the average computer load to the maximum

computer load,

L.,
L

max

eff = ©)

where Lavg is the average warping time of all slaves, and

L_,. is the maximum one of all slaves at each frame. The

efficiency results using 5 and 10 slaves are listed in Tables
6 and 7. Of all four strategies, strategy IV achieves the
highest efficiency in the two tables. It shows our volume
partition method is better than even partition. Strategy III
has good efficiency at frame 2, 3, and 4, but worse
efficiency at frame 1 and 5. It is the reason that only one
slave responsible for the source or target volume and their
loads are very light at these 2 frames.

Table 5. The parallel efficiency for all strategies (%).

VES

2 3 4 5 6 7 8 9 10

I - [47.30] - 34401 - 3411 - 30.42
T |57.80]62.80]54.43152.84{48.93148.91]|47.39] 42.89 | 43.28
I |58.6061.97]61.20]57.04{52.03[45.54|43.14] 3868 | 39.07
IV |65.80{69.20{73.35]61.52|68.22|60.36|59.29{ 57.56 | 56.02
Request [66.37|84.82{77.5881.8970.26173.49{67.07} 63.23 | 62.56

S

_ {57.80

Table. 6 The efficiency of four strategies using 5 slaves.

e | i m v
1 - 0.6353 0.5389 | 0.8938
2 - 0.6193 09116 | 0.8644
3 - 0.6303 0.7388 | 0.7114
4 - 06103 | 0.7591 | 0.7655
5 - 0.6007 | 0.6096 | 0.8136
Table. 7 The efficiency of four strategies using 10 slaves.
Frame s I i m v
1 0.4045 0.6853 0.4086 0.6903
2 03372 0.5634 0.7657 0.7950
3 0.4780 0.4813 0.7368 0.7394
4 0.3577 0.5585 0.7591 0.7732
5 0.3422 0.6148 0.5468 0.8290

Furthermore, the warping efficiencies in Tables 6 and 7 are

-192-

The efficiency of strategy ‘Request’ using 5 slaves
compares with that of other strategies, it achieves the best
and it improves from 52.84% of strategy I to 81.89%.

better than the speedup drawn in Fig. 12. It may result
from two reasons: -

We only take consideration about the load of warping time.
However, the partition size will influence the classification
time too. A larger partition will take longer classification
time. When the number of slaves increases, the
classification time becomes more dominant.

The slaves must wait for the warped volumes awhile from
other slaves for blending. It also affects the total time.

® Waiting time:

We compare the waiting time between strategy IV and
strategy 'Request’ in Table 8. The average time of each
slave for each frame is about 2.32 seconds using the
strategy 'Request'. It is less than 10.65 seconds of the
strategy IV. The waiting time (2.32 sec) constitutes 12.3%
of the average time (18.87 sec) of one frame.

Table. 8 The total waiting time of each slave for 5 frames
using strategy IV and strategy 'Request’. And the average

time of each slave at each frame is also computed.

ave
- 1 2 | 31 4| s
Request | 1.6799 [3.3793| 11.872| 19.455 | 11.772
v 19.309 | 38.854 | 46.909 | 64.418 [55.606
ave Vi
o 6 7 8 9 | 10 | Avemee
Request | 13.378 | 10.094 | 15.286 | 19.357 | 9.8751 | 2.323044
IV | 67725 | 54.604 | 62.009 | 74.908 | 47.938 | 10.6461

¢ Time Analysis:
Combining the contributions of all phases, we find the
total execution time for the algorithm:

P=1 oy Vhtend sy T Tt o, T

render wait
o)
where
lyap = total time used in warping
Lyena = total time used in blending the two
warped volume
Liasiyy = total time used in classifying the

blended volume

Loppder total time used in rendering the partial

image

toomm total time taken for inter-processor

communication, including transmission and reception
of partial volumes and partition data

L . = total time taken for waiting

wait

Tables 9 and 10 show the analysis of the total execution
time of 10 and 5 slaves into its components.

Table. 9 The analysis of time taken for various tasks using
10 slaves.

t twarp tblend tcla:.\-if trender tcomm twaix

Time(sec)| 870.67 | 617.81 | 2472 185.145| 14.125 |14.114] 136.96

Per(%) | 100 [70963| 0283 {9.7793| 16218 | 16216 13.75

Table. 10 The analysis of time taken for various tasks
using 5 slaves.

d twarp tblend tclassif trender tcomm twait

Time(sec)| 73339 | 571.188 }2.2841{63.052 | 6.8479] 6.3761 | 83.649

Per(%) | 100 | 77.882 03114 8.5972 (09337 0.8694| 11.405

From Table 9, we observed that the communication
time contributes only 1.62% of the total parallel morphing
operation. Compared with the warping time of the
volumes by all slaves which takes up 70.96% of the total
time, the communication is not the main factor to improve
time efficiency in our distributed morphing algorithm.
However, a better partition scheme may help to reduce the
total waiting time that amounts to 15.73%. Moreover, the
classification time should be also taken into consideration
in order to further reduce the waiting time.

6. Conclusions

In this paper, we have presented a parallel volume
morphing algorithm for a networked cluster of
workstations. The algorithm divides the computation load
of warping across all processors by the load evaluation
function. Based on the proposed function we could predict
the ratjo of the warping times for the source and the target
volume to improve the efficiency. This function was used
to divide slaves into two clusters and make partition of the
volumes. The slaves can work on the next task without
waiting for the other when warping the volume of new
frame. We have evaluated the performance of five
strategies. The results show that the strategy “Request”
performs the best.

Performance conld be further improved by considering the
interpolating time for the blocks without features.
Alternatively, the classification time becomes more
dominant when the number of slaves increased. To morph
a large dataset of volume may result in the memory
shortage, we can solve the problem by using a cache
strategy.

-193-

1998 International Computer Symposium
Workshop on Computer Graphics and Virtual Reality
December 17-19, 1998, N.C.K.U., Tainan, Taiwan, R.0.C.

References

{11 T. W. Sederberg and E. Greenwood, “A Physically
Based Approach to 2-D Shape Blending,” In
Proceedings of SIGGRAPH ‘92, Computer Graphics,
vol. 26, pp. 25-34, July 1992.

(21 J. R. Kent, W. E. Carlson, and R. Parent, “Shape
Transformation for Polyhedral Objects, ™ In
Proceedings of SIGGRAPH ‘92, Computer Graphics,
vol. 26, pp. 47-54, July 1992.

{3] T. Beier and S. Neely, “Feature-Based Image
Metamorphosis,” In Proceedings SIGGRAPH 92,
volume 26, pp. 35-42, July 1992.

[4] G. Wolberg, Digital Image Warping, IEEE Computer
Society Press, Los Alamitos, Calif., 1990.

[51 A. Leros, C. Garfinkle, and M. Levoy, “Feature-
Based Volume Metamorphosis,” In Proceedings
SIGGRAPH 95, pp. 449-456, 1995.

[6] T. He, S. Wang, and A. Kaufman, “Wavelet-Based
Volume Morphing, ” In D. Bergeron and A. Kaufman,
editors, Proceedings of Visualization '94, pp. 85-91,
Los Alamitos, CA, Oct. 1994. IEEE Computer
Society and ACM SIGGRAPH.

[71 P. Lacroute, Fast Volume Rendering Using a Shear-
Warp Factorization of the Viewing Transformation.
PhD thesis, Stanford University, 1995.

[8] K-L Ma, J. S. Painter, C. D. Hansen, and M. F. Krogh,
“A Data Distributed, Parallel Algorithm for Ray-
Traced Volume Rendering,” In Proceedings of the
1993 Parallel Rendering Symposium, San Jose, Oct.
1993, pp. 15-22.

[5] J. Nieh and M. Levoy, “Volume Rendering on
Scalable Shared-Memory MIMD Architectures,” In
Proceedings of the 1992 Workshop on Volume
Visualization, Boston, pp. 17-24.

[10] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R.
Manchek, and V. Sunderam, PVM: Parallel Virtual
Machine- A Users' Guide and Tutorial for Networked
Parallel Computing, The MIT Press, 1994.

	
	186
	187
	188
	189
	190
	191
	192
	193

